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Abstract It may not be enough to hold all the

engineering problems by the supposition that material

mediums are isotropic, homogeneous, without initial

stress and have a planar boundary surface, as the

concept cannot indulge many features of the con-

tinuum response which are of great significance. This

motivates us to study the influence of corrugated

boundary surfaces, reinforcement, hydrostatic stress,

heterogeneity and anisotropy on the propagation of

Love-type wave in a corrugated heterogeneous

orthotropic layer lying over a fibre-reinforced half-

space under hydrostatic state of stress. The hetero-

geneity in the upper corrugated layer is caused due to

exponential variation in the elastic constants with

respect to the space variable pointing positively

downwards. The dispersion relation has been obtained

in closed form and found in well-agreement to the

classical Love wave equation. The substantial effect of

corrugation parameters, reinforcement, undulatory

parameter, hydrostatic state of stress, heterogeneity

parameter, position parameter and wave number on

the phase velocity of Love-type wave has been

observed and depicted by means of graph. The

comparative study to unravel the effect of presence

and absence of corrugated boundary surfaces of layer,

heterogeneity in upper layer, reinforcement in half-

space and anisotropy existing in both layer and half-

space, on the dispersion curve is among the important

peculiarities of the present paper.

Keywords Corrugation � Dispersion � Orthotropic �
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1 Introduction

The study of longitudinal as well as shear wave (Love-

type wave) velocity measurements find their worthy

applications in a numerous geological and geophysical

fields including water, oil, gas and other subsurface

geological probing and exploration; and designing

various civil engineering and marine structures such as

dams, tunnels, highways, bridges, platforms, on-shore

or off-shore structures and sub-surface development.

The dispersion property of surface waves reveals that

different wavelength has different penetration depth

and hence it propagates with different velocity. The

near-surface velocity profile could be analyzed with

the aid of dispersion of surface waves, therefore makes

the related study obligatory. In order to realize a high

performance of the designs and construction quality, it

is essential that the foundation bearing ground is

rigorously investigated. Hence, the study of effect of
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different affecting parameters of the medium on the

shear wave velocity.

propagating through it may find applications in the

arena of Geophysics and Geomechanics. For more

evidences the papers including Singh et al. [1, 2] and

may be referred where the considered problems is

about the dispersion of Love-type wave (Shear wave)

through different mediums.

The assumption that the constituent layers of earth

are isotropic may not be adequate to encapsulate most

of the engineering problems including response of

soils, geological materials and composites. Moreover,

it does not capture some considerable features of the

continuum response. In spite of being a long uphill

climb compared isotropic problems; the elasto-dy-

namic response of anisotropic problems has received

the attention of several eminent researchers in the past

years. Particularly, the problems concerning trans-

versely isotropic and orthotropic materials have been

more regularly studied.

Orthotropic materials are those in which the

mechanical or thermal properties are unique and

independent in three mutually perpendicular direc-

tions. Many fiber-reinforced composites, wood, cold-

rolled steel, ceramics, as well as bone exemplify

orthotropic materials. These materials have tremen-

dous usage in engineering applications. According to

Hooke’s Law, orthotropic material involves nine

material/elastic constants, whereas there are only

two material constants for isotropic materials. More-

over, the composition of the earth is heterogeneous

which indicates that a heterogeneous orthotropic/

isotropic medium interfaces play a significant role in

the propagation of seismic waves. Kumar and Kumar

[3] investigated the effect of voids on the surface wave

propagation in a layer of orthotropic thermoelastic

material with voids lying over an isotropic elastic half-

space. Kundu et al. [4] studied the propagation of shear

waves (SH-type waves) in a homogeneous isotropic

medium sandwiched between two semi-infinite media.

The secular equation for surface acoustic waves

propagating on an orthotropic incompressible half-

space was derived by Destrade [5], in a direct manner

using the method of first integrals. Chow [6] derived

the dynamic equations of orthotropic laminated plates

from the concepts of Timoshenko’s beam theory to

include the effects of transverse shear and rotatory

inertia. The normalized change in ultrasonic natural

velocity as a function of stress and temperature was

measured and they were used together with the linear

(second order) elastic moduli to calculate some of the

nonlinear (third order) moduli of this material by

Prosser and Green [7]. By using an appropriate

representation of the solution, Vinh and Seriani [8]

obtained the secular equation of the Stoneley wave in

the explicit form. Moreover, considering its special

cases, they derived explicit secular equations for a

number of investigations of Stoneley waves under the

influence of gravity, for which only the implicit

dispersion equations were previously obtained. Kundu

et al. [4] studied the influence of heterogeneity and

initial stress on the dispersion of shear waves in a

homogeneous isotropic medium sandwiched between

two semi-infinite media.

There exist some materials which combine to form

a new type of material. The properties of the newly

formed composite are literally different from the

individual materials, but the properties of the indi-

vidual components remain aloof within the composite

materials. An example of such composite material is

the fibre-reinforced material. A fibre-reinforced ma-

terial comprises of the fibre (dispersed phase), the

matrix (continuous phase) and the interface between

the ingredient materials. These fibre materials may be

converted to self-reinforced fibres under certain tem-

perature and pressure. Carbon, nylon or conceivable

metal whiskers are some common examples of fibres.

Fibre composites find its applications in the field of

construction, aviation, space, geophysics and geome-

chanics. The technique of natural and synthetic fibre

reinforcement of soils is a feasible technique for

increasing a soil’s strength and load-bearing capacity.

Therefore, these techniques are used in large scale in a

variety of applications ranging from retaining struc-

tures and embankments to subgrade stabilization

beneath footings and pavements. The presence of

self-reinforced materials in the earth crust, in the form

of some hard/soft rocks, effects the propagation of

seismic waves through them. The constitutive equa-

tions for a fibre-reinforced linearly anisotropic medi-

um with respect to preferred direction were

circumvented by Spencer [9]. Belfield et al. [10] gives

the idea of introducing a continuous reinforcement at

every point of an elastic solid. The propagation of

magnetoelastic shear waves in an infinite self-rein-

forced plate was studied by Chattopadhyay and

Choudhury [11]. A large amount of information

related to Love wave propagation in fibre-reinforced
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material with different geometries, could be gathered

from the disquisitions of Chattopadhyay and Singh

[12–14] and Chattopadhyay et al. [15, 16].

