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Abstract We give an exhaustive, non-perturbative

classification of exact travelling-wave solutions of a

perturbed sine-Gordon equation (on the real line or on

the circle) which is used to describe the Josephson

effect in the theory of superconductors and other

remarkable physical phenomena. The perturbation of

the equation consists of a constant forcing term and a

linear dissipative term. On the real line candidate

orbitally stable solutions with bounded energy density

are either the constant one, or of kink (i.e. soliton)

type, or of array-of-kinks type, or of ‘‘half-array-of-

kinks’’ type. While the first three have unperturbed

analogs, the last type is essentially new. We also

propose a convergent method of successive ap-

proximations of the (anti)kink solution based on a

careful application of the fixed point theorem.

Keywords Josephson junctions � Dissipative sine-
Gordon equation � Kinks � Travelling-waves solutions

1 Introduction

The purpose of this work is an exhaustive, non-

perturbative analysis of travelling-wave solutions of

the ‘‘perturbed’’ sine-Gordon equation

utt � uxx þ sinuþ aut þ c ¼ 0; x 2 R; ð1Þ

for all constant a� 0; c 2 R. This equation has been

used to describe with a good approximation a number

of interesting physical phenomena, notably Josephson

effect in the theory of superconductors [21, 22], which

is at the base [4] of a large number of advanced

developments both in fundamental research (e.g.

macroscopic effects of quantum physics, quantum

computation) and in applications to electronic devices

(see e.g. Chapters 3–6 in [5]), or e.g. the propagation

of localized magnetohydrodynamic modes in plasma

physics [37]. The last two terms are respectively a

dissipative and a forcing one; the sine-Gordon equa-

tion (sGe) is obtained by setting them equal to zero. In

the Josephson effect (for an introduction see e.g.

Chapter 1 in [4]) uðx; tÞ is the phase difference of the
macroscopic quantum wave functions describing the

Bose–Einstein condensates of Cooper pairs in two

superconductors separated by a very thin, narrow and

long dielectric (a so called ‘‘Josephson junction’’). The

c term is the (external) ‘‘bias current’’, providing

energy to the system, whereas the dissipative term aut

is due to Joule effect of the residual current across

the junction due to single electrons. We neglect

the (typically, rather small) surface losses of the
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superconductors, which are described by the more

complete equation

�euxxt þ utt � uxx þ sinuþ aut þ c ¼ 0; e[ 0:

ð2Þ

Equation (1) describes also the dynamics of the

continuum limit of a sequence [36] of pendula

constrained to rotate around the same horizontal x-

axis, subject to a constant torque c, a viscous force

�aut (due e.g. to their immersion in a viscous fluid)

and coupled to each other through a torque spring;

uðx; tÞ is the deviation angle from the lower vertical

position at time t of the pendulum having position x

(see Fig. 1).

It important to clarify: (a) which solutions of the

sGe are deformed into solutions of (1) with the same

qualitative features; (b) whether (1) admits also new

kinds of solutions. Candidate approximations to the

former can be obtained within the standard perturba-

tive method (see e.g. [23–25, 31, 34] and references

therein) based on modulations of the unperturbed

solutions with slowly varying parameters (typically

velocity, space/time phases, etc.) and small radiation

components. In particular, the Ansatz for a deforma-

tion of a travelling-wave solution uð0Þðx; tÞ ¼ gð0Þðx�
vtÞ of the sGe reads

uðx; tÞ ¼ gð0Þ

�
x� x0ðtÞ � ~vðtÞt

�
þ cuð1Þðx; tÞ þ � � � ;

ð3Þ

c plays the role of perturbation parameter, whereas the

slowly varying x0ðtÞ; ~vðtÞ and the perturbative ‘‘radia-

tive’’ corrections cuð1Þðx; tÞ þ � � � have to be computed

perturbatively in terms of aut þ c. If in particular

uð0Þðx; tÞ is a (anti)kink [equivalently, (anti)soliton]

solution, one finds [16, 17, 28, 29] also candidate

approximate solutions with constant velocity

~vðtÞ � v1 :¼ �½1þ ð4a=pcÞ2��
1
2 ð4Þ

which are characterized by a power balance between

the dissipative term aut and the external force term c.
Studying the convergence of the perturbative series

would be difficult, not very illuminating for the

existence and qualitative properties of the solutions

for small c, and certainly inadequate for large c.
Numerical resolutions [19, 30] of (1) are indicative,

but cannot provide solid, exhaustive answers to the

two questions above.

The travelling-wave Ansatz transforms (1) into a

well-known [1, 2, 33, 39, 40] ordinary differential

equation (ODE), whose phase space analysis in

principle allows to give a complete classification

(and additional qualitative properties) of the travel-

ling-wave solutions. However, up to our knowledge

previous works [14, 27] present an incomplete clas-

sification, in that they consider only solutions of type

a) and they stick only to part (near the origin) of the

parameter space ða; cÞ. The main purpose of this work

is to provide (Sect. 3) an exhaustive non-perturbative

Fig. 1 LeftDiscretized mechanical model for the sine-Gordon equation, with a Spring, b solder, c brass, d tap and thread, ewire, f nail,

g, h ball bearings and i base. Right Stable static (up) and kink (down) solutions
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classification of exact travelling-wave solutions of (1)

on the real line or on the circle for all a� 0; c 2 R and

to propose (Sect. 4) an improvedmethod of successive

approximations converging to the (anti)kink solutions,

at least for sufficiently small c. As we will see, the

classification includes also solutions of type (b). We

will in particular concentrate on solutions of physical

interest, namely solutions that have bounded energy

density h (and therefore also bounded derivatives) and

are known, or are candidate, to be orbitally stable; in

the sequel we shall denote them as the relevant

solutions. To make the paper essentially self-con-

tained, we give detailed preliminaries in Sects. 2, 3

and in the ‘‘Appendix’’. If the velocity is �1 the ODE

is of first order and can be solved by quadrature,

otherwise it is the second order one describing the

motion along a line of a particle subject to a

‘‘washboard’’ potential and immersed in a linearly

viscous fluid (or equivalently a single pendulum

subject to a constant torque and to a viscous force),

and therefore the problem is essentially reduced to

studying this simpler mechanical analog. Several

useful monotonicity properties (Sect. 2.2) allow in

particular to identify (Theorem 1 in Sect. 3) four

families of relevant solutions: three of them (the arrays

of kinks for all values of c, the kinks and the constants
only for c\1) are deformations of analogous families

of solutions of the sGe, whereas the fourth family is

without unperturbed analog: as each of its elements

interpolates between a kink and an array of kinks (see

Fig. 4), we have named it a ‘‘half-array of kinks’’.

None of the other solutions is relevant. The families of

perturbed kinks and arrays of kinks depend on one free

parameter less than the unperturbed ones, as the phase

velocity v becomes a function of the other parameters

[for the kink coincides, at lowest order in c, with (4)].

Theorems of existence and uniqueness for a class of

dissipative equations including (2) and the following

boundary conditions have been proved: u ! 0 as x !
�1 [6, 11]; Dirichlet, Neumann or pseudoperiodic

conditions on a finite space interval [12, 13]. The

boundedness and stability of solutions for this class

with Dirichlet boundary conditions has been studied in

[7–9, 32]. The study of (1–2) on the whole real axis is

more difficult; at the end of Sect. 3 we briefly recall

some results [14, 20, 27, 35] on the stability of

travelling-wave solutions of (1) which can be found in

the literature. As we shall briefly explain, a compre-

hensive stability analysis requires additional work.

