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Abstract Real-time reconstruction of the deformed

structural shape using in situ strain measurements is an

inverse problem, commonly called shape sensing. The

knowledge of the deformed structural shape in real

time has important implications for assessing strain,

stress, and failure states, and thus constitutes a key

component of structural healthmonitoring. In addition,

shape sensing is required for control and actuation of

smart structures. In this paper, shape sensing analyses

are carried out for typical composite stiffened struc-

tures using the inverse Finite ElementMethod (iFEM).

By using a limited set of discrete strain data, iFEM

allows full-field reconstruction of displacements that

can thus be monitored also far from sensor locations.

First, the iFEM theoretical framework and the formu-

lation of a triangular, inverse shell element are briefly

discussed. Then, a general strain-sensor configuration

amenable to stiffened shell structures is proposed.

Several numerical results are presented for static,

dynamic, and thermal loadings. The robustness of the

method with respect to input errors is also investigated.

It is shown that iFEM is a viablemethodology for shape

sensing of composite stiffened structures, having the

desired computational efficiency, accuracy, and ro-

bustness with respect to strain-measurement errors.

The iFEM shape-sensing methodology is particularly

attractive because it does not require any information

regarding applied loading, elastic material constants,

inertial properties, or damping characteristics.

Keywords Shape sensing � Inverse Finite Element

Method � Composite stiffened panel

1 Introduction

Substantial advances in composites technology over

the past several decades have led to an increased use of

laminated composite structures in civilian and military

aircraft, aerospace vehicles, and naval ships. In

particular, composite stiffened panels are widely used

in airframe structures, due to their high stiffness-to-

weight and strength-to-weight ratios, durability and

tailoring freedom. A major drawback of composite

laminates is that damage due to impact, which is

commonly invisible, may affect significantly the load-

carrying structural capacity [1–4]. Traditional non-

destructive techniques are time-consuming, costly and
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often impractical for real-time response in large-scale

structures [5]. For these reasons, the development of

integrated Structural Health Management systems

attracted much attention in recent years, for the

purpose of increasing safety and reducingmaintenance

cost [6–9].

The monitoring of a structural system is tradition-

ally performed with a network of bonded or embedded

strain sensors. Many damage detection techniques

have been proposed in the literature, which aim at

indentifying structural damages by using a large

amount of strain data [10]. The major difficulties of

these kind of techniques reside in the ability to identify

defects at a very early stage and also far from sensor

locations. In other works, strain data recorded on a

network of strain sensors have been used to predict the

impact locations [11, 12]. Further actions are then

needed to determine whether the structure is damaged

or not. More efficiently, strains measured in real time

at discrete sensor locations can be used to extrapolate

strain data throughout the whole structure. This is

commonly achieved through the estimation of the

deformed structural shape.

Known as shape sensing, the reconstruction of the

deformed shape from strain data enables the full-field

reconstruction of structural strains and stresses, and

the application of failure criteria for structural health

assessment. The possibility to detect structural dam-

ages by using different shape sensing approaches was

also investigate by Quach et al. [13] and by

Derkevorkian et al. [14]. Shape sensing technologies

are particularly attractive when it is difficult to

determine or measure applied loads such as aerody-

namic forces, vibrating excitations transmitted

through junctions or impact loads. In these cases,

knowledge of actual stress state allows failure predic-

tion and cost-efficient maintenance to be performed

based on actual data. It is worth pointing out that

monitoring of the deformed shape is also a key aspect

in the development of smart structures, such as those

with morphing capabilities or structures with embed-

ded antenna arrays. Such structures require real-time

shape sensing to provide feedback to the actuation and

control systems [15, 16].

Most of the existing shape sensing methods in the

literature are restricted to slender beams or thin plates

by virtue of the kinematic assumptions. Ko et al. [17]

proposed a one-dimensional scheme based on classical

beam theory to evaluate the deflection and cross-

sectional twist angle of an aircraft wing. Using a two-

line strain-sensing system on the top surface of the

wing, the curvature is obtained at discrete locations

along the wing span, by knowing the axial surface

strain and the distance of the measuring device from

the neutral axis. Then the deflection is evaluated by

numerical integration at the two sensing lines only.

The cross-sectional twist angle is computed by

considering the difference in the deflection of the

two lines. Other methods based on the classical

bending assumptions define the bending curvature

using an a priori set of basis functions and proper

weights that are determined by strain–displacement

relationships and measured surface strains [18–21].

