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Abstract In this paper, a new theoretical framework

is presented for modeling non-locality in shear

deformable beams. The driving idea is to represent

non-local effects as long-range volume forces and

moments, exchanged by non-adjacent beam segments

as a result of their relative motion described in terms of

pure deformation modes of the beam. The use of these

generalized measures of relative motion allows con-

structing an equivalent mechanical model of non-local

effects. Specifically, long-range volume forces and

moments are associated with three spring-like con-

nections acting in parallel between couples of non-

adjacent beam segments, and separately accounting

for pure axial, pure bending and pure shear deforma-

tion modes. The variational consistency of the pro-

posed non-local beam model is demonstrated by

minimization of an appropriate total potential energy

functional. Numerical results concerning the static

behavior for different boundary and loading condi-

tions are presented. It is shown that the proposed non-

local beam model is able to capture experimental data

on the static deflection of micro-beams, available in

the literature.

Keywords Non-local Timoshenko beam � Long-
range interactions � Pure deformation modes � Spring-
like connections

1 Introduction

It is now well understood that a classical local

continuum modeling, although certainly accurate in

a wide spectrum of engineering applications, may fail

to capture those phenomena where microstructure and

long-range intermolecular forces play a crucial role.

Such inadequacy, due to the intrinsic free scale

formulation of the classical local continuum theory,

has been revealed theoretically based on molecular

simulations, and experimentally by static and dynamic

tests on several materials.

Molecular simulations may seem a most appropri-

ate way to account for microstructural effects, but they
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involve as a major drawback a considerable compu-

tational effort. For this reason, and in recognition of

the fact that even to build a molecular model some

theoretical assumptions are still needed, scientists and

engineers have turned their attention to the formula-

tion of ‘‘enriched’’ continua, i.e. classical continuum

models where microstructural effects are accounted

for in an average sense, by introducing appropriate

non-local terms. Since the pioneering work by Eringen

[1, 2], these formulations have been awarded a

considerable attention, especially due to the fact that

a continuum formulation, although endowed with the

additional non-local terms, generally allows estab-

lished numerical solution methods to be applied, with

considerable advantages for design purposes. In this

context the following approaches can be cast: the well-

known Eringen’s integral theory [1, 2], involving a

stress–strain relation between the stress at a given

point and the strain in the whole volume of the

continuum; the gradient elasticity theories [3, 4], with

constitutive equations depending on the gradients of

stresses or strains; the peridynamic theory [5], involv-

ing long-range elementary forces depending on

relative displacements between non-adjacent points;

the well-known micropolar ‘‘Cosserat’’ theory [6] and

the couple-stress theory [7], according to which any

material point is endowed with translational and

rotational degrees of freedom, with resulting work-

conjugate curvatures and couple stresses. Regarding

micropolar or couple-stress theories, many interesting

studies have been devoted to explain, on a physical

basis, the relation with microstructural effects, see for

instance those by Kröner [8] and Lakes [9].

Within the context of non-local enriched continua

formulations, several non-local beam theories have

been derived. The interest in non-local beam models is

certainly motivated by the increasing importance of

small-size beam-like devices, used for instance as

sensors or actuators in micro- and nano-technologies

(see the comprehensive review by Qian et al. [10]),

where a significant deviation from the theoretical

predictions of the classical Euler–Bernoulli (EB) or

Timoshenko (TM) beam theory has been revealed by

atomistic simulations [11] and experimental evidence

on several materials, such as epoxy [12], polypropy-

lene [13], graphite [14] and copper [15]. Existing non-

local beam models have generally involved linearly-

elastic non-local terms, used in conjunction with the

classical continuum of the EB or TM beam theories.

Dynamic and static responses have been investigated.

Most of the early non-local beam models have been

built on Eringen’s integral theory [1, 2]. In this

context, based on the assumption that non-local terms

affect the normal stress only, the motion equation of a

EB beam has been formulated by Zhang et al. [16], Xu

[17], Wang and Varadan [18]. Wang and Varadan [18]

have also formulated the motion equations of a TM

beam. Lu and et al. have later clarified some incon-

sistencies in these first studies, due to an incorrect use

of Eringen’s non-local stress law [19]. Following these

clarifications, Reddy [20] and Aydogdu [21] have

formulated alternative higher-order non-local beam

theories based on certain assumptions on the displace-

ment field.