2 Preliminaries

Space or time translations transform any solution

uðx; tÞ into a new oneuðxþ a; t þ bÞ; one thus obtains
a two-parameter family of solutions ½u�. The pendula
chain model described above allows a qualitative

comprehension of the main features of the solutions,

e.g. of their instabilities. The constant solutions

of (1) are usðx; tÞ � � sin�1 cþ 2pk and uuðx; tÞ �
sin�1 cþ ð2k þ 1Þp. The former are stable, the latter

unstable, as they yield respectively local minima and

maxima of the energy density

h :¼ u2
t

2
þ u2

x

2
þ cu� cosu: ð5Þ

They resp. correspond to configurations with all

pendula hanging down or standing up. Our definition

of a kink u is: u is a non-constant stable travelling-

wave solution with all derivatives rapidly going to

zero outside some localized region. Then mod. 2p it

must be

lim
x!�1

uðx; tÞ ¼ � sin�1 c;

lim
x!þ1

uðx; tÞ ¼ � sin�1 cþ 2np
ð6Þ

with n 2 Z. As we shall recall below, only n ¼ 1

(kink) and n ¼ �1 (antikink) are possible (whereas

n ¼ 0 corresponds to the constant us). In the men-

tioned mechanical model the kink (resp. antikink)

solution describes a localized twisting of the pendula

chain by 2p around the axis anticlockwise (resp.

clockwise), which moves with constant velocity. The

above condition yields an energy density h (rapidly)

going to two local minima as x ! �1. Although this

makes the total Hamiltonian H :¼
Rþ1
�1 hðx; tÞdx di-

vergent, the time-derivative is finite and non-positive:

_H ¼ �
Z 1

�1
au2

t dx� 0:

[The negative sign at the right-hand side (rhs) shows

the dissipative character of the a-term in (1)]. The

effect of c 6¼ 0 is to make the values of the energy

potential density cu� cosu at any two minima

different; this leaves room for a steady compensation

of the energy dissipated by the a-term and the variation

of the total potential energy due to the substantial

variation of uðx; tÞ from one minimum point to the

lower next in some spacial interval, and so may
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account for solutions not being damped to constants as

t ! 1.

Without loss of generality we can assume c� 0. If

originally this is not the case, one just needs to replace

u ! �u. If c[ 1 no solutions u having finite limits

and vanishing derivatives for x ! �1 can exist, in

particular no static solutions. If c ¼ 1 the only static

solution u having for x ! �1 finite limits and

vanishing derivatives is u � �p=2(mod 2pÞ, which
however is manifestly unstable.

2.1 Reduction to ODE by the travelling-wave

Ansatz

We specify our travelling-wave Ansatz as follows:

If v ¼ �1, replacing the Ansatz in (1) one obtains the

first order ODE,

ag0 ¼ c� sin g: ð8Þ

One can explicitly solve this equation by quadrature

[15]. Already in [10] it has been argued that if c\1 all

solutions of (8) yield unstable solutions of (1), except

the constant one, which yields the static constant

solution usðx; tÞ � � sin�1 c. The same argument

holds also if c ¼ 1. If c[ 1, by integrating one finds

n� n0 ¼
Z n

n0

dn0 ¼ a
Z g

g0

ds

c� sin s
;

the denominator is positive for all s 2 R, so that the

solution g is strictly monotonic and pseudoperiodic,

i.e. the sum of a linear and a periodic function, so that

(for all n; g0)

gðnþ NÞ ¼ gðnÞ þ 2p; N :¼
Z g0þ2p

g0

ds

uðsÞ ð9Þ

with uðgÞ :¼ g0ðgÞ ¼ ðc� sin gÞ=a. We shall denote

such solution as ~gðnÞ; this will yield (Theorem 1) a

candidate stable solution �u of (1), representing an

‘array of (anti)kinks’ travelling with velocity�1 (such

velocities are not possible in the sGe case).

In the rest of the section we assume that v 6¼ �1.

Replacing in (1) we find in all three remaining cases

the second order ODE

g00 þ lg0 þ UgðgÞ ¼ 0; n 2 R; ð10Þ

which can be regarded as the 1-dimensional equation

of motion w.r.t. the ‘time’ n of a particle with unit

mass, position g, subject to a ‘washboard’ potential

energy’ UðgÞ and a viscous force with viscosity

coefficient l given by

UðgÞ :¼ �ðcos gþ cgÞ; l :¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv�2 � 1j

p : ð11Þ

Note that in Eq. (10) a; v appear only through their

function (11)2, and that in the range jvj 2 ½0; 1½ (resp.
jvj 2�1;1½) lðjvjÞ is strictly increasing (resp. decreas-
ing), and therefore invertible. In Fig. 2 UðgÞ is plotted
for four different values of c; it admits local minima

(resp. maxima) only if 0� c\1, in the points

gmk :¼ sin�1 cþ 2kp;

resp. gMk :¼ � sin�1 cþ ð2k þ 1Þp
� �

:

As c ! 1 the points gmk ; g
M
k approach each other, and

for c ¼ 1 gmk ¼ gMk ¼ ð2k þ 1=2Þp are inflections

points. For c[ 1 no minima, maxima or inflections

exist, and Ug\0 everywhere. The ‘‘total energy of the

particle’’ e :¼ g02=2þ UðgÞ is a non-increasing func-

tion of n, as e0 ¼ �lg02.
An exhaustive classification of the solutions of

Eq. (10) for all values of l; c has been performed in

n :¼ �x� t uðx; tÞ ¼ gðnÞ � p if v ¼ �1;

n :¼ � sign ðvÞ x� vtffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

p uðx; tÞ ¼ �gðnÞ if v2 [ 1;

n :¼ sign ðvÞ x� vtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p uðx; tÞ ¼ gðnÞ � p if 0\v2\1;

n :¼ x uðx; tÞ ¼ gðnÞ � p if v ¼ 0:

ð7Þ
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several works, starting from [1, 39, 40] (see e.g. [33] or

[2] for comprehensive presentations). The equation is

equivalent to the autonomous first order system

u0 ¼ �lu� sin gþ c;

g0 ¼ u:
ð12Þ

Since the rhs’s are functions of g; u with bounded

continuous derivatives, by the Peano–Picard theorem

on the extension of the integrals all solutions are

defined on all�1\n\1 (global existence), and the

trajectories (paths) in the phase space ðg; uÞ do not

intersect (uniqueness). Each is uniquely identified by

any of its points ðg0; u0Þ. The paths may have finite

endpoints (limits as n ! �1) only at singular points

[i.e. where the rhs’s (12) vanish]. These exist only for

c� 1, lie all on the axis u ¼ 0, and are

saddlesAk ¼ gMk ; 0
� �

; nodes; foci or centers

Bk ¼ ðgmk ; 0Þ;
saddle-nodesCk ¼

�
ð2k þ 1=2Þp; 0

�
;

ð13Þ

Their characteristic equations can be summarized as

k2 þ lk	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
¼ 0; ð14Þ

the upper, lower sign resp. refer to the Ak;Bk for

c\1; c ¼ 1 gives the solutions at Ck:

1. The solutions k1; k2 for Ak are real of opposite

sign, and Ak is a saddle point.

2. The solutions k1; k2 for Bk are:

• Both real and negative if l� 2ð1� c2Þ1=4. Bk

is a node, and there are an infinite number of

paths going to Bk as n ! 1 with the same

tangent. These represent overdamped motions

of the ‘particle’ towards gmk .

• Complex conjugates (but not purely imagin-

ary) if 0\l\2ð1� c2Þ1=4. Bk is a focus, and

there are an infinite number of paths going to

Bk along a spiral as n ! 1. These represent

damped oscillations of the ‘particle’ about gmk .

• Opposite imaginary if l ¼ 0. Bk is a center,

and there exist closed paths (cycles) around it.

These represent periodic oscillations of the

‘particle’ about gmk .

3. If c ¼ 1 then k1 ¼ 0; k2 ¼ �l. If l[ 0Ck is a

saddle-node: there are two separatrices in the half-

plane g[ ð2k þ 1=2Þp (one going leftwards to

Ck, the other leaving from Ck rightwards) and

infinitely many in the half-plane g\ð2k þ 1=2Þp
going rightwards to Ck (these again represent

overdamped motions of the ‘particle’).

The solutions are continuous functions of the pa-

rameters l; c and of ðg0; u0Þ (away from singular

points), uniformly in every compact subset. In

Sect. 2.2 we recall that the latter dependences are

also monotonic.