An isotropic stress that is given by the weight of

water above a certain point is designated as hydro-

static stress. The hydrostatic stress, being an isotropic

stress, acts equally in all directions. Hydrostatic

stress (confining stress) finds its worthy applications

in the arena of continuum mechanics, particularly in

geomechanics and geophysics, where the initial stress

is partially hydrostatic or the solid is found in contact

with a fluid in hydrostatic equilibrium. The situation

may arrive in case of compressible solids, incom-

pressible solids and incompressible solid of uniform

density submerged in a fluid of the same density. The

solution to this may lead to a better practical insight

of the geophysical problems. Although the hydro-

static stress does not have a much pronounced effect

on incompressible solids, but its presence in the

media through which a wave is propagating, coincide

to real world scenario. The elasto-dynamical equa-

tions for transversely isotropic solids in order to

investigate the general theory of transversely isotrop-

ic magneto-elastic interface waves in conducting

media under initial hydrostatic tension or compres-

sion were employed by Acharya et al. [17]. Singh

and Yadav [18] studied the reflection of plane waves

at a free surface of a perfectly conducting trans-

versely isotropic elastic solid half-space with initial

stress.

A series of parallel ridges and furrows is termed as

corrugation. The evidence for the presence of corru-

gated surfaces has been well-grounded by many

researchers, keeping in view the natural structures

(such as mountains, basins, mountain roots and salt

and ore deposits present beneath earth etc.) as well as

man-made structures (viz. the surface of various tanks,

turbine bores, different wires, amusement park rides,

tires etc.). The propagation of waves and vibrations

through these structures gets affected by the undula-

tion. Therefore, it is quite significant to study the effect

of corrugated surfaces on the propagation of waves.

Propagation and reflection/refraction of seismic waves

through corrugated surface has been discussed by

many researchers. Singh and Tomar [19] studied the

qP-wave at a corrugated interface between two

dissimilar pre-stressed elastic half-space using the

Rayleigh’s method of approximation. The study of

reflection and transmission coefficients due to incident

plane SH-waves at a corrugated interface between two

isotropic, laterally and vertically heterogeneous visco-

elastic solid half spaces were furnished by Kaur et al.

[20]. Apart from these, Tomar and Kaur [21–23] had

investigated on Reflection and transmission of SH-

waves at a corrugated interface between (1) two

laterally and vertically heterogeneous anisotropic

elastic solid half-spaces (2) a dry sandy half-space

and an anisotropic elastic half-space (3) two

monoclinic solid half-spaces. Kundu et al. [24] briefly

reported the existence of Love wave propagation in an

initially stressed homogeneous layer over a porous

half-space with irregular boundary surfaces. Singh

[25] solved the problem of propagation of a Love wave

in a corrugated isotropic layer over a homogeneous

isotropic half-space. Using first-order perturbation

theory of Whitham’s equation for dispersive waves in

non-uniform media, Ben-Hador and Buchen [26]

derived the dispersion of Love and Rayleigh waves

in multilayered models with smooth and weakly non-

parallel boundaries. Singh et al. [27] obtained the

expression for stresses produced due to a normal

moving load on a rough monoclinic half-space and

studied the effect of irregularity and heterogeneity on

these stresses.

Even though a number of problems has been solved

taking the phenomena of reflection/refraction of

seismic waves in mediums with corrugated surfaces,

but many problems regarding the propagation of

seismic waves in corrugated medium are still

unexplored.

The aim of the present paper is to characterize the

influence of corrugated boundary surfaces, reinforce-

ment, hydrostatic stress, heterogeneity and anisotropy,

on the propagation of Love-type wave in a corrugated

heterogeneous orthotropic layer lying over a fibre-

reinforced half-space under hydrostatic state of stress.

The heterogeneity in the layer is caused due to

exponential variation in material constants with

respect to the space variable pointing positively

downwards. The dispersion relation has been obtained

in closed form and found in assent with the classical

Love wave equation as a particular case of the

problem. The pronounced effect of corrugation pa-

rameters, reinforcement, undulatory parameter, hy-

drostatic state of stress, heterogeneity parameter,

position parameter and wave number on phase

velocity has also been studied numerically and

demonstrated graphically.
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2 Formulation of the problem

In the present context, we consider the propagation of

Love-type wave in a corrugated heterogeneous

orthotropic layer lying over a fibre reinforced half-

space under hydrostatic state of stress, as shown in

Fig. 1. The heterogeneity in the orthotropic layer is

caused due to exponential variation of space variable

which is pointing positively downwards. Cartesian co-

ordinate system has been taken in such a way that

origin, O is at the common interface of the layer and

half-space, x-axis is along the direction of propagation

of Love-type wave and z-axis is pointing vertically

downward. The average width of the layer isH and the

half-space lies in the region 0\?. The uppermost

boundary surface of the layer is defined as z ¼
g1 xð Þ � H; and the common interface of the layer and

the half-space is given by z ¼ g2 xð Þ, where g1 xð Þ and
g2 xð Þ are continuous periodic functions of x and

independent of y.

Taking a suitable origin of coordinates the Trigono-

metric Fourier series of g1 xð Þ and g2 xð Þ can be

represented as follows (Asano [28]):

gl ¼
X1

n¼1

gðlÞn einkx þ gðlÞ�ne
�inkx

h i
; l ¼ 1; 2; ð1Þ

where g
ðlÞ
n and g

ðlÞ
�n are Fourier expansion coefficients

and n is series expansion order. Let us introduce the

constants a; b;R lð Þ
n ; I lð Þ

n as follows:

g
ð1Þ
�1 ¼

a

2
; g

ð2Þ
�1 ¼

b

2
; g

ðlÞ
�n ¼

R lð Þ
n � I lð Þ

n

2
;

l ¼ 1; 2; and n ¼ 2; 3; . . .

and

g1 ¼ a cos kxþ R
ð1Þ
2 cos 2kxþ I

1ð Þ
2 sin 2kxþ . . .

þ Rð1Þ
n cos nkxþ I 1ð Þ

n sin nkxþ . . .;

g2 ¼ b cos kxþ R
ð2Þ
2 cos 2kxþ I

2ð Þ
2 sin 2kxþ . . .