There exist also many non-local beam models

derived from non-local theories alternative to Erin-

gen’s integral theory. For instance, non-local EB beam

models have been built by Kong et al. [22] based on a

modified couple stress theory, by Zhang et al. [23]

based on a so-called hybrid approach, which involves

a strain energy functional depending on local and non-

local curvatures. A non-local TM beam model has

been built by Wang et al. [24] in conjunction with the

gradient elasticity theory presented by Lam et al. [12],

and byMa et al. [25] based on a modified couple stress

theory. In all these studies, the motion equations have

been derived by Hamilton’s principle. More recently,

non-local EB and TM beam models have been

proposed by Pradhan [26] and Yang and Lim [27]

based on a stress gradient elasticity theory, the former

with a weak formulation of the motion equations in

conjunction with finite element analysis [26], and the

latter using Hamilton’s principle [27]. Specifically,

Yang and Lim [27] have used a strain energy density

built on a non-local normal stress expressed in terms of

higher-order derivatives of the normal strain and, as a

result, the corresponding motion equations and bound-

ary conditions (B.C.) involve higher-order derivatives

of the non-local bending moment (in this respect, see

also Ref. [28, 29]). Yang and Lim [27] have shown that

if the motion equations and the pertinent B.C. are not

derived by a consistent variational framework and in

particular by Hamilton’s principle, but instead by a

direct replacement of the non-local stress resultants

(non-local bending moment and non-local shear) into

the classical beam motion equations, some inconsis-
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tencies do arise in terms of equilibrium and B.C. For

this reason, the softening effects that those theories

predict in the bending stiffness or the natural frequen-

cies cannot be considered, according to Yang and Lim

[27], as reliable results. These conclusions have been

drawn for both EB and TM beam models.

Along with the studies above, where in general

static and dynamic responses of non-local beam

models have been investigated, some studies focusing

on the static response only are worth mentioning. For

instance, Eringen’s integral theory has been used by

Peddieson et al. [30], Wang and Shindo [31], Civalek

and Demir [32] to derive non-local EB beam models,

byWang and Liew [33], Wang and et al. [34] to derive

non-local TM beam models, the latter in conjunction

with the principle of virtual work. A non-local EB

beam model has been presented by Challamel and

Wang [35] based on a gradient elastic model and a

non-local integral elastic model, where the constitu-

tive relation is expressed by combining local and non-

local curvatures. A non-local EB model has been also

presented by McFarland and Colton [13] based on a

micropolar elasticity constitutive law. Lam et al. [12]

have investigated a non-local EB model as derived

from a general strain gradient elasticity theory, while

Park and Gao [36] have studied a non-local EB model

based on a modified couple stress theory. The static

response of EB beam models based on strain gradient

and couple stress theories has been investigated by

Chen and Feng [37], Akgöz and Civalek [38].

The purpose of this paper is to illustrate a new non-

local TM beam model, derived within the framework

of a mechanically-based non-local elasticity theory

recently proposed by the authors [39–46], where non-

local effects are modelled as long-range interactions

resulting from the relative displacement between

volume elements. Consistently with typical engineer-

ing beam theories, where the equilibrium of a beam

segment is set in an average (weak) sense based on the

stress resultants acting on the cross section, in the

proposed non-local beam model the long-range inter-

actions are modelled as volume forces and moments,

mutually exerted by non-adjacent beam segments, that

contribute to the equilibrium of any beam segment

along with the local stress resultants. The long-range

volume forces/moments are built as linearly depend-

ing, through pertinent attenuation functions governing

the spatial decay of the non-local effects, on the

product of the volumes of the interacting beam

segments and on generalized measures of their relative

motion. These generalized measures are based on the

pure beam deformation modes derived by Fuchs [47,

48], i.e. a ‘‘pure axial’’ symmetric mode, a ‘‘pure

bending’’ symmetric mode and a ‘‘pure shear’’ asym-

metric mode.

These are the key issues addressed in the paper:

(i) the non-local beam model will be cast within a

consistent variational framework (on the importance

of a consistent variational formulation see, e.g., Ref.