For example, Jones et al. [20] reconstructed plate

deflections by fitting in a least-squares sense discrete

measures of the bending curvatures and by integrating

the regression curves. Glaser et al. [21] used piece-

wise basis functions to fit experimental estimates of

the curvature and to evaluate the deformed shape of a

beam subjected to bending loads. The aforementioned

methods rely on the selection of proper basis functions

or fitting polynomials and therefore are not general

enough to accommodate complex structural topolo-

gies and boundary conditions (e.g., built-up airframe

structures).

Foss and Haugse [22], and Pisoni et al. [23]

proposed a modal transformation method that ap-

proximates the displacement field as linear combina-

tion of normal modes. The coefficients to assign to

each mode are evaluated in a least-square sense from

measured strains. In [22] and [23] the mode shapes

were experimentally estimated. In [24], FEM gener-

ated mode shapes where used, thus requiring a detailed

description of the elastic and inertial material proper-

ties, the kind of data that are either unavailable or

difficult to obtain. Moreover, for high-frequency

excitations a large number of natural vibration modes

is needed to improve the accuracy, thus requiring a

computationally intensive eigenvalue analysis [25,

26].

The method described in [17] does not enable the

full-field displacement solution and thus it is not suited

for the structural health monitoring. Methods based on

the interpolation of the bending curvature [17–21]

may become really inaccurate for problems where the

transverse shear effect is not negligible. Moreover it is

difficult to find proper fitting functions for tridimen-

sional structures, such as a stiffened panel, that are
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accurate under a wide range of loadings. Works [22–

26] address also complex structures but require

sufficiently accurate elastic-inertial material

information.

Tessler and Spangler [27] developed a robust and

computationally efficient methodology for the full-

field reconstruction of displacements of plates and

shells. The approach uses a least-squares variational

principle that accounts for the stretching, bending, and

transverse shear deformations that correspond to first-

order shear deformation theory. The variational

framework requires only a C0-continuous discretiza-

tion of the displacement field, resulting in an inverse

Finite Element Method (iFEM) [28, 29]. Because only

strain–displacement relations are used in the formu-

lation, both static and dynamic response can be

reconstructed without any a priori knowledge of

material, inertial, loading, or damping structural

properties. Recently, with the goal of analyzing an

important class of space structures, Gherlone et al.

[30] applied the iFEM variational framework to

develop shear-deformable beam and frame inverse

finite elements. Application of the beam-iFEM ap-

proach to experimentally measured strains has been

presented by Gherlone et al. [31], who used relatively

coarse iFEM discretizations to reconstruct the static

and dynamic response of a cantilevered beam.

In this paper, a facet shell-element iFEM formula-

tion is utilized to study its applicability for composite

stiffened shell structures that are commonly used in

the design of aerospace, naval and civil structures. The

purposes are to verify the accuracy of the method for

complex structures subjected to different types of

loading and to provide guidelines for the design of a

suitable iFEM model and strain-sensor configuration,

for shape sensing of general stiffened structures.

Moreover, the effect of thermal loading on the

accuracy of the predicted displacements is studied

for the first time.

2 Theoretical basis: inverse Finite Element

Method

The inverse Finite Element Method (iFEM) is a robust

and versatile methodology that allows the reconstruc-

tion of the deformed shape of a structure by using

arbitrarily positioned strain sensors. Herein, the gen-

eral iFEM methodology [27] is first briefly reviewed.

Then, the formulation of a three-node, facet inverse-

shell element, based on Mindlin theory [28, 29], is

discussed.

2.1 Variational principle

Consider a discretization of the structural domain, X,
using one-, two- or three dimensional finite elements

to suit the particular structure to be analyzed. Using a

Cartesian coordinate system x � x; y; zð Þ,the displace-
ment vector uxðxÞ; uyðxÞ; uzðxÞ

� �
can be expressed in

terms of a set of kinematic variables u xð Þ that are

consistent with a particular structural theory. The

kinematic variables are then interpolated by a set of

suitable element-shape functions as.

u xð Þ � ue ¼ N xð Þqe ð1Þ

where N denotes the shape-function matrix and qe the

nodal degrees-of-freedom.

Depending on the selected theory the strain field is

completely defined by a set of K independent terms,

e � ekf g k ¼ 1; . . .;Kð Þ, commonly referred to as

strain measures. The strain measures are expressed

in terms of the nodal displacement degrees-of-free-

dom as.

e ueð Þ ¼ B xð Þqe ð2Þ

where the matrix B contains the derivatives of the

shape functions.