þ Rð2Þ
n cos nkxþ I 2ð Þ

n sin nkxþ . . .;

where R lð Þ
n ; I lð Þ

n are the cosine and sine Fourier coef-

ficients, respectively. The upper and lower boundary

surfaces of the layer in the concerned problem, may be

expressed in terms of cosine i.e. g1 ¼ a cos kx and

g2 ¼ b cos kx; where k is the wavenumber, a and b are

the amplitudes of corrugation and the wavelength of

corrugation is 2p=k.
Now, let ui; vi andwi i ¼ 1; 2ð Þ be the displacements

along x, y and z directions respectively. For the

propagation of Love-type wave in the x-direction

causing displacement in y-direction only, we have

ui ¼ 0; vi ¼ vi x; z; tð Þ;wi ¼ 0: ð2Þ

2.1 Dynamics of the upper heterogeneous

corrugated orthotropic layer and expression

for displacement

The stress–strain relation for the upper heterogeneous

orthotropic layer with y-being the diagonal axis is

given by

r11
r22
r33
r23
r13
r12

2
6666664

3
7777775
¼

B11 B12 B13 0 0 0

B12 B22 B23 0 0 0

B13 B23 B33 0 0 0

0 0 0 2M 0 0

0 0 0 0 2L 0

0 0 0 0 0 2N

2
6666664

3
7777775

e11
e22
e33
e23
e13
e12

2
6666664

3
7777775
;

ð3Þ

where rij are the stress components, Bij i; j ¼ 1; 2; 3ð Þ
and L;M;N are the elastic constants and eij are the

strain components.

Using Eq. (2), the strain–displacement relation for

upper layer are obtained as

e11 ¼ 0; e22 ¼ 0; e33 ¼ 0; e23 ¼
1

2

ov1

oz
; e13 ¼ 0;

e12 ¼
1

2

ov1

ox
: ð4Þ

Fig. 1 Geometry of the problem
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Using Eq. (4), the relations in Eq. (3) give

r11 ¼ r22 ¼ r33 ¼; r13 ¼ 0; r23 ¼ M
ov1

oz
; r21

¼ N
ov1

ox
: ð5Þ

In view of Eq. (5), the only non-vanishing equation

we are left with is given by

or21
ox

þ or23
oz

¼ q1
o2v1

ot2
; ð6Þ

where q1 is the density of the upper heterogeneous

corrugated orthotropic layer.

Now, the elastic constants of the corrugated

heterogeneous orthotropic layer are assumed as expo-

nentially varying functions of depth i.e.

M ¼ M�ea zþHð Þ;N ¼ N�ea zþHð Þ; q1 ¼ q�1e
a zþHð Þ;

where M�;N�; q�1 are the values of M;N; q1 at the

uppermost free surface i.e. at z ¼ �H and a is the

heterogeneity parameter.

Therefore, the equation of motion for the propaga-

tion of Love-type wave in upper corrugated heteroge-

neous orthotropic layer is given by

o2v1

oz2
þ a

ov1

oz
þ N�

M�
o2v1

ox2
¼ 1

b21

o2v1

ot2
; ð7Þ

where b21 ¼ M�

q�
1

:

Let v1 x; z; tð Þ ¼ V1 zð Þeik x�ctð Þ be the solution of

Eq. (7). Under this assumption Eq. (7) takes the form

d2V1

dz2
þ a

dV1

dz
þ k2

c2

b21
� N�

M�

 !
V1 ¼ 0: ð8Þ

Therefore, in view of Eq. (8), the expression for

displacement in the upper layer is obtained as

v1 ¼ e�
a
2
z A cos p1zþ B sin p1zð Þeik x�ctð Þ; ð9Þ

where A and B are arbitrary constants and

p1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k2
c2

b21
� N�

M�

 !
� a2

vuut :

2.2 Dynamics of the lower fibre-reinforced half-

space under hydrostatic state of stress

and expression for displacement

The constitutive equation for a fibre-reinforced

linearly elastic anisotropic medium with preferred

direction a~of reinforcement, is given by (Belfield et al.

[10])

rij
� �

1
¼k0 ekkð Þ1dij þ 2lT ekkð Þ1þa0 akam ekmð Þ1dij

�

þ aiaj ekkð Þ1
�
þ 2 lL � lTð Þ aiak ekj

� �
1

�

þ ajak ekið Þ1
�
þ b0akam ekmð Þ1aiaj;

i; j; k;m ¼ 1; 2; 3: ð10Þ

where rij
� �

1
are stress components, eij

� �
1
¼

1
2

oui
oxj

þ ouj
oxi

� �
are components of infinitesimal strain,

dij is Kronecker delta, a~¼ a1; a2; a3ð Þ is the preferred
directions of reinforcement such that a21 þ a22þ
a23 ¼ 1. The vector a~ may be function of position.

Indices take the values 1, 2, 3 and summation

convention is employed. a0; b0 and lL � lTð Þ are

reinforcement parameters. lT can be identified as the

shear modulus in transverse shear across the preferred

direction, and lL as the shear modulus in longitudinal

shear in the preferred direction. a0; b0 are specific stress
components to take into account different layers for

concrete part of the composite material, k0 is Lame’s

constant of elasticity.

The only non-vanishing equation of motion for the

propagation of Love-type wave in the fibre-reinforced

half-space under hydrostatic state of stress, as per

Eqs. (2) and (10) is obtained as (Biot [29])

o r21ð Þ1
ox

þ o r23ð Þ1
oz

� p0r2v2 ¼ q2
o2v2

ot2
; ð11Þ

where p0 is the hydrostatic stress and q2 is the density
of the fibre-reinforced half-space. Also, in Eq. (11) we

have

r2 ¼ o2

ox2
þ o2

oz2
; ð12Þ

r21ð Þ1¼ lT
ov2

ox
þ lL � lTð Þa1 a1

ov2

ox
þ a3

ov2

oz

� �
;

r23ð Þ1¼ lT
ov2

oz
þ lL � lTð Þa3 a1

ov2

ox
þ a3

ov2

oz

� �
:

9
>>>=

>>>;

ð13Þ

In view of Eqs. (12) and (13), Eq. (11) lead to

P� p0

lT

� �
o2v2

oz2
þ Q� p0

lT

� �
o2v2

ox2
þ R

o2v2

oxoz

¼ 1

b22

o2v2

ot2
; ð14Þ
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where,

P ¼ 1þ lL
lT

� 1

� �
a23;Q ¼ 1þ lL

lT
� 1

� �
a21;