[27–29]); in particular, the equilibrium equations will

be derived based on a pertinent total elastic potential

energy, where local and non-local contributions reflect

the mechanical interpretation given to the long-range

interactions; (ii) the behavior of the non-local beam

model will be investigated for a variety of non-local

and geometrical parameters; in this context, a com-

parison with some alternative models in the literature

will be presented; (iii) it will be shown that the non-

local beam model captures very well experimental

data on the static response of cantilever micro-beams

[12].

The paper is organized as follows. Upon recalling

the basic equations of the local TM beam theory in

Sect. 2, the long-range volume forces/moments are

introduced in Sect. 3. The equilibrium equations of the

non-local TM beam model along with the mechanical

B.C. are derived in Sect. 4 by a variational formula-

tion. Numerical results including comparisons with

experimental data are presented in Sect. 5.

2 Local Timoshenko beam theory: basic equations

In this Section, for the sake of clarity as well as to

introduce some basic notations, the classical TM beam

theory is briefly summarized.

Consider the initially straight beam of length L and

uniform cross section shown in Fig. 1. The material is

assumed to be isotropic and linearly elastic. The beam

is referred to a Cartesian (orthogonal) coordinate

system Oxyz, where the x-axis coincides with the

centroidal axis, the y-and z-axes are principal axes of

the cross section, and xz is the bending plane.
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Based on the classical TM beam theory, the

displacement field is described as follows:

uxðxÞ ¼ uðxÞ � zuðxÞ; uyðxÞ ¼ 0; uzðxÞ ¼ vðxÞ;
ð1a� cÞ

where x ¼ x y z½ �T is the position vector; u(x) and

v(x) denote the x- and z- components of the displace-

ment of a point at x on the centroidal axis and u(x) is
the rotation about the y-axis. The latter is taken as

positive if clockwise. The axial, transverse shear and

bending strains ensuing from the above kinematic

model are given, respectively, by:

eðxÞ ¼ duðxÞ
dx

; cðxÞ ¼ dvðxÞ
dx

� uðxÞ;

vðxÞ ¼ � duðxÞ
dx

:

ð2a� cÞ

The associated stress resultants are the classical

local normal stress, shear stress and bending moment,

given by:

N lð ÞðxÞ ¼
Z
A

r lð Þ
x ðxÞdA; T lð ÞðxÞ ¼

Z
A

s lð Þ
xz ðxÞdA ;

M lð ÞðxÞ ¼
Z
A

r lð Þ
x ðxÞzdA

ð3a� cÞ

where the superscript in parentheses means local,

while rx
(l)(x) and sxz

(l)(x) are two of the six components

of the Cauchy stress tensor gathered into the vector

r lð ÞðxÞ ¼ r lð Þ
x r lð Þ

y r lð Þ
z s lð Þ

yz s lð Þ
xz s lð Þ

xy

h iT
:

Collecting the stress resultants (3a–c) and general-

ized strain components (2a–c) into the vectors sðlÞ

ðxÞ ¼ N lð ÞðxÞ T lð ÞðxÞ M lð ÞðxÞ
� �T

and dðlÞðxÞ ¼

eðxÞ½ cðxÞ vðxÞ�T, the linear-elastic constitutive laws

can be written in compact form as:

sðlÞðxÞ ¼ D�dðlÞðxÞ ð4Þ

where D� ¼ Diag E�A KsG
�A E�I½ �, with E* =

b1E and G* = b1G, E and G being Young’s modulus

and shear modulus respectively, whereas 0 B b1 B 1

is a dimensionless real coefficient weighting the

amount of local effects when the beam model includes

also long-range interactions [42–44], as will be

outlined in the next Section; A and I are the area and

moment of inertia of the cross section; Ks is the shear

correction factor. Obviously, the classical local TM

beam parameters correspond to b1 = 1, so that

E* = E and G* = G.

Denoting by Fx(x) and Fz(x) the external forces per

unit length in the x- and z- directions, the equilibriumof

the TM beam is governed by the following equations:

dN lð ÞðxÞ
dx

þ FxðxÞ ¼ 0;

dT lð ÞðxÞ
dx

þ FzðxÞ ¼ 0;

dM lð ÞðxÞ
dx

� T lð ÞðxÞ ¼ 0:

ð5a� cÞ

The pertinent kinematic B.C. read:

uðxiÞ ¼ ui; vðxiÞ ¼ vi; uðxiÞ ¼ ui; i ¼ 0; L

ð6a� cÞ

being ui, vi and ui the displacements and rotations at

the beam ends, i.e. at x0 = 0 and xL = L. Finally, if Ni,

Mi and Ti denote the external forces/moments acting at

the ends of the beam (i = 0, L), the mechanical B.C.