To analyze the qualitative features, the mono-

tonicity properties and the asymptotic behaviour of the

Fig. 2 The potential energy UðgÞ ¼ 6� ðcos gþ cgÞ for c ¼ 0; c ¼ :5; c ¼ 1; c ¼ 1:5
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paths near the endpoints it is useful to eliminate the

‘time’ n and adopt as an independent variable the

‘position’ g, as in the unperturbed case. The path of

any solution gðnÞ of (10) is cut into pieces by the axis

u ¼ 0. Let Y ��n�; nþ½
 R be the ’time’ interval

corresponding to a piece,

� :¼ sign
�
uðnÞ

�
; n 2 Y

be its sign and let G ��g�; gþ½:¼ gðYÞ. In Y the

function gðnÞ can be inverted to give a function

n : g 2 G ! nðgÞ 2 Y . So one can express the ‘ve-

locity’ u and the ‘kinetic energy’ z :¼ u2=2 of the

‘particle’ as functions of its ‘position’ g. By derivation

we find that g00ðnÞ ¼ ug
�
gðnÞ

�
g0ðnÞ and the second

order problem (10) with initial condition�
gðn0Þ; uðn0Þ

�
¼ ðg0; u0Þ in Y is equivalent to two

first order problems: the first is

zgðgÞ þ �l
ffiffiffiffiffiffiffiffi
zðgÞ

p
þ sin g� c

¼ uugðgÞ þ luðgÞ þ sin g� c ¼ 0;

uðg0Þ ¼ u0

ð15Þ

(note that this is invariant under the replacement

g ! gþ 2p), which has to be solved first, and yields a
solution u ¼ uðg; g0; u0; l; cÞ continuous in all argu-

ments (away from singular points); the second is

g0ðnÞ ¼ u
�
gðnÞ

�
; gðn0Þ ¼ g0; ð16Þ

is integrated out by quadrature

n� n0 ¼
Z n

n0

dn0 ¼
Z g

g0

ds

uðsÞ ¼ �

Z g

g0

dsffiffiffiffiffiffiffiffiffiffi
2zðsÞ

p ð17Þ

and implicitly yields a solution g ¼ gðn; g0; u0; l; cÞ in
Y. If Y is not the whole R, the final step is the patching

of solutions in adjacent intervals Y.

Choosing in (17) g as g� one obtains n�. If zðgÞ
vanishes as ga :¼ jg� � gja with a� 2 as g " gþ or

g # g�, then nþ ¼ 1 or n� ¼ �1. The behaviour of

uðgÞ; zðgÞ near g� can be determined immediately

solving (15) at leading order in a left (resp. right)

neighbourhood of gþ (resp. g�). In particular, if c\1

and g� ¼ gMk (a maximum point of U) then the

equation obtained by replacing the power law Ansatz

uðgÞ ¼ ga=2u� þ oðga=2Þ in (15) is solved by

uðgÞ � ðgþ � gÞuþ� as g " gþ;
uðgÞ � ðg� g�Þu�� as g # g�;

ð18Þ

where for �; �0 2 fþ;�g u�0� is defined by

u�0� :¼
1

2
�0lþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

pq� �
:

Formula (18) gives the leading behaviour of the four

separatrices having an end on Ak.

Problem (15) is also equivalent to the Volterra-type

integral equation

zðgÞ ¼ z0 þ Uðg0Þ � UðgÞ � �

Zg

g0

ds l
ffiffiffiffiffiffiffiffiffiffi
2zðsÞ

p
ð19Þ

where z0 :¼ u20=2. When l ¼ 0 (no dissipation) this

gives the solutions explicitly and amounts to the

conservation of the ‘total energy’ eðgÞ ¼ zðgÞ þ UðgÞ
of the ‘particle’.

2.2 Monotonicity properties

In agreement with the physical intuition, the solutions

of (15) and the extremes of G depend on the

parameters l; z0; c monotonically (see e.g. [1, 39,

40]). For completeness, in the ‘‘Appendix’’ we recall

the proof of the following monotonicity properties.

Property 1 As functions of z0 : z ¼ u2=2 is strictly

increasing; gþ is increasing and g� decreasing

(strictly as long as they have not reached the values

�1).

Property 2 As a function of both l;��c the solution
uðg; g0; u0; l; cÞ is strictly decreasing (resp. strictly

increasing) for g 2�g0; gþ½ (resp. g 2�g�; g0½). Corre-
spondingly, the solution gðn; g0; u0; l; cÞ is strictly

decreasing as a function of both �l;�c, and so is

either extreme g� (strictly as long as it has not reached

values �1).

Remark In general g� will be discontinuous func-

tions of l; z0; c at g� ¼ gMk .

Whenever the domain G of the solution zðgÞ
contains a whole interval �g; gþ 2p½ we define

Iðz; gÞ :¼
Zgþ2p

g

ds
ffiffiffiffiffiffiffiffiffiffi
2zðsÞ

p
ð20Þ

Given any g0 2 �G, let gk :¼ g0 þ 2pk;K :¼ fk 2
Zjgk 2 �Gg and Ik :¼ Iðz; gkÞ if k; k þ 1 2 K.
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Property 3 If � ¼ � the sequences fzðgkÞg; fIkg are
strictly increasing and diverging as k ! 1, with K

bounded from below. If � ¼ þ the sequences

fzðgkÞg; fIkg are: either constant, with K ¼ Z; or

strictly increasing and converging as k ! 1, with K

bounded from below; or strictly decreasing, diverging

as k ! �1, and either converging as k ! 1, or with

K upper bounded. Moreover,

zðgkþ1Þ � zðgkÞ ¼ 2pc� �lIk: ð21Þ

3 Classification of the solutions

3.1 Short reminder about the sine-Gordon

equation

If c ¼ a ¼ l ¼ 0 (sGe) the ‘total energy of the

particle’ e is conserved and its value (together with

the free parameter v) parametrizes different kinds of

solutions of (10). Plotting UðgÞ (Fig. 3, left) we get an
immediate qualitative understanding of them. They all

have bounded zðgÞ ¼ e� UðgÞ, and therefore bound-

ed g0. This implies that also the correspondingux;ut; h

are bounded functions of x, t. Only solutions corre-

sponding to e� 1 and any v 2� � 1; 1½ are spectrally

stable [3, 20, 35]. If e ¼ 1 a path either degenerates to

a saddle point [e.g.
�
gðnÞ; uðnÞ

�
�

�
gM0 ; 0

�
¼ A0: the

‘particle’ stays at A0] or is heteroclinic (i.e. starts and

ends at two neighbouring saddle points, e.g. A0;A1: the

‘particle’, confined in the interval gM0 \g\gM1 , starts

at ‘time’ n ¼ �1 from A0 and reaches A1 at n ¼ 1,

or viceversa, see Fig. 3, left). Replacing the result in

(7), mod. 2p they translate into unstable solutions of

the sGe if v2 [ 1 (in the model of Fig. 1 all pendula of

the chain stand upwards outside a small region), and

the celebrated families of (spectrally stable) solutions

û�
ð0Þðx; t; vÞ ¼ 4 tan�1 exp � x� vtffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

	 
� �
ð22Þ

if v2\1. In the model of Fig. 1 all pendula of the chain

hang downwards outside a small region, and within the

latter they twist around the x-axis n ¼ �1 times, i.e.

once anti-clockwise or clockwise, depending on the

sign. ûþ
ð0Þðx; t; vÞ is the family of kink solutions,

û�
ð0Þðx; t; vÞ the family of antikink solutions, parame-

trized by the velocity v, which can take any value in

� � 1; 1½.
Similarly, unbounded orbits (e[ 1) correspond to

arrays of kinks or antikinks if v2\1. The correspond-

ing solutions �gð0Þð�n; eÞ are pseudoperiodic, in the

sense (9): the ‘particle’ travels towards the right from

g� ¼ �1 to gþ ¼ 1 (or viceversa) and its ‘kinetic

energy’ �zðgÞ is 2p-periodic (see Fig. 3, left), in

particular takes the same value zM at all points gMk ,

�zðgMk Þ ¼ zM 8k 2 Z: ð23Þ

Again, the corresponding solutions of the sGe are [3,

35] unstable if v2 [ 1 and stable if v2\1 (‘most’

pendula point resp. upwards and downwards in the

pendula chain model). The stable solutions �u�
ð0Þ

ðx; tÞ ¼ �gð0Þð�n; eÞ respectively describe two-pa-

rameter families of evenly spaced ‘‘arrays of kinks

Fig. 3 The potential energy UðgÞ ¼ 6� ðcos gþ cgÞ for c ¼ 0

(left) and c ¼ :1 (right). Correspondingly, the ‘kinetic energies’
and the ‘total energies’: (1) ẑ; ê associated to the kink, l ¼ l̂ðcÞ;

(2) �z; �e associated to an array of kinks, l\l̂ðcÞ; (3) (only at the
right) �z; �e associated to a half-array of kinks solutions, l\l̂ðcÞ
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and antikinks’’, the two parameters being the velocity

v hidden in (7), which can take any value in � � 1; 1½,
and one of the variables �e; zM;Nð0Þ;Nð0Þ is the ’time

lapse’ [computed by (9)2] the ’particle’ spends to

travel a distance 2p.
Clearly there is a heteroclininc bifurcation at e ¼ 1,

or equivalently zM ¼ 0, or Nð0Þ ¼ 1.