R ¼ 2a1a3
lL
lT

� 1

� �
; b2 ¼

ffiffiffiffiffiffi
lT
q2

r
: ð15Þ

Now, we assume harmonic solution of the Eq. (14)

of the form

v2 x; z; tð Þ ¼ V2 zð Þeik x�ctð Þ; ð16Þ

where k is the wave number and c is the common wave

velocity. Equation (14) when substituted upon by

Eq. (16), takes the form

d2V2

dz2
þ ikR

P� p00

� �
dV2

dz
þ k2

c2
	
b22 � Q� p00

� �

P� p00

( )

¼ 0; ð17Þ

where p00 ¼
p0
lT
:

The solution of Eq. (17) gives the expression for

displacement in lower fibre-reinforced half-space

under hydrostatic state of stress as

v2 x; z; tð Þ ¼ Ce�p2zeik x�ctð Þ; ð18Þ

where C is arbitrary constant and

p2 ¼ pre þ ipim;

pre ¼
k

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
Q� p00
� �

� c2
	
b22

P� p00

 !
� R

P� p00

� �2

vuut ;

pim ¼ 1

2

Rk

P� p00

� �
:

3 Boundary conditions and dispersion relation

1. The uppermost corrugated surface of the layer is

stress free i.e. at z ¼ g1 xð Þ � H;

r23 � g01r12 ¼ 0;

2. Stress is continuous at the common corrugated

interface of layer and half-space i.e. at z ¼ g2 xð Þ;

r23 � g02r12 ¼ r23ð Þ1�g02 r21ð Þ1;

3. Displacement is continuous at the common corru-

gated interface of layer and half-space i.e. at z ¼
g2 xð Þ;
v1 ¼ v2;

where g01 ¼
og1 xð Þ
ox

and g02 ¼
og2 xð Þ
ox

.

Using Eqs. (9) and (18) in boundary conditions (1),

(2) and (3), we get

A ¼ �B
T1 sin p1 g1 � Hð Þð Þ � T2 cos p1 g1 � Hð Þð Þ
T1 cos p1 g1 � Hð Þð Þ þ T2 sin p1 g1 � Hð Þð Þ ;

ð19Þ

ClTT4 ¼ A T2 sin p1g2 þ T3 cos p1g2½ �
þ B T3 sin p1g2 þ T2 cos p1g2½ �; ð20Þ

C ¼ A cos p1g2 þ B sin p1g2ð Þe� a=2�p2ð Þg2 ; ð21Þ

where

T1 ¼ g01N
�ik þ a

2
M�; T2 ¼ M�p1;T3 ¼ g02N

�ik þ a
2
M�;

T4 ¼ R ik þ p2g
0
2

� �
� g02ikQ� Pp2

� �
e� a=2þp2ð Þg2�aH :

Eliminating the arbitrary constants from Eqs. (19),

(20) and (21), we get

tan g2 � g1 þ Hð Þp1½ �

¼ T1T2 þ T2T4lTe
p2�a=2ð Þg2 � T2T3

T2
2 � T1T4lTe p2�a=2ð Þg2 þ T1T3

: ð22Þ

Equation (22) suggests that its right hand side is a

complex expression. Therefore, equating the real and

imaginary part gives

tan g2 � g1 þ Hð Þp1½ � ¼ w1w2 þ w3w4

w2
2 þ w2

4

; ð23Þ

where w1;w2;w3 and w4 are provided in ‘‘Appendix’’.

Equation (23), which comes from the comparison

of real part on both the side, represents the dispersion

equation for the Love-type wave propagating in a

corrugated heterogeneous orthotropic layer lying over

a fibre-reinforced half-space under hydrostatic state of

stress.

4 Particular cases

Case 4.1 When g1 ¼ 0 and g2 ¼ b cos kxð Þ i.e. the

layer is bounded by an upper planar bounded surface

and a lower corrugated boundary surface; the disper-

sion relation given in Eq. (23) takes the form
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tan b cos kxþ Hð Þp1½ � ¼ w1ð Þ1 w2ð Þ1 þ w3ð Þ1 w4ð Þ1
w2ð Þ21 þ w4ð Þ21

:

ð24Þ

Some special cases derived from Eq. (24) are as

follows:

Subcase 4.1.1 When heterogeneity of the layer

vanishes i.e. a ¼ 0; Eq. (24) takes the form

tan b cos kxþ Hð Þ p1ð Þ1

 �

¼ pre P� Rbk sin kxð Þ
M� p1ð Þ1

;

which is the dispersion relation for the propagation of

Love-type wave in a homogeneous orthotropic layer

bounded by an upper planar surface and lower

corrugated surface, lying over a fibre-reinforced

half-space under hydrostatic state of stress.

Subcase 4.1.2 When the heterogeneity of layer and

the hydrostatic stress acting in the half-space vanish

i.e. a ¼ 0 and p00 ¼ 0; Eq. (24) becomes

tan b cos kxþ Hð Þ p1ð Þ1

 �

¼ preð Þ1 P� Rbk sin kxð Þ
M� p1ð Þ1

;

which is the dispersion relation for the propagation of

Love-type wave in a homogeneous orthotropic layer

bounded by an upper planar surface and lower

corrugated surface, lying over a fibre-reinforced

half-space under no hydrostatic state of stress.

Subcase 4.1.3 When the heterogeneity of layer and

hydrostatic stress acting in the half-space vanish and

the upper corrugated layer is isotropic i.e. a ¼ 0; p00 ¼
0; N� ¼ M� ¼ l1; Eq. (24) gives

tan b cos kxþ Hð Þ p1ð Þ2

 �

¼ preð Þ1 P� Rbk sin kxð Þ
l1 p1ð Þ2

;

which is the dispersion relation for the propagation

of Love-type wave in a homogeneous isotropic

layer bounded by an upper planar surface and

lower corrugated surface, lying over a fibre-rein-

forced half-space under no hydrostatic state of

stress.

Subcase 4.1.4 When the layer and half-space are

isotropic, heterogeneity of layer and hydrostatic

stress acting in the half-space vanish and the lower

corrugated boundary surfaces become planar, i.e.

a ¼ 0; p00 ¼ 0; N� ¼ M� ¼ l1; a1 ¼ 0 ¼ a3; lL ¼
lT ¼ l2 and g2 ¼ 0; Eq. (24) takes the form (Ewing

et al. [30])

tan kH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
	
b21 � 1

� �q� 
¼

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

	
b22

� �q

l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
	
b21 � 1

� �q ; ð25Þ

which is the classical Love-wave equation.