are given by:

Fig. 1 Shear deformable

beam of arbitrary cross

section. Positive sign

conventions are reported
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NðlÞðxiÞ ¼ �Ni; T ðlÞðxiÞ ¼ �Ti; MðlÞðxiÞ ¼ �Mi:

ð7a� cÞ

3 Non-local Timoshenko beam model with long-

range interactions

This Section presents the main features of the

proposed non-local beam model. It is derived within

the framework of a mechanically-based approach to

non-local elasticity theory [39–46], where non-local

effects are represented as long-range interactions

exchanged by non-adjacent volume elements as a

result of their relative motion. Herein, such a general

idea is applied within the context of typical engineer-

ing beam theories, where the equilibrium of a beam

segment is set in an average (weak) sense based on the

stress resultants acting on the cross section. In

particular, the long-range interactions are modeled as

volume forces and moments, exchanged by non-

adjacent beam segments as a result of their relative

motion measured by the pure deformation modes of

the beam [47, 48]. As will be outlined next, this

modeling of long-range interactions can be interpreted

on a meaningful mechanical basis, as corresponds to

assuming a spring-like connection between couples of

non-adjacent beam segments where pure axial, pure

bending and pure shear long-range springs (with

distance-decaying stiffness) can be separately ac-

counted for. In the following, the analytical expres-

sions and mechanical interpretation of the long-range

volume forces/moments are given. Hence, the equi-

librium equations are built by direct introduction of the

long-range volume forces/moments in the standard

equilibrium equations of a beam segment. A similar

approach allows to derive the mechanical B.C.

3.1 Long-range resultants

By means of an eigenvalue analysis, Fuchs [47, 48]

decomposed a TM beam element into three unimodal

components acting in parallel: a ‘‘pure axial’’, a ‘‘pure

bending’’ and a ‘‘pure shear’’ element. Such decom-

position yields uncoupled constitutive laws between

generalized stress and strain measures associated with

each deformation mode. Fuchs [47, 48] provided a

clear geometrical interpretation of the deformation

modes: the ‘‘pure axial’’ mode is a symmetric mode

defined by the relative axial displacements between

the ends; the ‘‘pure bending’’ mode is a symmetric

mode defined by the relative rotation between the

ends; the ‘‘pure shear’’ mode is an asymmetric mode

defined by the relative rotation between the ends, with

respect to the line given by the relative transverse

displacements. Furthermore, Fuchs [47, 48] derived

the self-equilibrated forces/moments at the ends of the

TM beam element resulting from the pure deformation

modes.

In order to define the long-range interactions based

on Fuchs’ unimodal components, a discrete model of

the beam is built by dividing the beam domain in

N segments of length Dx, so that xi = iDx with

i = 0, 1, …, N - 1 (xN = xL), defines the position of

the segment DV(xi) = ADx along the axis (see Fig. 2).
It is assumed that the equilibrium of each beam

segment is attained due to: (i) the local stress resultants

in Eq. (3) exerted by the adjacent beam segments; (ii)

the resultants of the volume forces/moments, Rx, Rz

and Ru exerted by all the non-adjacent beam segments.

Such resultants are shown in Fig. 2 where the equi-

librium of an elementary beam segment located at

x = xi is displayed.

The key assumption of the proposed non-local

beam model is that the long-range volume forces/mo-

ments mutually exerted by two non-adjacent beam

segments DV(xi) and DV(nk) located, respectively, at
x = xi and x = nk, arise due to their relative motion

described by Fuchs’ generalized measures of relative

displacement/rotations (see Fig. 3) i.e., the relative

axial displacement:

g xi; nkð Þ ¼ u nkð Þ � u xið Þ; ð8Þ

the relative rotation:

h xi; nkð Þ ¼ u nkð Þ � u xið Þ; ð9Þ

and the rotation with respect to the line given by the

relative transverse displacement:

w xi; nkð Þ ¼ v nkð Þ � v xið Þ
nk � xi

� u nkð Þ
� �

þ v nkð Þ � v xið Þ
nk � xi

� u xið Þ
� �

: ð10Þ

Based on the analytical expressions of the general-

ized stress measures derived by Fuchs [47, 48] for each

unimodal component, the long-range volume

forces/moments are taken as proportional to the pure
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deformation modes. By analogy to the mechanically-

based model of non-local bar proposed by Di Paola

et al. [42, 45, 46], a linear dependence on the product of

the volumes of the interacting beam segments through

appropriate attenuation functions governing the spatial

decay of non-local effects is also included.