The iFEM displacement solution is obtained by

minimizing an error functional defined as the least-

squares error between the analytic strain measures,

given by Eq. (2), and the corresponding experimental

strains, ee � eek
� �

k ¼ 1; . . .;Kð Þ, measured at n dis-

crete locations by in situ strain gauges, rosettes, or

other types of strain sensors. For a single element, the

error functional is given by.

Ue ueð Þ ¼ e ueð Þ � eek k2 ð3Þ

where the element functionalUe is given by sum of the

products of the least-squares component, Uk
e, referred

to the k-th strain component, and the weighting

coefficient, wk
e,

Ue ueð Þ �
X

k

we
kU

e
k ð4Þ

with Uk
e given as the Euclidean norm
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Ue
k �

1

n

Xn

i¼1

ekðiÞðueÞ � eekðiÞ

h i2
ðk ¼ 1; . . .KÞ ð5Þ

The weighting coefficients wk
e account for di-

mensional coefficients, which guarantee that the

terms in Eq. (4) have the same mathematical units.

Moreover, wk
e may include dimensionless coeffi-

cients, kk
e, which may be assigned different values

to enforce a stronger or weaker correlation between

the measured strain-measure components and their

analytic counterparts. Generally speaking, in a

weighted least-square approach, the weighting co-

efficients determine how much the multiplied terms

influence the final estimates. Thus, if terms related

to certain strain measures are multiplied by larger

values of kk
e than the others, the solution will be

pulled toward matching these strain data, whereas

the error committed on the other strain components

will have little influence on the solution (refer to

[29] and Sect. 2.2).

The element functional Ue is minimized with

respect to the unknown nodal degrees-of-freedom,

qe, yielding the element matrix equation aeqe ¼ be.

Taking into account appropriate coordinate transfor-

mations, the element contributions are assembled into

a global system of equations

Aq ¼ b ð6Þ

where the matrix A depends on the shape functions

and strain-gauge locations, whereas the vector b

incorporates the measured strain values. The matrix

A is a well-conditioned square matrix. Thus, upon

enforcement of problem-dependent displacement

boundary conditions that prevent rigid-body motion,

the unknown nodal displacements and rotations are

efficiently computed from Eq. (6) by the vector–

matrix multiplication, q ¼ A�1b. Thus, for real time

applications, A is inverted only once (assuming small

displacements, and that the strain-sensor locations

remain unchanged). The vector b, however, needs to

be updated at each strain-data acquisition increment.

Since only strain–displacement relationships are

used in the formulation, the compatibility equations

are automatically satisfied. Furthermore, the method

does not require the knowledge of any material

properties or the applied loading. Thus, it is applicable

for both static and dynamic loading conditions, without

requiring inertial or damping material properties.

2.2 Mindlin, triangular inverse element

Utilizing Mindlin plate theory, a three-node inverse

plate element, labeled iMIN3, was developed in [28].

The element uses C0-continous anisoparametric shape

functions to resolve issues associated with shear

locking in thin plates. The basic equations are

summarized as follows.

Consider a plate of thickness 2t referred to a

Cartesian coordinate system x � x; y; zð Þ, where (x, y)
identify the mid-plane (Fig. 1). The components of the

displacement vector are given as

ux xð Þ ¼ uþ zhy
uy xð Þ ¼ vþ zhx
uz xð Þ ¼ w

ð7Þ

where u and v are the average uniform displacements

in the x and y directions, respectively; hx and hy are the
rotations of the normal about the negative x and

positive y axes, respectively; and w is an average

transverse deflection. The five kinematic variables are

u � u; v; w; hx; hy
� �T

. In [28], the deflection vari-

able is interpolated with a quadratic polynomial,

whereas the other four kinematic variables vary

linearly over the element. By using the anisoparamet-

ric interpolations described in [28], truly thin plates

can be modeled without incurring excessive stiffening

due to shear locking and the resulting element has the

same number of degrees-of-freedom as a standard

linear-interpolation element.