Case 4.2 When g1 ¼ a cos kxð Þ and g2 ¼ 0 i.e. the

layer is bounded by an upper corrugated surface and

lower planar surface; the obtained dispersion relation

given in Eq. (23) takes the form

Some special cases derived from Eq. (26) are as

follows:

Subcase 4.2.1 When heterogeneity of the layer

vanishes i.e. a ¼ 0; Eq. (26) takes the form

tan �a cos kxþ Hð Þp1½ � ¼
p1preM

�Pe�aH w2ð Þ2þM�p1 kN�g01 þ e�aH kRþ Ppimð Þ
� �

w4ð Þ2
w2ð Þ22þ w4ð Þ22

: ð26Þ

tan �a cos kxð Þ þ Hð Þ p1ð Þ1

 �

¼
p1ð Þ1preM�P M�ð Þ2 p1ð Þ21 þ ak sin kxð ÞN�k Rk þ Ppimð Þ

n oh
�kN�ak sin kxð Þ1 �kN�ak sin kxð Þ þ kRþ Ppimð Þ

�

M�ð Þ2 p1ð Þ21 þ ak sin kxð ÞN�k Rk þ Ppimð Þ
� �2

þ �PkN�preak sin kxð Þð Þ2
;
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which is the dispersion relation for the propagation of

Love-type wave in a homogeneous orthotropic layer

bounded by an upper corrugated surface and lower

planar surface, lying over a fibre-reinforced half-space

under hydrostatic state of stress.

Subcase 4.2.2 When the heterogeneity of layer and

the hydrostatic stress acting in the half-space vanish

i.e. a ¼ 0 and p00 ¼ 0; Eq. (26) becomes

which is the dispersion relation for the propagation of

Love-type wave in a homogeneous orthotropic layer

bounded by an upper corrugated surface and lower

planar surface, lying over a fibre-reinforced half-space

under no hydrostatic state of stress.

Subcase 4.2.3 When the heterogeneity of layer and

hydrostatic stress acting in the half-space vanish and

the upper corrugated layer is isotropic i.e. a ¼ 0; p00 ¼
0; N� ¼ M� ¼ l1; Eq. (26) gives

which is the dispersion relation for the propagation of

Love-type wave in a homogeneous isotropic layer

bounded by an upper corrugated surface and lower

planar surface, lying over a fibre-reinforced half-space

under no hydrostatic state of stress.

Subcase 4.2.4 When the layer and half-space are

isotropic, heterogeneity of layer and hydrostatic stress

acting in the half-space vanish and the uppermost

corrugated boundary surfaces become planar, i.e. a ¼

0; p00 ¼ 0; N� ¼ M� ¼ l1; a1 ¼ 0 ¼ a3; lL ¼ lT ¼
l2 and g2 ¼ 0; Eq. (26) reduces to Eq. (25) which

is the classical Love-wave equation (Ewing et al.

[30]).

Case 4.3 When g1 ¼ a cos kxð Þ and g2 ¼ b cos kxð Þ
i.e. the both the boundary surfaces of the layer are

corrugated; the obtained dispersion relation given in

Eq. (23) takes the form

tan b� að Þ cos kxð Þ þ Hð Þp1½ �

¼ w1ð Þ3 w2ð Þ3 þ w3ð Þ3 w4ð Þ3
w2ð Þ23 þ w4ð Þ23

; ð27Þ

Some special cases derived from Eq. (27) are as

follows:

Subcase 4.3.1 When heterogeneity of the layer

vanishes i.e. a ¼ 0; Eq. (27) takes the form

tan b� að Þ cos kxð Þ þ Hð Þ p1ð Þ1

 �

¼ w1ð Þ4 w2ð Þ4 þ w3ð Þ4 w4ð Þ4
w2ð Þ24 þ w4ð Þ24

;

which is the dispersion relation for the propagation of

Love-type wave in a homogeneous orthotropic layer

bounded by an upper and lower corrugated surfaces,

lying over a fibre-reinforced half-space under hydro-

static state of stress.

tan �a cos kxþ Hð Þ p1ð Þ2

 �

¼
p1ð Þ2 preð Þ1l21P l1 p1ð Þ22 þ kak sin kxð Þ Rk þ P pimð Þ1

� �n oh
�kak sin kxð Þ �kl1ak sin kxð Þ þ kRþ P pimð Þ1

� ��

l21 p1ð Þ22 þ kak sin kxð Þ Rk þ P pimð Þ1
� �� �2

þ �Pkl1ak sin kxð Þ preð Þ1
� �2 ;

tan �a cos kxþ Hð Þ p1ð Þ1

 �

¼
p1ð Þ1 preð Þ1M�P M�ð Þ2 p1ð Þ21 þ ak sin kxð ÞN�k Rk þ P pimð Þ1

� �n oh
�kN�ak sin kxð Þ1 �kN�ak sin kxð Þ þ kRþ P pimð Þ1

� ��

M�ð Þ2 p1ð Þ21 þ ak sin kxð ÞN�k Rk þ P pimð Þ1
� �� �2

þ �PkN�ak sin kxð Þ1 preð Þ1
� �2

;
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Subcase 4.3.2 When the heterogeneity of layer and

the hydrostatic stress acting in the half-space vanish

i.e. a ¼ 0 and p00 ¼ 0; Eq. (27) becomes

tan b� að Þ cos kxð Þ þ Hð Þ p1ð Þ1

 �

¼ w1ð Þ5 w2ð Þ5 þ w3ð Þ5 w4ð Þ5
w2ð Þ25 þ w4ð Þ25

;

which is the dispersion relation for the propagation of

Love-type wave in a homogeneous orthotropic layer

bounded by an upper and lower corrugated surfaces,

lying over a fibre-reinforced half-space under no

hydrostatic state of stress.

Subcase 4.3.3 When the heterogeneity of layer and

hydrostatic stress acting in the half-space vanish and

the upper corrugated layer is isotropic i.e. a ¼ 0; p00 ¼
0; N� ¼ M� ¼ l1; Eq. (27) gives

tan b� að Þ cos kxð Þ þ Hð Þ p1ð Þ2

 �

¼ w1ð Þ6 w2ð Þ6 þ w3ð Þ6 w4ð Þ6
w2ð Þ26 þ w4ð Þ26

;

which is the dispersion relation for the propagation of

Love-type wave in a homogeneous isotropic layer

bounded by an upper and lower corrugated surfaces,

lying over a fibre-reinforced half-space under no

hydrostatic state of stress.