The pure axial deformation mode (see Fig. 3a)

gives rise to long-range volume axial forces rx(xi, nk)
mutually exerted by two non-adjacent beam segments

DV(xi) and DV(nk), as a result of their relative axial

displacement g(xi, nk), i.e.:
rx xi; nkð Þ ¼ qx xi; nkð ÞDV xið ÞDV nkð Þ ;
qx xi; nkð Þ ¼ gx xi; nkð Þg xi; nkð Þ

ð11a; bÞ

where qx(xi, nk) given by Eq. (11b) is the specific

long-range axial force depending on the relative axial

displacement (8), through an appropriate symmetric

real-valued attenuation function gx(x, n) governing the
spatial decay of non-local axial effects.

The pure bending mode (see Fig. 3b) gives rise to

long-range volume moments ruu(xi, nk) mutually

exerted by two non-adjacent beam segments DV(xi)
and DV(nk) as a result of their relative rotation

h(xi, nk), i.e.:

ruu xi; nkð Þ ¼ quu xi; nkð ÞDV xið ÞDV nkð Þ;
quu xi; nkð Þ ¼ gu xi; nkð Þh xi; nkð Þ

ð12a; bÞ

where quu(xi, nk) given by Eq. (12b) is the specific

long-range moment proportional to the relative

rotation (9) through an appropriate symmetric real-

valued distance-decaying attenuation function

gu(xi, nk).
Finally, the pure shear mode (see Fig. 3c) gives rise

to long-range volume transverse forces and moments,

rz(xi, nk) and ruz(xi, nk), mutually exerted by two non-

adjacent beam segments DV(xi) and DV(nk) as a result

(a)

(b)

(c)

Fig. 2 Equilibrium of an

elementary beam segment: a axial;

b transverse; c bending
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of their rotations with respect to the line given

by the relative transverse displacement, w(xi, nk),
i.e.:

rz xi;nkð Þ ¼ qz xi;nkð ÞDV xið ÞDV nkð Þ ;

qz xi;nkð Þ ¼ 2
sgn nk � xið Þ

nk � xij j gz xi;nkð Þw xi;nkð Þ ð13a� bÞ

ruz xi; nkð Þ ¼ quz xi; nkð ÞDV xið ÞDV nkð Þ ;
quz xi; nkð Þ ¼ gz xi; nkð Þw xi; nkð Þ

ð14a; bÞ

In the previous equations, qz(xi, nk) in Eq. (13b)

and quz(xi, nk) in Eq. (14b) are the specific long-range
volume transverse forces and moments, depending on

w(xi, nk) through a symmetric real-valued distance-

(a)

(b)

(c)

zero stiffness in shear mode

zero stiffness in bending mode

x

x

(((( )))),x i kr x ξ (((( )))),x i kr x ξ−−−−

(((( )))),i kr xϕϕ ξ (((( )))),i kr xϕϕ ξ−−−−

0η >>>>

(((( )))),z i kr x ξ

(((( )))),z i kr x ξ−−−−

(((( ))))iV xΔ (((( ))))kV ξΔ

(((( ))))iV xΔ (((( ))))kV ξΔ

(((( ))))iV xΔ (((( ))))kV ξΔ

x

0θ >>>>

(((( )))),z i kr xϕ ξ

(((( )))),z i kr xϕ ξ

0ψ >>>>

Fig. 3 Pure deformation

modes of the Timoshenko

beam and associated long-

range springs: a axial; b pure
bending; c pure shear
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decaying attenuation function gz(xi, nk). In Eq. (13b),

sgn n� xð Þ ¼ þ1 if (n - x)[ 0 and sgn n� xð Þ ¼ �1

if (n - x)\ 0 is introduced to ensure consistency of

rz(x, n) with the sign convention of the long-range

resultants in Fig. 2. Hence, the total long-range

volume moments due to bending and shear deforma-

tion modes can be expressed as:

ru xi; nkð Þ ¼ qu xi; nkð ÞDV xið ÞDV nkð Þ;
qu xi; nkð Þ ¼ quu xi; nkð Þ þ quz xi; nkð Þ:

ð15a; bÞ

Based on the above definitions, the resultants of the

long-range volume forces/moments exerted on the

beam segment DV(xi) at x = xi by all the non-adjacent

beam segments DV(nk) at x = nk, nk = xi, can be

obtained as follows:

Rx xið Þ ¼
XN�1

k¼0; k 6¼i

rx xi; nkð Þ;

Rz xið Þ ¼
XN�1

k¼0; k 6¼i

rz xi; nkð Þ;

Ru xið Þ ¼
XN�1

k¼0; k 6¼i

ru xi; nkð Þ :

ð16a� cÞ

For brevity, Rx(xi), Rz(xi) and Ru(xi) hereinafter will

be referred to as long-range resultants.

A close inspection of the above equations suggests

that the long-range volume forces/moments can be

interpreted as the result of three spring-like connec-

tions between non-adjacent beam segments which

separately account for pure axial, pure bending and

pure shear modes (see Fig. 3). Thus, from a me-

chanical point of view, the proposed non-local beam

model is conceptually equivalent to the non-local bar

built by Di Paola et al. [42, 45, 46], where the long-

range volume axial forces are represented, within the

context of a discrete model, as linearly-elastic springs

of distance-decaying stiffness connecting non-adja-

cent volume elements. In this regard it worth remark-

ing that, if the long-range volume transverse

forces/moments were taken as depending on the

relative transverse displacement and not on the pure

shear deformation (10), long-range volume transverse

forces/moments would erroneously arise from a

relative transverse displacement induced, for instance,

by a rigid rotation of the beam. In this sense, it can be

stated that the proposed non-local beam model is

invariant with respect to rigid bodymotion and that the

axial, bending and shear non-local behaviors are

mechanically consistent.

Finally, some remarks are in order on the choiceof the

attenuation functions gs(x, n), with s = x, z, u, govern-
ing the spatial decay of non-local effects. To ensure that

the long-range resultants have a restoring nature, for any

couple of interacting beam segments, the attenuation

functions must be strictly positive. Furthermore, these

functions are taken as symmetric functions with respect

to the arguments x and n, to ensure that the long-range

resultants exchanged by the interacting beam segments

are mutual, according to Newton’s third law.

To make the beammodel as general and versatile as

possible, three different functions gs(x, n), with

s = x, z, u, have been introduced in the definition of

the long-range forces/moments. Indeed, non-local

axial, bending or shear effects may exhibit a different

spatial decay depending on the material microstruc-

ture. In general, both the mathematical form of the

attenuation functions [39–46, 49, 51] and the pertinent

parameters depend on the material and should be

determined based on experimental evidence.

3.2 Equilibrium equations

Within the context of the proposed non-local beam

model, each beam segment is in equilibrium under: (i)

the local stress resultants (3a–c) exerted by the

adjacent beam segments; (ii) the resultants of the

volume forces/moments exerted by all non-adjacent

beam segments [see Eqs. (16a–c)]; and the external

forces represented here by the unit length forces Fx(x)

and Fz(x). Then, the equilibrium equations of the beam

segment DV(xi) = ADx at x = xi, for i = 0, 1, …,

N - 1, read (see Fig. 2):

NðlÞ xi þ Dxð Þ � NðlÞ xið Þ þ Rx xið Þ þ Fx xið ÞDx ¼ 0;

T ðlÞ xi þ Dxð Þ � T ðlÞ xið Þ þ Rz xið Þ þ Fz xið ÞDx ¼ 0;

MðlÞ xi þ Dxð Þ �MðlÞ xið Þ � T ðlÞ xið ÞDx� Ru xið Þ ¼ 0:

ð17a� cÞ

Substituting Eqs. (16a–c) for the long-range resul-

tants Rx(xi), Rz(xi) and Ru(xi) into Eqs. (17a–c),

dividing both sides by Dx and taking the limit as

Dx ? 0, the following integro-differential equilibri-

um equations are obtained:
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dNðlÞðxÞ
dx

þ A2

Z L

0

qx x; nð Þdnþ Fx xð Þ ¼ 0;

dTðlÞðxÞ
dx

þ A2

Z L

0

qz x; nð Þdnþ Fz xð Þ ¼ 0;

dMðlÞðxÞ
dx

� T ðlÞðxÞ � A2

Z L

0

qu x; nð Þdn ¼ 0:

ð18a� cÞ

Notice that Eqs. (18a–c) differ from the differential

equilibrium equations of the local TM beam (5a–c)

just for the integral terms representing the long-range

resultants per unit length.