Invoking Mindlin theory, the strain field is identi-

fied by eight strain measures, ek
� �

¼ e; k; gf gT

K ¼ 8ð Þ , given by

z 

x 

y 

w 

u 

θx 

v 

θy 

2h 

Fig. 1 Plate notation
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e ¼ u;x; v;y; hx;y þ hy;x
� �T¼ e1; e2; e3

� �T

k ¼ hy;x; hx;y; hx;x þ hy;y
� �T¼ e4; e5; e6

� �T

g ¼ w;x þ hy; w;y þ hx
� �T¼ e7; e8

� �T

ð8Þ

which define the membrane (e), bending (k) and

transverse-shear (g) deformations.

To enable application of Eq. (3), the strain mea-

sures have to be experimentally evaluated from strain-

sensor data. The strain measures eeðiÞ and keðiÞ can be

easily evaluated at discrete locations (x, y)i
(i = 1, …, n) from surface strains measured on the

top (?) and bottom (-) surfaces (see Fig. 2) as

eei �
eex0
eey0
ce120

8
><

>:

9
>=

>;
i

¼ 1

2

eþ11
eþ22
cþ12

8
><

>:

9
>=

>;
i

þ
e�11
e�22
c�12

8
><

>:

9
>=

>;
i

0

B@

1

CA;

jei �
je10
je20
je120

8
><

>:

9
>=

>;
i

¼ 1

2h

eþ11
eþ22
cþ12

8
><

>:

9
>=

>;
i

�
e�11
e�22
c�12

8
><

>:

9
>=

>;
i

0

B@

1

CA ð9Þ

where {exx
? , eyy

? , cxy
?}i and {exx

- , eyy
- , cxy

-}i denote the in-

plane surface strains measured respectively at

[(x, y)i, ? h] and [(x, y)i, - h]. By using the present

kinematic interpolations, the membrane strains and

bending curvatures result to be constant across the

element. This implies that one measurement point per

element is sufficient and it would be optimally located

at the element centroid.

The transverse shear strain measures g cannot be

obtained experimentally. Thus, for the terms in the

functional including the strain measures g, the L2 norm

is used (k = 7, 8) [27]

Ue
k �

Z

Ae

e2kðiÞ u
eð ÞdA ð10Þ

where Ae is the element area.

The weighting coefficients are

we
k

� �
¼ ke1; k

e
2; k

e
3; t

2ke4; t
2ke5; t

2ke6; k
e
7; k

e
8

� �
, where

kk
e (k = 1,…, 8) are dimensionless, positive constants

(see Sect. 3). In general, when only few strain sensors

are available, some elements may not have any strain

data. In this case, Eq. (10) is used instead of Eq. (5) for

all the terms in the functional (k = 1,…, 8). For these

elements, small values are used for kk
e(k = 1,…, 8)

compared to the values used for the elements that

possess strain data (refer to [29] and Sect. 3).

3 Shape sensing of a composite stiffened panel

The static and dynamic responses of a CFRP (Carbon-

Fiber Reinforced Plastic) stiffened plate are herein

determined using numerical surface strains and the

inverse Finite Element Method under: (a) a distributed

static load, (b) a time-varying distributed load and

(b) a thermal load.

z

x (y)

(x,y) i

{ }, ,xx yy xy i
ε ε γ+ + +

{ }, ,xx yy xy i
ε ε γ− − −

h

h

Fig. 2 Strain gauge instrumentation

Clamp 
Rib 

523 mm 

550 mm 

50 mm 

50 mm 

(a)

(b)

Fig. 3 Geometry of a stiffened panel and b T-beam stiffener

cross-section
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The panel is 523 mm long and 550 mm wide. The

four T-beam stiffeners have dimensions 50 9 50 mm

(Fig. 3). The skin panel is made of a 16-layer Carbon-

Epoxy composite laminate having symmetric, angle-

ply stacking sequence, corresponding to [45, -45, 0,

90]2s. The stiffeners are made of 18 layers oriented as

[45, -45, 0, 0, 90, 45, -45, 0, 0]s. The thickness of

each lamina is 0.1875 mm; thus, the skin is thick

3 mm, while the wall-thickness of the stiffeners is

3.375 mm. The material properties of the single

lamina, made of Carbon-Epoxy unidirectional com-

posite, are listed in Table 1. One end of the plate is

clamped, whereas a rigid body constraint is applied to

the other end, to simulate the presence of a rib (Fig. 3).