Subcase 4.3.4 When the layer and half-space are

isotropic, heterogeneity of layer and hydrostatic stress

acting in the half-space vanish and the boundary

surfaces become planar instead of corrugated, i.e. a ¼
0; p00 ¼ 0; N� ¼ M� ¼ l1; a1 ¼ 0 ¼ a3; lL ¼ lT ¼
l2 and g2 ¼ 0; Eq. (27) reduces to Eq. (25) which is

the classical Love-wave equation (Ewing et al. [30]).

5 Numerical calculations and discussion

Numerical computations of the dispersion relation has

been worked out with a purpose to emerge with the

effect of corrugation parameter associated with upper

and lower corrugated boundary surfaces of the layer,

heterogeneity present in the layer, hydrostatic stress

acting in the half-space and undulation parameter on

the propagation of Love-type wave in a heterogeneous

corrugated orthotropic layer overlying a fibre-rein-

forced half-space under hydrostatic stress.

The following data has been considered for com-

putation purpose:

(a) For the upper corrugated heterogeneous

orthotropic layer (Prosser and Green [7]):

M� ¼ 2:64� 109N=m2;

N� ¼ 1:87� 109N=m2 and q1 ¼ 1442 kg=m3:

(b) For the lower fibre-reinforced half-space under

hydrostatic state of stress (Markham [31]):

lL ¼ 7:07� 109N=m2;

lT ¼ 3:50� 109N=m2 and q2 ¼ 1600 kg=m3:

In order to perform comparative study of the

problem to the case when the Love-type wave is

propagating in a corrugated heterogeneous isotropic

layer lying over an isotropic half-space under hydro-

static state of stress, the following data has been

considered (Gubbins [32]):

(a) For the upper corrugated heterogeneous isotrop-

ic layer:

l1 ¼ 32:3� 109N=m2; q1 ¼ 2802 kg=m3:

(b) For the lower corrugated isotropic half-space

under hydrostatic state of stress:

l2 ¼ 71:1� 109N=m2; q2 ¼ 2231 kg=m3:

Moreover, the followingdata has beenconsidered:

aH ¼ 0:1; 0:5; 0:9; p00 ¼ 0:1; 1:5; 2:0; 2:5;

kH ¼ 0:1; 0:15; 0:2; 1:4; kH ¼ 2; ak ¼ 0:1; 0:2; 0:3;

bk ¼ 0:1; 0:2; 0:3; x=H ¼ 0:05; 0:5; 0:15; 0:25;

a1 ¼ 0:00316227:

Figures 2–7 and 8 irradiates the effect of hetero-

geneity present in the layer, hydrostatic state of stress

acting in the half-space, corrugation parameters asso-

ciated with the upper and lower corrugated boundary

surfaces of the layer, undulatory parameters and

position parameter on the phase velocity of Love-type

wave. Each of the figures consists of six curves in

which curves 1, 2 and 3 corresponds to the case when a

corrugated heterogeneous orthotropic layer lies over a

Meccanica (2015) 50:2977–2994 2985

123



fibre-reinforced half-space under hydrostatic state of

stress and curves 4, 5 and 6 are associated to the case

when corrugated heterogeneous isotropic layer lies

over an isotropic reinforced-free half-space under

hydrostatic state of stress.

Figures 2, 3, 4 and 5 shows the variation of phase

velocity c=b1ð Þ against wave number kHð Þ. These

figures elucidate that phase velocity of Love-type

wave decreases with increase in wave number.

Figure 2(i), (ii) portrays the effect of variation of

heterogeneity parameter of the layer and hydrostatic

stress acting in the half-space respectively on phase

velocity. It is clear from these figures that phase

velocity of Love–type wave increases with increase in

heterogeneity parameter as well as the hydrostatic

state of stress in all anisotropic, isotropic, reinforced

and reinforced-free cases. A minute observation of

Fig. 2(i) elucidates that difference in phase velocity
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Fig. 2 Variation of phase velocity c=b1ð Þ against wave number

kHð Þ (i) for different values of heterogeneity parameter aHð Þ of
the layer when p00 ¼ 0:1 and; (ii) for different values of

hydrostatic state of stress p00
� �

when aH ¼ 0:1; for fixed kH ¼
1:4; ak ¼ 0:1; bk ¼ 0:1; x=H ¼ 0:05:
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Fig. 3 Variation of phase velocity c=b1ð Þ against wave number

kHð Þ (i) for different values of corrugation parameter of the

upper boundary surface of layer akð Þ when bk ¼ 0:3 (case 4.3);

(ii) for different values of corrugation parameter of the upper

boundary surface akð Þ when bk ¼ 0 (case 4.2); for fixed kH ¼
1:4; aH ¼ 0:1; p00 ¼ 0:1; x=H ¼ 0:05:
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becomes more considerable with growing magnitude

of heterogeneity for all anisotropic, isotropic, rein-

forced and reinforced-free cases. From Fig. 2(ii) it

could be notified that for isotropic and reinforced-free

case the influence of hydrostatic state of stress on

phase velocity of Love-type wave is not significant.

Figure 3(i), (ii) illustrates the effect of corrugation

parameter associated with the upper boundary surface

of the layer akð Þ on the phase velocity of Love-type

wave when the common interface of the layer and half-

space bkð Þ is considered corrugated and planar

respectively. Curves plotted in Fig. 3(i) correspond

to case 4.3 and curves plotted in Fig. 3(ii) correspond

to case 4.2. These figures establish that phase velocity

increases with increase in corrugation parameter

associated with uppermost free surface of the layer
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Fig. 4 Variation of phase velocity c=b1ð Þ against wave number

kHð Þ (i) for different values of corrugation parameter of the

lower boundary surface bkð Þ when ak ¼ 0:3 (case 4.3); (ii) for

different values of corrugation parameter of the lower boundary

surface bkð Þ when ak ¼ 0 (case 4.1); for fixed kH ¼ 1:4; aH ¼
0:1; p00 ¼ 0:1; x=H ¼ 0:05:
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Fig. 5 Variation of phase velocity c=b1ð Þ against wave number

kHð Þ (i) for different values of undulatory parameter kHð Þwhen
x=H ¼ 0:05 (case 4.1); (ii) for different values of position

parameter x=Hð Þwhen kH ¼ 1:4 (case 4.1); for fixed aH ¼ 0:1;
p00 ¼ 0:1; ak ¼ 0; bk ¼ 0:1:
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in all anisotropic, isotropic, reinforced and reinforced-

free cases. Moreover, comparative study of the curves

obtained in Fig. 3(i), (ii) establish that phase velocity

in the presence of corrugation is more than the case of

absence of corrugation in the common interface of

layer and half-space. Apart from this, the effect of

corrugation parameter associated with the upper

boundary surface of layer is found more in the case

when common interface of layer and half-space is

planar as compared to the case when it is corrugated.