On the contrary, solutions corresponding to cycles

around centers Bkðe 2� � 1; 1½Þ, or with v2 [ 1, are

unstable [3, 20, 35].

3.2 The perturbed sine-Gordon equation

If not all c; a; l vanish (perturbed sine-Gordon) there

are [10] solutions gðnÞ with g0 diverging as n goes to

infinity;1 the corresponding solutions u have ux;ut; h

diverging at space and time infinity, hence are not

relevant. In Ref. [10] we have analyzed all the

possibilities for c\1 and shown (Proposition 1) that

relevant (in the sense of the introduction) solutions u,
if they exist, can be only of four types, all with v2 � 1

and � :¼ signðg0Þ � 0; out of them three are deforma-

tions of travelling-wave solutions of the sGe. Here we

show (Theorem 1) that all four types actually exist,

extending our analysis to all the parameter space

ða; cÞ.
We assume (without loss of generality) c[ 0, and

for l 2 ½0;1� we set

�vðlÞ :¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ l2

p � 1;

n�ðlÞ :¼ �x� �vðlÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2ðlÞ

p ; if �vðlÞ\1:
ð24Þ

[by definition, �vð1Þ ¼ 1].

For c� 1, replacing in (7) the constant solutions

gðnÞ � Ak; gðnÞ � Bk;Ck, we resp. obtain the stable

solution us and the unstable one uu already given in

Sect. 2.

For a given l[ 0, a unique (up to a shift of n)
pseudoperiodic path �pðnÞ ¼

�
�gðnÞ; �uðnÞ

�
exists for

sufficiently large c; this attracts exponentially fast all

other paths pðnÞ ¼
�
gðnÞ; uðnÞ

�
having gþ ¼ 1. In

fact, since the two graphs zðgÞ; �zðgÞ do not intersect,

wðgÞ :¼ zðgÞ � �zðgÞ is either positive- or negative-

definite. By (15) it fulfills

wg ¼ �l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�zþ wÞ

p
�

ffiffiffiffiffi
2�z

ph i

¼ �2l
wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð�zþ wÞ
p

þ
ffiffiffiffiffi
2�z

p ; ð25Þ

implying

d

dg
ln jwj ¼ � 2lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð�zþ wÞ
p

þ
ffiffiffiffiffi
2�z

p �

� lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�zM þ jwðg0ÞjÞ

p

(we have denoted as �zM the maximum of �z and as g0 the

initial g-point): jwðgÞj is strictly decreasing. By

integration we find for g� g0

jwðgÞj � jwðg0Þje�Cðg�g0Þ;

C :¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�zM þ jwðg0ÞjÞ

p ; ð26Þ

namely jwðgÞj ! 0 exponentially fast as g ! 1, as

claimed. As c is decreased, such an attracting path

disappears, becoming: a sequence of heteroclinic

paths connecting each Ak with Akþ1, if 0\l\l�; a
saddle-node infinite-period bifurcation, if l[ l�,
with a special constant l�. Let ĉðlÞ denote the

bifurcation curve as a function of l. To our knowledge
this curve has been first studied by Urabe [41], who

found l� ’ 1:193; see e.g. also [26, 38] and references

therein for an updated report including more recent

results. ĉðlÞ is a continuous function such that ĉðlÞ ’
4l=p as l
 0 and ĉðlÞ ¼ 1 for l� l�. In ½0; l�� it is
strictly increasing, hence invertible: we shall denote as

l̂ðcÞ the inverse function. This fulfills the bounds (36)
and can be determined with arbitrary accuracy for

small l also by the method described in Theorem 2.

The above curves play a crucial role in singling out

different regions in the parameter space ðc; lÞ, as

depicted in Fig. 4b.

Fixed l, only for c[ ĉðlÞ (light and dark grey areas
in Fig. 4b) the attracting pseudoperiodic path �pðnÞ
exists, and � ¼ þ: the ‘particle’ travels rightwards

from g� ¼ �1 to gþ ¼ 1, and its ‘kinetic energy’

�zðgÞ not only fulfills (23), but is 2p-periodic [see

Fig. 3, right, where also �eðgÞ is plotted]. By (21) this

implies

�l I
�
�z; g

�
¼ 2pc; ð27Þ

1 For instance, by Proposition 3 if � ¼ � and zðgÞ is defined at

least in an interval of length 2p then gþ ¼ 1; zðgÞ diverges as
g ! 1; g0ðnÞ;ux;ut diverge as n ! �1.
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the left-hand side (lhs) is independent of g (and can be

called simply �I). This equality amounts to an energy

balance condition: ‘the energy dissipated by the

viscous force equals the potential energy gap after a

2p displacement of the particle’. For g fixed, �z; �I are

strictly increasing, continuous functions of zM by

Properties 1 and 2, whereas �l and N are strictly

decreasing and continuous respectively by (27) and

(9)2. All these functions are therefore invertible, and

one can adopt any of the four parameters zM; �I; l;N (in

the appropriate range) as the independent one, beside

c. For jvj\1 one can adopt also jvj as the independent
parameter, as the function lðjvjÞ defined in (11)2 is

strictly monotonic. As l ! 1, or equivalently jvj !
1; �gðnÞ goes to the pseudoperiodic solution ~gðnÞ of (8).
Replacing �gðnÞ [or ~gðnÞ] in (7) one finds one-

parameter families of evenly spaced ‘‘arrays of kinks’’

and of evenly spaced ‘‘arrays of antikinks’’, as

described in Theorem 1; as a parameter one can

choose zM; �I; �l;N, or jvj.
For l\l� and ĉðlÞ\c\1 (dark grey region in

Fig. 4b), the pseudoperiodic attracting path �pðnÞ
coexists with the sequence of alternating Bk;Ak. For

all k 2 Z, the saddle connection �pkðnÞ ¼
�
�gkðnÞ;

�ukðnÞ
�

that leaves from Ak is attracted by �pðnÞ
exponentially fast (hence again � ¼ þ): the ‘particle

leaves at time n ¼ �1 from gMk and its trajectory

approaches more andmore �gðnÞ as n ! 10. Replacing
�gkðnÞ in (7) one finds new one-parameter families of

solutions, the evenly spaced ‘‘half-arrays of kinks’’ or

‘‘antikinks’’, as described in Theorem 1.

The part of the graph
�
ĉðlÞ; l

�
with l 2�0; l�� (the

red curve in Fig. 4b) is a heteroclininc bifurcation:

fixed l, as c # ĉðlÞ the pseudoperiodic path approach-
es the saddles, squeezing down—for all k 2 Z—the

saddle connection �pkðnÞ, and for c ¼ ĉðlÞ (i.e. on the

red curve in Fig. 4b) both �p; �pk merge into a hetero-

clinic path p̂kðnÞ ¼
�
ĝkðnÞ; ûkðnÞ

�
leaving from Ak and

ending on Akþ1 (hence again � ¼ þ): the ‘particle,

confined in the interval gMk \g\gMkþ1, leaves at time

n ¼ �1 from gMk and reaches gMkþ1 at time n ¼ 1’.

The corresponding ‘kinetic energy’ ẑðgÞ is defined in

the same interval [see Fig. 3, right, where also the

corresponding êðgÞ is plotted] and fulfills the boundary
conditions limg#gM

k
ẑðgÞ ¼ 0; limg"gM

kþ1
ẑðgÞ ¼ 0. By

(21) this implies

l̂ I
�
ẑ; gMk

�
¼ 2pc; ð28Þ

which is again the ‘energy balance condition between the

energy dissipated by the viscous force and the potential

energy gap after a 2p displacement of the particle’.

Replacing ĝðn; cÞ in (7) one finds the perturbed

(anti)kink solutions, as described in Theorem 1. The

(anti)kink solution is also recovered from the array of

(anti)kinks in the zM ! 0 limit. By inversion of (11)2
the velocity vwill be no more a free parameter, but the

function v ¼ ��v
�
l̂ðcÞ

�
(with range � � 1; 1½) of c; a

and the helicity � of the (anti)kink solution û�.