To obtain the input strain data, linear elastic

analyses were carried out using a high-fidelity

NASTRAN model. The model consists of 10,196

QUAD4 shell elements and one Rigid Body Element,

RBE2, connecting the nodes on the edge where the rib

is ideally located (see Fig. 4). The T-beam stiffeners

are linked to the skin panel with a node-to-node rigid

connection, simulating a perfect bond. The same

analyses serve as a reference to verify the accuracy of

the iFEM displacement solutions. Considering the

high-fidelity of the NASTRANmodel, the strains were

taken at the nodes of the mesh, instead of the Gaussian

points of the elements.

The strain-sensor configuration here tested is com-

posed of uniaxial strain-sensors, aligned within each

bay, on the top and bottom surfaces of the skin, as

depicted in Fig. 5. The iFEM mesh consists of 720

triangular, inverse elements and one Rigid Body

Element (RBE); the strain sensors are located at the

centroids of the inverse elements (see Fig. 5). Since a

limited set of measurement point is used, i.e., strains are

notmeasuredwithin each inverse element, the weighted

least squares approach is used (seeSect. 2). Particularly,

when the experimental estimate of a strain measure is

not available, the weighting coefficients are defined as

kk
e = 10-4, (k = 1, …, 6), whereas k7

e = k8
e = 10-2 is

used for all the elements (refer to [29]).

The present discretization and strain-sensor con-

figuration represents a good compromise between the

number of elements needed to satisfactorily ap-

proximate the deformed shape of the panel and the

number of measurement points. In fact, increasing the

number of elements along the main direction of the

stiffeners would require a higher number of strain

measurements. On the other hand, the number of

inverse elements should be adequate to correctly

approximate the deformed shape of the panel. A too

coarse mesh would result in a rough approximation of

the actual deformed shape.

3.1 Static loading

A distributed pressure has been applied to the skin

of the panel, having a linear distribution. Par-

ticularly, the pressure is constant along the direc-

tion of the stiffeners while it varies linearly within

the width of the panel as pz = 1.5 9 10-2 - y/

55000 N/mm2, with y 2 [0, 550]. As a result, both

bending and torsion are observed. Figure 6 shows

the deformed shapes computed by high-fidelity

direct FE analyses and by inverse FEM using the

low-fidelity mesh of inverse elements. The direct

and inverse FEM analyses compare very well

across the entire panel, with the maximum deflec-

tion being predicted with an error of about 1.3 %.

3.2 Dynamic loading

The distributed pressure defined in Sect. 3.1 is now

used as a time-varying load. Particularly, a harmonic

Table 1 Mechanical

properties of Carbon-Epoxy

unidirectional (UD)

composite

Symbol Units Carbon–Epoxy UD

Young’s modulus 0� E1
(k) GPa 135

Young’s modulus 90� E2
(k)(=E3

(k)) GPa 10

In-plane shear modulus G12
(k)(=G13

(k)) GPa 5

Transverse shear modulus G23
(k) GPa 5

In-plane Poisson’s ratio m12
(k)(=m13

(k)) – 0.3

Thermal exp. coefficient 0� a1 Strain/K -0.3

Thermal exp. coefficient 90� a2 Strain/K 28

Density q g/cm3 1.6
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vertical pressure �pzðtÞ (where t denotes time), acting

on the skin of the panel with the frequency

f0 = 30 Hz, has the form �pzðtÞ ¼ pz sinð2pf0tÞ. For
the NASTRAN analysis a critical damping ratio of

5 % has been defined; note that for the inverse analysis

no inertial/damping characteristics are required. Fig-

ure 7 displays the deflection at the point of maximum

displacement, that is, x = 523 and y = 0, evaluated

with both iFEM and NASTRAN, in the first tenth of a

seconds. It is evident that iFEM is able to predict the

dynamic response of the composite panel with a great

accuracy, in both transient and steady-state regimes.

Particularly, the maximum/minimum displacement is

predicted with an error of about 2.5 %.

3.3 Thermal loading

A thermal load has been applied by imposing a

uniform positive temperature variation, DT = 30� C.

z 

y 

x 

Fig. 4 NASTRAN model

Uniaxial 
strain-sensor 

Fig. 5 iFEM mesh and uniaxial strain-sensor distribution

(strain sensors on the top and bottom surfaces of the skin)

1.69 

(a)

(b)