The effect of corrugation parameter associated with

the common interface of the layer and half-space on

phase velocity for the case when the corrugation

parameter of the upper free boundary surface of the

layer is corrugated and planar, has been manifested in

Fig. 4(i), (ii) respectively. Figure 4(i) concurs to case

4.3 and Fig. 4(ii) corresponds to case 4.1. These

figures suggest that phase velocity of Love-type wave

decreases with increase in corrugation parameter

associated with the common interface of the layer

and half space in all anisotropic, isotropic, reinforced

and reinforced-free cases. Comparative study of the

curves in Fig. 4(i), (ii) establish that phase velocity in

absence of corrugation is more than the case of

presence of corrugation in upper boundary surface of

layer. It has been found that the impact of corrugation

parameter associated with common interface of layer

and half space is more in the case when upper

boundary surface is corrugated compared to the case

when it is planar.

Curves plotted in Fig. 5(i), (ii) set forth the

influence of undulatory parameter kHð Þ and position

parameter x=Hð Þ respectively on the phase velocity of
Love-type wave. It could be notified from these figures

that phase velocity increases with increase in undula-

tory parameter and position parameter in all anisotrop-

ic, isotropic, reinforced and reinforced-free cases.

More interestingly, minute observation of Fig. 5(i) in-

terprets that phase velocity of Love-type wave will be

more if corrugated boundary surfaces of layer are

steeply undulated and phase velocity of Love-type

wave will be lesser if corrugated boundary surfaces of

layer are modestly undulated in all anisotropic,

isotropic, reinforced and reinforced-free cases. The

undulatory parameter has pronounced effect on the

phase velocity of Love-type wave. A small increase in

the magnitude of undulatory parameter causes a

significant increase in phase velocity. Unlike undula-

tory parameter, position parameter has considerably

less effect on the phase velocity of Love-type wave.

Figure 5(i), (ii) are associated with case 4.1.

The variation of phase velocity against corrugation

parameter of the upper free boundary surface of the

layer has been carved out in Fig. 6(i), (ii) for different

values of corrugation parameter of lower boundary

surface of layer and heterogeneity parameter of the

layer respectively. Phase velocity is found to be

decreasing with increase in corrugation parameter of

the upper free boundary surface of the layer for

particular value of corrugation parameter of the lower

boundary surface of layer in all anisotropic, isotropic,

reinforced and reinforced-free cases. Moreover, it has

been observed in Fig. 6(i), (ii) that phase velocity

increases with increase in corrugation parameter of the

lower boundary surface of layer and heterogeneity

parameter of the layer respectively. Figure 6(i) depic-

tures that the percentage increase in phase velocity of

Love-type wave for different values of corrugation

parameter associated with the common interface of

layer and half-space, is more immense in low

frequency region as compare to high frequency region

for all anisotropic, isotropic, reinforced and rein-

forced-free cases. A subtle and intense observation

suggests that corrugation parameter of both upper and

lower corrugated boundary surface of the layer have a

substantial effect on the phase velocity but the effect

of corrugation parameter of lower corrugated interface

is much prominent.

Figure 7(i), (ii) shows the variation of phase

velocity against corrugation parameter of the common

interface of layer and half-space for different values of

corrugation parameter of the upper free boundary

surface of layer and heterogeneity parameter of layer

respectively. These figures conclude that phase ve-

locity of Love-type wave decreases with increase in

corrugation parameter of the common interface of

layer and half-space. Meticulous examination of

Fig. 7(i) establishes that for all anisotropic, isotropic,

reinforced and reinforced-free cases, at the beginning

phase velocity increases with increase in corrugation

parameter of the free surface but the curves invert their

nature after a certain point, i.e. the phase velocity

decreases with increase in corrugation parameter of

the free surface after a certain fixed value of corru-

gation parameter of the common interface. Moreover,

it is notified that the curves corresponding to the

anisotropic and reinforced case are above the curves

corresponding to isotropic and reinforced-free case at
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the beginning, but after some time the behavior of the

curves changes and curves corresponding to isotropic

and reinforced-free case starts supporting more to the

phase velocity of Love-type wave as compared to the

curves corresponding to the anisotropic and reinforced

case. The point (0.3, 1.18) is the point of inversion of

the curves corresponding to isotropic and reinforced-

free case; whereas the point (0.6, 1.051) is the point of

inversion of the curves corresponding to anisotropic

and reinforced case. Beside these, the co-ordinates

(0.3, 1.18), (0.4, 1.14) and (0.5, 1.096) are the

intersecting points where phase velocities correspond-

ing to isotropic and reinforced-free case are same as

the phase velocities corresponding to anisotropic and

reinforced case for same values of corrugation

parameter associated with the upper free boundary

surface. In Fig. 7(ii), a monotonic increase in phase

velocity of Love-type wave has been observed with
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Fig. 6 Variation of phase velocity c=b1ð Þ against corrugation
parameter of the upper boundary surface of layer akð Þ (i) for
different values of corrugation parameter of the lower boundary

surface bkð Þ when aH ¼ 0:1 (ii) for different values of

heterogeneity parameter of the layer aHð Þ when bk ¼ 1:4; for
p00 ¼ 0:1; kH ¼ 1:4; x=H ¼ 0:05; kH ¼ 2:
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Fig. 7 Variation of phase velocity c=b1ð Þ against corrugation
parameter of the lower boundary surface bkð Þ (i) for different
values of corrugation parameter of the upper boundary surface

of layer akð Þ when aH ¼ 0:1; (ii) for different values of

heterogeneity parameter of layer aHð Þ when ak ¼ 0:1; for fixed
p00 ¼ 0:1; kH ¼ 1:4; x=H ¼ 0:05; kH ¼ 2:
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increase in heterogeneity parameter of the layer. The

co-ordinates (0.2722, 1.204), (0.2677, 1.207) and

(0.2679, 1.221) are the intersecting points where

phase velocities corresponding to isotropic and rein-

forced-free case are same as the phase velocities

corresponding to anisotropic and reinforced case for

same values of heterogeneity parameter. More pre-

cisely Fig. 7(i), (ii) establish that in low frequency

range phase velocity corresponding to isotropic and

reinforced-free case is less than phase velocity corre-

sponding to anisotropic and reinforced case for a

particular value of heterogeneity parameter as well as

corrugation parameter associated with the upper free

boundary surface. Contrary to this, the trend gets

reversed in high frequency range.