The part of the graph
�
ĉðlÞ; l

�
with l 2�l�;1½, i.e.�

1; �l�;1½
�
(the line separating the white from the

light grey region in Fig. 4b), is an infinite-period

Fig. 4 Left Qualitative behaviour at t ¼ 0 of the following

solutions of (1) for c ¼ 0:3: stable constant us (green), kink

ûþðx� 4; 0Þ (blue), array of kinks �uþðx; 0Þ (violet) and half-

array of kinks �uþðx; 0Þ (brown). Right Regions of the parameter

space where such solutions exist (us exists in the region c\1).

(Color figure online)
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bifurcation: fixed any l[ l�, for c[ ĉðlÞ � 1 (grey

area in Fig. 4b) the attracting pseudoperiodic path

exists; for c� 1 (white area in Fig. 4b) it does not

exists, and is replaced by a sequence of infinite-period

saddle-node connections for c ¼ 1 (each leaving from

a Ck and ending into Ckþ1). All these saddle-node

connections again yield unstable u.
For c\ĉðlÞ (white area in Fig. 4b) neither the

pseudoperiodic nor the heteroclininc paths exist; the

saddle connections leaving fromAk end into Bk or Bkþ1.

This implies that the corresponding u are unstable,

because go to uu either as n ! 1, or as n ! �1.

The segment
�
�0; l�½; 1

�
(the line separating the

dark grey from the light grey region in Fig. 4b) is a

saddle-node bifurcation of fixed points: fixed any

l[ l� any saddle-node Ck transforms into the pair

node ðBk;AkÞ for c\1, while it disappears for c[ 1.

We have thus partly proved the following theorem

(assuming c� 0 is no loss of generality):

Theorem 1 Assume a; c� 0. Up to arbitrary

translations of x; t and addition of multiples of 2p,
the relevant travelling-wave solutions of (1) are of the

following types:

1. Static, uniform usðx; t; cÞ � h :¼ � sin�1 c, for

c\1 (white region, dark grey region and red

curve in Fig. 4b).

2. Kink ûþ or antikink û�, where û�ðx; t; cÞ :¼
ĝ n�



l̂ðcÞ

�
; c

� �
� p, for c\1 (red curve in

Fig. 4b). û� respectively travel with phase ve-

locity v ¼ ��v
�
l̂ðcÞ

�
and fulfill

lim
x!�1

û�ðx; t; cÞ ¼ h;

lim
x!1

û�ðx; t; cÞ ¼ h� 2p:
ð29Þ

3. Arrays of kinks �uþ or antikinks �u�, given by:

�u�ðx; t; c; lÞ :¼ �g


n�ðlÞ; c; l

�
� p, for any l 2

½0;1½ and c� ĉðlÞ (dark and light grey regions in
Fig. 4b); �u�ðx; t; c;1Þ ¼ ~gð�x� t; cÞ � p if

c[ 1; l ¼ 1. �u� have resp. velocity v ¼ ��vðlÞ
and fulfill [with N as defined in (9)]

�u�ðxþ X; t; c; lÞ ¼ �u�ðx; t; c; lÞ � 2p;

X :¼
N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
if l\1 , jvj\1;

2paffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p if l ¼ 1 , jvj ¼ 1:

8><
>:

ð30Þ

4. Half-array of kinks �uþ or antikinks �u�, with

�u�ðx; t; c; lÞ :¼ �g


n�ðlÞ; c; l

�
� p, only if

0\c\1 and for any l 2�0; l̂ðcÞ½ (dark grey

region in Fig. 4b). �u� respectively have velocity

v ¼ ��vðlÞ. They fulfill

lim
x!	1

�u�ðx; t; c; lÞ ¼ h;

lim
x!�1

½ �u�ðx; t; c; lÞ � �u�ðx; t; c; lÞ� ¼ 0þ; ð31Þ

lim
g!1

½�zðgÞ � �zðgÞ� ¼ 0�;

lim
n!1

½�g0ðnÞ � �g0ðnÞ� ¼ 0�;

lim
n!1

½�gðnÞ � �gðnÞ� ¼ 0þ;

ð32Þ

for suitable choices of �g; �u� within their families

½�g�; ½ �u�� whose elements differ only by a x-

translation. All limits are approached exponen-

tially fast.

All of ĝ; �g; �g; �g� �g are strictly increasing. To pa-

rameterize the solutions of classes 3,4 one can adopt

as an independent variable alternative to l either

zM; �I; jvj or N.
All other solutionsu are manifestly unstable and/or

have unbounded energy density h.

Remark 3.1 In Fig. 4a we have plotted the qualita-

tive behaviour of a kink, an array of kinks and a half-

array of kinks. The latter has no unperturbed analog. It

interpolates between the kink at one extreme and the

array of kinks at the other. Therefore it cannot be

approximated, nor can it even be figured out, by the

modulation Ansatz (3).

Remark 3.2 �u� make sense also as solutions of (1)

on a circle of length L ¼ mX, for any m 2 N. The

integer m parameterizes different topological sectors:

in the mth sector the pendula chain twists around the

circle m times.

Remark 3.3 We emphasize that, in contrast with the

unperturbed kink and array of kinks, where v was a

free parameter of modulus \1; v is predicted as a

function of c; a in the perturbed kink, as a function of

c; a and one of the parameters zM ; �I;N in the perturbed

array and half-array of kinks.

Rest of the proof As �zðgMk Þ[ 0; �w ¼ �z� �z is

negative-definite, and we find in the order
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�w :¼ �z� �z " 0;
ffiffiffiffiffi
2�z

p
�

ffiffiffiffiffi
2�z

p
" 0;

1ffiffiffiffiffi
2�z

p � 1ffiffiffiffiffi
2�z

p # 0;

ð33Þ

exponentially fast as g ! 1. The first limit gives

(32)1. From (17) we obtain

�nðgÞ ¼
Zg

g0

dsffiffiffiffiffiffiffiffiffiffi
2�zðsÞ

p þ �c; �nðgÞ ¼
Zg

g0

dsffiffiffiffiffiffiffiffiffiffi
2�zðsÞ

p þ �c;

�nðgÞ � �nðgÞ ¼
Zg

g0

ds
1ffiffiffiffiffiffiffiffiffiffi
2�zðsÞ

p � 1ffiffiffiffiffiffiffiffiffiffi
2�zðsÞ

p
" #

þ ð�c� �cÞ:

where �c; �c are integration constants. The last integrand

is positive and goes exponentially to zero as g ! 1,

hence the integral converges. Choosing �c� �c ¼R1
g0

ds½� we find
�nðgÞ ¼ �nðgÞ � qðgÞ;

qðgÞ :¼
Z 1

g

ds
1ffiffiffiffiffiffiffiffiffiffi
2�zðsÞ

p � 1ffiffiffiffiffiffiffiffiffiffi
2�zðsÞ

p
" #

with qðgÞ positive and exponentially vanishing. Ap-

plying the inverse �gðnÞ of �nðgÞ to both sides we find

g ¼ �g �nðgÞ � qðgÞ

 �

¼ �g �nðgÞ

 �

� �g0ð~nÞqðgÞ:

The second equality is based on Lagrange theorem,

where ~n is a suitable point in ��nðgÞ � qðgÞ; �nðgÞ½.
Finally, setting g ¼ �gðnÞ we find

�gðnÞ ¼ �g nð Þ � �g0ð~nÞq


�gðnÞ

�
;

where ~n 2�n� q


�gðnÞ

�
; n½. The second term at the rhs

exponentially vanishes as n ! 1 [since q
�
�gðnÞ

�
does

and �g0 is bounded], proving (32)2. By (32)1 now (33)2
implies (32)3.

Let ~gðgÞ :¼ �gðnÞ with g :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
n ¼

sign ðvÞx� jvjt. ~gg; ~ggg are periodic. For c[ 1,

replacing in (10) and letting jvj " 1 we find that ~g

fufills (8). This proves the limit liml!1 �g �x�j�vjtffiffiffiffiffiffiffiffi
1��v2

p ; l
� �

¼ ~gð�x� tÞ, after noting that by (11)2 l ! 1 as

jvj " 1.