Fig. 6 Deformed shape of the panel under static distributed

pressure: a NASTRAN evaluated deflection and b iFEM

prediction
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At first, the same strain-sensor configuration of Fig. 5

was used but no satisfactory results were obtained. It

has to be remarked that a thermal load applied to a

multilayered CFRP structure induces complex strain

distributions and thus higher-fidelity discretizations of

inverse elements and/or a larger number of strain data

are needed to accurately reconstruct the deformed

shape. For this purpose, a slightly different strain-

sensor configuration has been defined by adding eight

uniaxial strain sensors on the top surface and eight

sensors on the bottom surface of the skin, distributed

within the central bay (see Fig. 8). Results obtained

with the inverse mesh and strain-sensor configuration

of Fig. 8 are compared to NASTRAN solution in

Fig. 9. The two solutions are found to be in good

agreement including maximum deflection value (refer

to Fig. 9). The inverse Finite Element method, which

is based on strain–displacement relationships only, is

proven to be effective in predicting deformed shape

also when structural deformation is induced by

temperature changes.

4 Sensitivity to input uncertainties

Since the experimental values of surface strains are the

key input quantities, it is particularly important to

study the accuracy of the predicted displacements

under the influence of errors in the measured strains.

Such inherent errors include those due to measure-

ments themselves and also uncertainty in strain-gauge

positions. Thus, normally distributed errors have been

independently added to the strains computed from the

NASTRAN FE analyses. These strains have zero

mean value and three standard deviations equal to

3r = 5 % of the NASTRAN strains, i.e., about

99.7 % of the errors are within the interval (-5 %;

?5 %). The probability density function of the

predicted maximum deflection has been evaluated

with a Monte-Carlo simulation, consisting of 103 trial

points (Fig. 10). The maximum deflection value is

predicted within -5 % and ?5 % error for the 93 %

of the cases.

0 0.02 0.04 0.06 0.08 0.1
-2

-1

0

1

2

Time, t [sec]

D
ef

le
ct

io
n,

 w
M

A
X

 [m
m

]

 

 
iFEM
NASTRAN

Fig. 7 Comparison of the deflection evaluated with iFEM at the

point of maximum displacement (x = 523, y = 0) to the

NASTRAN solution

Uniaxial 
strain-sensor 

Fig. 8 iFEM mesh and strain-sensor distribution for the

thermal loading (uniaxial strain-sensors on the top and bottom

surfaces of the skin)

9.81e-02 

(a)

(b)

Fig. 9 Deformed shape of the panel subjected to the thermal

load: a NASTRAN evaluated deflection and b iFEM prediction
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5 Conclusions

In this paper, the inverse Finite Element Method

(iFEM) has been used to reconstruct both static and

dynamic response of a composite stiffened panel from

discrete strain data. This type of structure is commonly

employed in aerospace, naval, and civil engineering

applications. Despite of having numerous advantages,

composite structures may experience such modes of

failure as delamination and impact damage, and these

can affect their load carrying capabilities. For this

purpose, the knowledge of structural displacements

can be used to evaluate the strain and stress fields for

assessing real-time internal loads and structural

integrity. Moreover, monitoring of the deformed shape

is fundamental for providing feedback to the actuation

and control systems of morphing structures.

An overview of the inverse Finite Element Method

(iFEM) has been presented highlighting the essential

features. Utilizing surface strain measurements, iFEM

enables reconstruction of the three-dimensional dis-

placement field of general built-up shells, trusses,

beams, and frames under both static and dynamic

loading conditions. The basic concept and governing

equations of iFEM have been reviewed. The formu-

lation of a three-node, triangular inverse elements for

the shape sensing of shell and plate structures has been

discussed. The inverse Finite Element method has then

been used to reconstruct the deformed shape of a

composite stiffened panel, subjected to static, dynamic

and thermal loads. The surface-strain measurements

used in the iFEM analyses have been numerically

generated by way of high-fidelity FE models. The

predicted deformed shape resulted to be in excellent

agreement with the reference high-fidelity FE results.

Finally, it should be once again noted that, for the

purpose of shape-sensing analysis, iFEM does not

require the knowledge of applied loading, elastic or

inertial material properties, or the damping character-

istics of the structure. As it has been demonstrated, a

well-designed iFEM-based structural model, even in

the presence of relatively coarse measured strain-data

and stochastically distributed errors, can lead to very

accurate shape sensing predictions of practical impor-

tance. Particularly, being the prediction error very

small, little changes in the structures, due to defects or

damages, may be detectable. Future work should focus

on determining the range of validity of the present

method for damage detection. The main advantages of

using iFEM for Structural Health Monitoring (SHM)

are that, the whole structure can be monitored with a

reduced set of measured strains in every material

point, also far from sensor locations.
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