In Fig. 8(i), (ii), curves has been plotted in order to

show the variation of phase velocity against position

parameter for different values of corrugation pa-

rameter of the upper free boundary surface of layer and

corrugation parameter of the common interface of

layer and half-space respectively. Minute observation

of curves plotted in Fig. 8(i) suggests that the curves

corresponding to the anisotropic and reinforced case

are below the curves corresponding to isotropic and

reinforced-free case at the beginning, but after some

time the scenario changes and the curves correspond-

ing to anisotropic and reinforced case starts dominat-

ing curves corresponding to isotropic and reinforced-

free case. The intersecting points after which the

curves corresponding to anisotropic and reinforced

case starts supporting more to phase velocity com-

pared to isotropic and reinforced-free case are (11.77,

1.25), (12.18, 1.25) and (12.51, 1.25). Moreover, these

co-ordinates represent that the three intersecting

points possess a common phase velocity. Curves

obtained in Fig. 8(ii) refers that there is an increase in

phase velocity with increase in corrugation parameter

of the common interface of layer and half-space. In

both figures, the phase velocities corresponding to

different values of corrugation parameters is found to

be less in the region of low frequency whereas it is

considerably high in the region of high frequency in all

anisotropic, isotropic, reinforced and reinforced-free

cases.

Comparative study of curves corresponding to

isotropic case and anisotropic case reveals that disper-

sion curves associated with isotropic and reinforced-

free case are lying above to the dispersion curves of

anisotropic and reinforced case. Thus, it is observed

that both anisotropy and reinforcement disfavors the

phase velocity of Love-type wave. An average de-

crease of 10 % has been observed in the phase velocity

of Love-type wave due to the presence of anisotropy

and reinforcement in the medium. The percentage

decrease in phase velocity is not uniform rather it

increases with increase in wave number. Therefore, a

conclusion can be drawn through an overview and

comparative study of all the figures that as anisotropy
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Fig. 8 Variation of phase velocity c=b1ð Þ against position

parameter x=Hð Þ (i) for different values of corrugation

parameter of the upper boundary surface akð Þ when bk ¼ 0:1;

(ii) for different values of corrugation parameter of lower

boundary surface bkð Þwhen ak ¼ 0:1; for fixed p00 ¼ 0:1; kH ¼
1:4; aH ¼ 0:1; kH ¼ 2:

2990 Meccanica (2015) 50:2977–2994

123



and reinforcement prevails in the medium, phase

velocity of Love-type wave gets decreased.

6 Conclusions

The current study deals with the propagation of Love-

type wave in a corrugated heterogeneous orthotropic

layer overlying a fibre-reinforced half-space under

hydrostatic state of stress. Closed form of the disper-

sion relation has been obtained. The dispersion

relation is found to be significantly affected by the

presence and absence of corrugation parameters of

boundary surfaces of the layer, heterogeneity pa-

rameter of the layer and anisotropy present in both

layer and half-space. Moreover, wavenumber, undu-

latory parameter and position parameter also have a

pronounced effect on phase velocity of Love-type

wave. Comparative study has been made to analyze

the effect of these parameters on the curves corre-

sponding to anisotropic, isotropic, reinforced and

reinforced-free cases on the dispersion curves. The

outcomes of the study are quoted as follows:

• The phase velocity of Love-type wave decreases

with increase in the wave number in all anisotrop-

ic, isotropic, reinforced and reinforced-free cases.

• The corrugation parameter of the upper corrugated

boundary surface of layer, hydrostatic stress,

heterogeneity parameter, undulatory parameter

and position parameter has a favouring effect on

phase velocity in all anisotropic, isotropic, rein-

forced and reinforced-free cases, i.e. phase ve-

locity increases with increase in the said

parameters in all the cases.

• Phase velocity of Love-type wave has been found

more in the case when corrugated boundary

surfaces of layer are steeply undulated as com-

pared to the case when corrugated boundary

surfaces of layer are modestly undulated in all

isotropic, anisotropic, reinforced and reinforced-

free cases.

• Dispersion curves corresponding to isotropic and

reinforced case is slightly affected by the variation

of hydrostatic stress compare to the dispersion

curves corresponding to isotropic and reinforced-

free case.

• With increase in corrugation parameter of the

common interface of the layer and half-space, the

dispersion curve shifts downward in all isotropic,

anisotropic, reinforced and reinforced-free cases,

i.e. phase velocity decreases with increase in

corrugation parameter of the interface in all the

cases.

• In low frequency range phase velocity of Love-

type wave is found less when isotropy prevails in

the medium of layer and half-space compare to the

anisotropy existing in the layer and half-space; but

in high frequency range this trend alters.

• Presence of reinforcement in the medium of half-

space favours the phase velocity of Love-type

wave in low frequency range as compare to the

case when reinforcement is absent in the medium

of half-space, i.e. the reinforced-free half-space

support less to the phase velocity in low frequency

range. Contrary to this trend alters in high

frequency region.

• In isotropic, homogeneous and reinforced-free

case without hydrostatic state of stress, the

dispersion relation of the problem matches with

the classical Love-wave equation. This shows that

the problem is in well agreement to the classical

case (problem).

The current study may find its applications in the

field of construction, retaining structures, embank-

ments to subgrade stabilization beneath footings and

pavements, aviation, space, geophysics and geome-

chanics because of the consideration of fibre-rein-

forced layer in it. The presence of self-reinforced

materials in the earth crust, in the form of some

hard/soft rocks, effects the propagation of seismic

waves through them. Moreover, wood, cold-rolled

steel, human bone, ceramics etc. are materials ex-

hibiting orthotropic symmetry, which are very com-

mon to be found in nature. Hence, the present study is

obligatory as the propagation of seismic waves

through such media (reinforced and anisotropic) with

corrugated boundary surfaces may be greatly affected

by the characteristics.
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Appendix
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w2ð Þ3¼ M�ð Þ2 a2

4
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