Finally, we show that no other relevant solutions

exist2. As already said in Sect. 3, if c ¼ a ¼ l ¼ 0 the

other solutions with jvj[ 1 or e\1 are unstable. If

c[ 0, this also applies to the solutions arising from the

cycles of (10), if any. If c ¼ 1 the paths connecting

Ck;Ckþ1 [33] yield manifestly unstable u, in that they
connect two unstable static solutions. If c[ 0; a ¼
l ¼ 0, the solutions pðnÞ of (10) which are unbounded
in g are unbounded also in u, by conservation of e; if

c[ 0; a; l[ 0, this applies to all unbounded solutions

in g except the pseudoperiodic �pðnÞ, the saddle

connections �pkðnÞ.3 The pðnÞ that are unbounded in

u yield solutions u of (1) which have unbounded

energy density h. Therefore, in all cases they yield no

other relevant u. h

We finally determine the ranges of the various

parameters. Clearly, as zM ! 1 �z and �I diverge,

whereas �l;N; �v go to zero. We now consider the limit

zM ! 0. If c[ 1, as zM ! 0 one finds the following

leading parts and limits

�l � c� 1ffiffiffiffiffiffiffiffi
2zM

p ! 1;

N
 1ffiffiffiffiffiffi
zM

p ! 1;

ð34Þ

as zM spans �0;1½, the range of any of �I; �l;N is �0;1½
and that of �v is �0; 1½. In fact, the Taylor formula of

second order for �zðgÞ around gk can be written without
loss of generality in the form

�zðg; zM; cÞ ¼ zM þ zMf1ðzM; cÞðg� gkÞ
þ ðg� gkÞ2qðgÞ

ð35Þ

with qðgÞ bounded; in order that, as zM ! 0; �z keeps
nonnegative both in a left and a right neighbourhood of

gk; f1ðzM; cÞ has to approach a finite limit. Replacing

this Ansatz in (15) we find at lowest order in ðg� gkÞ

zMf1 þ �l
ffiffiffiffiffiffiffiffi
2zM

p
þ 1� c ¼ 0:

As zM ! 0 this implies (34) [by (27), (9)2 and (24)2] .

Summarizing, as zM spans �0;1½ the range of any of
�I; �l;N is �0;1½ and that of �v is �0; 1½.

2 In Ref. [10] this was shown only for c\1. Actually the

arguments used there apply also for c� 1:

3 In fact, if uðnÞ[ 0 consider the �pðnÞ with argument n shifted
the right amount in order that it attracts pðnÞ as n ! 1. If

uðnÞ[ �uðnÞ, by Property 3 uðnÞ ! 1 as n ! �1; if

uðnÞ\�uðnÞ then pðnÞ either is a saddle connection �pkðnÞ, or its
uðnÞ becomes negative for sufficiently early ’times’ n, and again
by Property 3 uðnÞ ! �1 as n ! �1. The latter situation

occurs also to the pðnÞ with negative uðnÞ for sufficiently early

‘times’ n and ending on some Ak;Bk, or Ck .
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If c� 1, by the monotonicity property

�lðc; zMÞ� l̂ðcÞ, and by the continuity we find [39, 40]

lim
zM!0

�lðc; zMÞ ¼ l̂ðcÞ\1:

Hence if c� 1 the range of �l as zM spans ½0;1½ is
�0; l̂�, the range of �I is �2pc=l;1½ the range of v is

½0; v̂½. The following bounds for l̂ðcÞ hold [18, 39, 40]

(see [33] for a summary)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� c2Þ þ 1

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

pq
� l̂ðcÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p� �r
:

ð36Þ

In [35] a theorem of linearized spectral (in)stability of

travelling-wave solutions of sGe (a ¼ c ¼ 0) was

presented: the solutions with jvj[ 1 (fast solutions)

are always unstable; the solutions with jvj\1 (slow

solutions) are spectrally stable if they are pseudope-

riodic or of (anti)kink type. The authors of [20] have

detected and corrected an error in the proof. Note that

this can lead at most to orbital stability for v 2� � 1; 1½,
because no travelling-wave solutions of sGe can be

stable or asimptotically stable in the strict sense. In

fact, the phase velocity v for a ¼ l ¼ 0 is a free

parameter; when replacing (7) in a particular solution

gðnÞ of (10) one obtains a family of solutions uðx; tÞ
parametrized by v, like the (anti)kink ones (22). A

small change in the initial conditions in general causes

a small change of v, which however leads to a

constantly growing deviation from the initial solution,

which will become larger and larger after a sufficiently

long time.

One may expect that the situation improves in the

perturbed case, because v is determined by l; a; c. In
Sect. 4 of [14] it is shown that the (anti)kink solution

of the perturbed Eq. (1) (with c\1) is, up to a shift of

the argument, asymptotically stable. A theorem of

asymptotic linearized stability for both the (anti)kink

and the array of the (anti)kinks with c\1 is proved in

[27] for c\1; but only w.r.t. compact variations of the

initial conditions and in the sense of a pointwise

convergence to such solutions as t ! 1.4

4 Method of successive approximations

Equation (19) can be reformulated as the fixed point

equation

Az ¼ z ð37Þ

for zðgÞ, where for �[ 0 the operator A ¼
Aðg0; z0; l; cÞ is defined by

AwðgÞ :¼ xðg; g0; z0; cÞ �
Zg

g0

ds/
�
g; s;wðsÞ

�

xðg; g0; z0; cÞ :¼ z0 þ Uðg0Þ � UðgÞ
/ðg; s; fÞ :¼

ffiffiffiffiffi
2f

p
l ð38Þ

on the space of nonnegative smooth functions w on R

(the domain of w can be always trivially extended to

R). According to the method of successive approxima-

tions, after a reasonable choice of a function zð0ÞðgÞ as
an initial approximation for zðgÞ, better and better

approximations should be provided by zðnÞ :¼
Anzð0ÞðgÞ as n ! 1. For this to make sense, at each

step it is necessary that zðnÞ belongs to the domain of A

(in the present case, it must be nonnegative, otherwise

the integrand function is ill-defined) and that the

sequence converges. With the known standard theo-

rems, this can be guaranteed a priori not in the whole

domain G of the unknown z, but only in some smaller

interval J containing g0. In general only the iterated

application in infinitely many adjacent intervals

allows to extend a local solution to a global one, what

makes the procedure of little use for its concrete

determination.

Estimating the length of such a J one finds that it is

not less than 2p only for sufficiently large z0. Actually,

the determination of the solution in an interval of

length 2p would be enough for the complete determi-

nation both in the case of a periodic solution �z (which

is then extended periodically) and of a separatrix ẑ (in

that case G ¼�gMk�1; g
M
k ½, which has exactly length 2p).

The periodicity condition (23) is automatically ful-

filled by each zðnÞ if we modify the definition of A

adjusting the coefficient l to w as follows:

~Aw :¼ A
�
g0; z0; ~lðwÞ; c

�
w

~lðwÞ :¼ 2pc
Zg0þ2p

g0

ds
ffiffiffiffiffiffiffiffiffiffiffiffi
2wðsÞ

p
2
64

3
75
�1

ð39Þ

4 Our v;XðvÞ are resp. denoted as c; LðcÞ in [27]. Incidentally,

the velocities c1\1; c2 [ 1 of the slow and fast solitary waves

considered there are in fact the two solutions v1; v2 of (11) seen
as an equation in the unknown jvj when l ¼ l̂ðcÞ; as a

consequence they fulfill the relation v�2
1 þ v�2

2 ¼ 2, not noted in

[27].
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Choosing g0 ¼ gMk�1 for simplicity, then ~lðzðnÞÞ will

converge to �lðc; z0Þ. If instead we fix l as an

independent parameter, one will obtain z0 as

limn zðnÞðg0Þ [39, 40]. For the periodic solution a

sufficiently large z0 amounts to a sufficiently small l;
in [39, 40] the following quantitative condition was

found:

g1 [ �1; l\
ð ffiffiffiffiffi

g1
p � ffiffiffiffi

�1
p Þ2

2p
ffiffiffi
2

p ð40Þ

where

�1 :¼ max jzð1Þ � zð0Þj � kzð1Þ � zð0Þk1;

g1 :¼ min jzð1Þj:

So g1 cannot be too small, in particular cannot vanish,

what excludes the cases of the periodic solutions �z

having low energy and of the heteroclinic path ẑ.

4.1 The kink solution by the method of successive

approximations

The standard theorems fail for ẑ because the sup norm

has not enough control to guarantee non-negativity of

the approximations zðnÞ everywhere inG, as well as the

fulfillment of a Lipschitz condition by the integrand /
and the behaviour (18) near the extremes of G. In this

section we adopt a clever, nonstandard choice of the

norm and show (Theorem 2) that a single application

of the method of successive approximations gives

the kink solution
�
l̂; ẑðgÞ

�
in its whole domain

G ¼�gMk�1; g
M
k ½.

Assume c\1. Choose g0 ¼ gMk�1; z0 ¼ 0 and let

y :¼ g� g0. Then

xðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
2 sin2

y

2
þ cðy� sin yÞ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
y2 þ Oðy3Þ

ð41Þ

and ẑ fulfills (37), where the operator ~A has taken the

form

~AzðyÞ � ~zðyÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
2 sin2

y

2
þ cðy� sin yÞ

� ~lðzÞ
Z y

0

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p
;

where ~lðzÞ :¼ 2pcR 2p
0
dy0

ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p ð42Þ

By (18) ẑðyÞ ¼ Oðy2Þ; ẑð2p� yÞ ¼ O
�
ð2p� yÞ2

�
.

One easily checks that, more generally, if z has such a

behaviour near 0; 2p, so has ~Az. So it would be more

natural to look for the solution from the very beginning

in a functional space whose elements have such a

behaviour. In C1ð½0; 2p�Þ introduce the norm

kzk ¼ sup
y2½0;2p�

2zðyÞ
p2ðyÞ

����
���� ð43Þ

where the ‘weight’ p should vanish as y and 2p� y at

0; 2p and will be specified later. Clearly

kzk�Ckzk1 � C sup
y2�0;2p½

jzðyÞj

C�1 :¼ sup
y2�0;2p½

p2ðyÞ
2

:
ð44Þ

The subspace

V :¼ zðyÞ 2 C1ð½0; 2p�Þ j kzk\1f g ð45Þ

is a complete metric space w.r.t. the metric induced by

the above norm. In fact, consider a Cauchy sequence

fzng � V in the norm k � k: by (44) it is Cauchy and

therefore converges to a (uniformly continuous)

function zðyÞ also in the norm k � k1; moreover for

any e[ 0 there exists �r 2 N such that 8r� �r; 8m 2 N

sup
y2½0;2p�

zrðyÞ � zrþmðyÞ
p2ðyÞ

����
����\

e
2
;

Letting m ! 1 we find

sup
y2½0;2p�

zrðyÞ � zðyÞ
p2ðyÞ

����
����\e;

showing that z 2 V5 and fzng ! z also w.r.t. the

topology induced by the above norm.

Let a; b 2 R with b[ a[ 0. The subset

Za;b;p :¼ zðyÞ 2 V j a2 � 2zðyÞ
p2ðyÞ � b2

� �
ð46Þ

is clearly closed w.r.t. the metric induced by the above

norm. We shall look for ðẑ; l̂Þ within a suitable Za;b;p.

First we look for a; b such that (42) defines an operator
~A : Za;b;p ! Za;b;p. Up to a factor, we choose p2ðyÞ as

5 If ad absurdum sup jz=p2j ¼ 1 then the lhs would certainly

exceed e.
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the c ¼ 0 (i.e. unperturbed) kink solution ẑ0ðyÞ, more

precisely pðyÞ :¼ sin y
2
. Then

PðyÞ :¼
Zy

0

dy0pðy0Þ ¼ 2 1� cos
y

2

� �
¼

Z2p

y

dy0pðy0Þ;

and, since 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� w

p
�w=2 we find (setting w ¼

sin2 y
2
)

p2ðyÞ�PðyÞ� 2 1� cos
y

2

� �
1þ cos

y

2

� �
¼ 2p2ðyÞ:

Thus for any z 2 Za;b;p we find

aPðyÞ�
Zy

0

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p
¼

Zy

0

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p
pðy0Þ pðy0Þ

� bPðyÞ

4a ¼ aPð2pÞ� 2pc
~l

¼
Z2p

0

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p

� bPð2pÞ ¼ 4b

implying the inequalities cp=2b� ~l� cp=2a and

c
pa
2b

p2ðyÞ� ~l
Zy

0

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p
� c

pb
a
p2ðyÞ: ð47Þ

Similarly,

c
pa
2b

p2ðyÞ� ~l
Z2p

y

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p
� c

pb
a
p2ðyÞ: ð48Þ

Lemma 1 For all y� 0

1� cos y� 0; y� sin y� 0;
y2

2
� 1þ cos y� 0;

y3

6
� yþ sin y� 0:

Proof The first equality is obvious; the other ones

follow by integrations over ½0; y�. h

As a consequence, for y 2 ½0; p�

0� y� sin y� y3

6
¼ 1

6
p2ðyÞ y

sin y
2

	 
2
y

� p2ðyÞ p
3

6
:

ð49Þ

Collecting the results, on one hand assuming

1� a=b� 1=2 we find

~zðyÞ� p2ðyÞ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� cp

b

a

	 


� p2ðyÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� cp

h i ð50Þ

for all y 2 ½0; 2p�; on the other hand, for y 2 ½0; p� we
find

~zðyÞ� p2ðyÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
þ c

p3

12

	 

: ð51Þ

This provides bounds for y 2 ½0; p�. To find bounds for
y 2 ½p; 2p� set v ¼ ð2p� yÞ and note that from (42) it

follows

~zðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
2 sin2

y

2
� cðv� sin vÞ

þ 2pc� ~l
Z2p

0

dy
ffiffiffiffiffi
2z

p
�
Z2p

y

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p
2
64

3
75

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
2 sin2

y

2
� cðv� sin vÞ

þ ~l
Z2p

y

dy0
ffiffiffiffiffiffiffiffiffiffiffiffi
2zðy0Þ

p
;

We use (48) to bound the third term at the rhs; as

v 2 ½0; p�, to bound the second term we can use (49)

with y replaced by v, but keeping p2ðyÞ ¼ p2ðvÞ at the
rhs of the latter. Collecting the results we thus find for

y 2 ½p; 2p�

p2ðyÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� c

p3

12

	 

� ~zðyÞ

� p2ðyÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
þ cp

h i
:

ð52Þ

Hence a2p2 � 2~z� b2p2, so that ~z 2 Za;b;p, if we define

a2 :¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� cp

h i
;

b2 :¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
þ cp

h i
:

ð53Þ

In order that 1=2� a=b it must be

1

4
� a2

b2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� cpffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
p

þ cp

what gives, after some computation,
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c� 1þ 25p2

9

	 
�1
2

� :187 ð54Þ

We conclude that in this c-range with the above choice

of a; b ~AZa;b;p � Za;b;p, as required.

Let us determine the constraints on a, b following

from the condition that ~A be a contraction. First, we

immediately find

2jz1ðyÞ � z2ðyÞj ¼ p2ðyÞ 2jz1ðyÞ � z2ðyÞj
p2ðyÞ

� p2ðyÞkz1 � z2k

Note that for any a[ 0; j ffiffiffiffiffi
u1

p � ffiffiffiffiffi
u2

p j� ju1 � u2j=
ð2aÞ if u1; u2 2 ½a2;1½. Hence

j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðyÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2ðyÞ

p
j ¼ pðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðyÞ
p2ðyÞ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2ðyÞ
p2ðyÞ

s�����

�����

� pðyÞ
2a

2jz1ðyÞ � z2ðyÞj
p2ðyÞ

� pðyÞ
2a

kz1 � z2k

ð55Þ

j~l1 � ~l2j ¼ ~l1 ~l2j~l�1
1 � ~l�1

2 j

� pc
8a2

Z2p

0

dyð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðyÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2ðyÞ

p
������

������

� pc
8a2

Z2p

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðyÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2ðyÞ

p���
���

� pc
16a3

kz1 � z2k
Z2p

0

dypðyÞ

¼ pc
4a3

kz1 � z2k

~z2 � ~z1 ¼
Zy

0

dy0 ð~l1 � ~l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðy0Þ

ph

þ ~l2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðy0Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2ðy0Þ

p
Þ
i

ð56Þ

whence

j~z1ðyÞ � ~z2ðyÞj � j~l1 � ~l2j
Zy

0

dy0pðy0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðy0Þ
p2ðy0Þ

s

þ ~l2

Zy

0

dy0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z1ðy0Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2ðy0Þ

p���
���

� pbc
4a3

kz1 � z2kPðyÞ þ
pc
4a2

kz1 � z2kPðyÞ

� 1þ b

a

� �
pc
4a2

kz1 � z2kPðyÞ

� 1þ b

a

� �
pc
2a2

kz1 � z2kp2ðyÞ;

implying

k~z1ðyÞ � ~z2ðyÞk� 1þ b

a

� �
pc
a2

kz1 � z2k: ð57Þ

Thus, ~A is a contraction if

k :¼ ð1þ b=aÞpc=a2\1; ð58Þ

that is,

c\
a2

p 1þ b
a

� � � a2

3p
¼ 4

3p
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� cp�;

namely if

c\ 1þ 7p
4

� �2
" #�1

2

� :179 ð59Þ

Summing up, under this condition ~A is a contraction of

Za;b;p into itself. Since zð0ÞðyÞ :¼ 2p2ðyÞ ¼ 2 sin2 y
2

belongs to Za;b;p, applying the Banach fixed point

theorem we find

Theorem 2 Let zð0ÞðyÞ :¼ 2 sin2 y
2
; zðnÞ :¼ ~Anzð0Þ;

ln :¼ ~l
�
zðn�1Þ

�
, with ~A; ~l defined as in (42). The

sequences fzðnÞgn2N; flngn2N converge respectively to

the kink solution ẑ [in the norm (43)] and to the

corresponding l̂ðcÞ, for c at least in the range (59).

With k defined as in (58), the errors of the nth

approximation are bound by
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zðnÞ � ẑ
�� ��� kn

1� k
zð1Þ � zð0Þ

�� ��;

jln � l̂j � pc
32

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� cp

h i�3
2 kn

1� k
zð1Þ � zð0Þ

�� ��
ð60Þ

[To complete the proof we need just to note that, by

(56), the convergence of zðnÞ implies the convergence

of ln and estimate the second error through standard

arguments].

Remark 4.1 More refined computations of upper and

lower bounds, with the present c-independent weight
p2ðyÞ ¼ sin2 y

2
, would show a c-range of convergence

of the above sequences slightly larger than (59). By

choosing a suitable c-dependent weight p2ðyÞ, e.g.
p2ðyÞ ¼ zð1ÞðyÞ=2, one could show that this range is

actually significantly larger. This will be elaborated

elsewhere.

We explicitly work out the first approximation. We

find:

zð1ÞðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
2 sin2

y

2

þ c p cos
y

2
� 1

� �
þ y� sin y

h i ð61Þ

l1 ¼
1

4
pc ð62Þ

eð1ÞðyÞ ¼ cp cos
y

2
� 1

� �
þ const ð63Þ

vð1Þðc; aÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð4a=pcÞ2
q ¼ pc

4a
þ Oðc2Þ: ð64Þ

The results are in good agreement with the plot

in Fig. 3, right. Note that the result (64) coin-

cides with (4), as announced. In a similar way

one can determine iteratively solutions of type 3

(l; �z) even with low zM [i.e. not fulfilling the bound

(40)].
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Appendix

Proof of Proposition 1 Let 0� z0;2\z0;1; zjðgÞ :¼
zðg; g0; z0;j; l; cÞ (j ¼ 1; 2) be the corresponding solu-

tions of (15) and Gj the corresponding intervals giving

their (maximal) domains. By continuity the inequality

z1 � z2 [ 0 ð65Þ

will hold in a neighbourhood of g0 within G1 \ G2. In

fact, it will hold for all g 2 G1 \ G2. If ad absurdum

this were not the case, denote by �g 2 G1 \ G2 the least

g[ g0 (resp. largest g\g0) where z1 � z2 vanishes:

z1ð�gÞ � z2ð�gÞ ¼ 0; then the problem (15) with initial

(resp. final) condition zð�gÞ ¼ z1ð�gÞ � z2ð�gÞ would

admit the two different solutions z1; z2, against the

existence and uniqueness theorem. As for the mono-

tonicity of g�, by the same theorem z1ðg2�Þ[ z2ðg2�Þ
¼ 0 implies g1þ [ g2þ if g2þ\1, otherwise g1þ ¼
g2þ ¼ 1, and g1�\g2� if g2� [ �1, otherwise

g1� ¼ g2� ¼ �1. h

Proof of Proposition 2 Let l1 � l2; c1�� c2�, with
one of the two inequalities being strict; for j ¼ 1; 2 let

ujðgÞ :¼ uðg; g0; u0; lj; cÞ be the corresponding solu-

tions of (15) with the same condition ujðg0Þ ¼ u0, and

Gj the intervals giving their (maximal) domains. We

find

u2g ¼ �l2 þ
c2 � sin g

u2
\� l1 þ

c1 � sin g

u2
:

By the comparison principle6 (see e.g. [42]) it follows,

as claimed,

u1ðgÞ[ u2ðgÞ g 2�g0; gþ½;
u1ðgÞ\u2ðgÞ g 2�g�; g0½:

ð66Þ

If �[ 0, this implies: limg#g2þ u1ðgÞ� limg#g2þ
u2ðgÞ ¼ 0 and therefore g1þ � g2þ (the inequalities

being strict as long as g2þ\1); limg"g1� u2 � 0 and

therefore g1;� � g2� (the inequalities being strict as

long as g1� [ �1). Moreover, let gjðnÞ ¼
gðn; g0; u0; lj; cjÞ be the corresponding two solutions

of (16), i.e. the solutions of (10). We find

6 Here we recall the latter in the restricted version: if f fulfills

conditions ensuring that the differential problem

~u0 ¼ f ðx; ~uÞ; ~uðx0Þ ¼ uðx0Þ, has a unique solution ~u, and

u0\f ðx; uÞ for all x, then it is uðxÞ\~uðxÞ for all x[ x0 and

uðxÞ[ ~uðxÞ for all x\x0.
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g02ðnÞ ¼ u2
�
g2ðnÞ

� \u1
�
g2ðnÞ

�
; 8n[ n0;

[ u1
�
g2ðnÞ

�
; 8n\n0;

�

while g2ðn0Þ ¼ g0 ¼ g1ðn0Þ. By the comparison prin-

ciple this implies as claimed g2ðnÞ\g1ðnÞ for all

n 2 X1 \ X2. Similarly one argues if �\0. h

Proof of Proposition 3 Consider the Cauchy prob-

lem (15) in subsequent intervals �gk; gkþ1½� G. Since

the equation is invariant under g ! gþ 2p, by

Proposition 1 if zðg1Þ is respectively larger, equal,

smaller than zðg0Þ then so are zðgkþ1Þ; Ikþ1 in com-

parison with zðgkÞ; Ik respectively, for all k 2 K; in

other words, the sequences fzðgkÞg; fIkg are either

constant, or strictly monotonic. Equation (21) follows

from (19) applied in �gk; gkþ1½.
If � ¼ �, then rhs (21)[ 2pc[ 0 for any k, so that

the sequences are strictly increasing and diverging as

k ! 1, whereas K must have a lower bound, other-

wise zðgkÞ would become negative for sufficiently low

k.

If � ¼ þ, then the two terms at the rhs (21) have

opposite sign and can compensate each other. If the

sequences are strictly increasing, the sides of (21) are

positive for all k and Ik\2pc=l. Applying (19) to the

interval ½gk; gk þ Dg� for any Dg� 2p we find

zðgk þ DgÞ � zðgkÞ ¼ UðgkÞ � Uðgk þ DgÞ

� l
ZgkþDg

gk

ds
ffiffiffiffiffiffiffiffiffiffi
2zðsÞ

p
:

But jUðgkÞ � Uðgk þ DgÞj is upper bounded, e.g. by
2þ 2pc, whence

jzðgk þ DgÞ � zðgkÞj � 2þ 2pcþ lIk\2þ 4pc:

ð67Þ

If ad absurdum zðgkÞ diverged as k ! 1, then also

zðgk þ DgÞ and in turn Ik [by (20)] would diverge, in

contrast with Ik\2pc=l; so it must converge. More-

over, as before, K must have a lower bound. On the

other hand, rewriting (21) in the form zðgk�1Þ
�zðgkÞ ¼ lIk�1 � 2pc, we see that if the sequences

fzðgkÞg; fIkg are strictly decreasing, the sides are

positive for all k and larger than lI0 � 2pc[ 0 for all

negative k; this implies that they diverge as k ! �1,

and again by (67) so do zðgÞ; Iðz; gÞ. Whereas they

must either converge as k ! 1, or K must have an

upper bound. h
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