The B.C. associated with Eqs. (18a–c) coincide

with the ones pertaining to the local beam, given in

Eqs. (6) and (7). Indeed, at the beam ends the long-

range resultants can be considered as infinitesimal of

higher order with respect to the local stress resultants

(see Ref. [42–44]).

4 Variational formulation

In this Section, the equilibrium equations of the non-

local TM beam along with the pertinent B.C. are

derived within a variational framework by applying

the minimum potential energy principle.

A variational formulation of the equations govern-

ing the proposed non-local beam model can be

pursued starting from the work identity [42–44]:

Z L

0

sðlÞT xð ÞdðlÞ xð Þdx

¼
Z L

0

FT xð Þu xð Þdxþ sT0u0þ sTLuL

þA2

Z L

0

Z L

0

~qT x;nð Þu xð Þdxdn ð19Þ

where sðlÞ xð Þ and dðlÞ xð Þ are the vectors collecting the

local stress resultants (3a–c) and generalized strain

components (2a–c), respectively, defined in Sect. 2;

while the vectors u xð Þ, F xð Þ and ~q x;nð Þ are given by:

u xð Þ ¼ u xð Þ v xð Þ u xð Þ½ �T;
F xð Þ ¼ Fx xð Þ Fz xð Þ 0½ �T;
~q x; nð Þ ¼ qx x; nð Þ qz x; nð Þ qu x; nð Þ½ �T:

ð20a� cÞ

Furthermore, in Eq. (19), si (i = 0, L) is the vector

listing the axial force, transverse force and moment at

the beam ends, Ni, Ti and Mi, (i = 0, L); the

corresponding displacements and rotations are gath-

ered into vector ui (i = 0, L).

The double integral on the r.h.s of Eq. (19) is

obtained as the continuous counterpart of the work

done by the long-range resultants (16a–c) exchanged

between non-adjacent beam segments of the discrete

model built in the previous Section (see Fig. 2), i.e.:

lim
Dx;Dn!0

XN�1

i¼0

RT xið Þu xið Þ

¼ lim
Dx;Dn!0

A2
XN�1

i¼0

XN�1

k¼0;k 6¼i

~qT xi; nkð Þu xið ÞDxDn

¼ A2

Z L

0

Z L

0

~qT x; nð Þu xð Þdxdn

ð21Þ

where R xið Þ ¼ Rx xið Þ Rz xið Þ Ru xið Þ½ �T.
Due to the symmetry of the attenuation functions

gs(x, n), s = x, z, u, with respect to the arguments x

and n, the following identity holds (see Appendix 1):

Z L

0

Z L

0

~qTðx; nÞuðxÞdxdn

¼ � 1

2

Z L

0

Z L

0

qTðx; nÞeðx; nÞdxdn ð22Þ

where

e x; nð Þ ¼ g x; nð Þ h x; nð Þ w x; nð Þ½ �T;
q x; nð Þ ¼ qx xð Þ quu x; nð Þ quz x; nð Þ½ �T

ð23a; bÞ

are the vectors collecting the generalized measures of

relative motion and the associated specific-long-range

forces/moments, respectively. Vectors q x; nð Þ and

e x; nð Þ are related by Eq. (11b), Eq. (12b), and

Eq. (14b), which can be rewritten in compact

form as:

q x; nð Þ ¼ G x; nð Þe x; nð Þ ð24Þ

where

G x; nð Þ ¼ Diag gx x; nð Þ gu x; nð Þ gz x; nð Þ½ � ð25Þ

is a diagonal matrix listing the attenuation functions.

Equation (24) may be viewed as the constitutive law

between the specific long-range forces and the asso-

ciated generalized measures of relative motion.

Taking into account Eq. (22), the work identity can

be rewritten as follows:
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Z L

0

sðlÞT xð ÞdðlÞ xð Þdxþ A2

2

Z L

0

Z L

0

qT x; nð Þe x; nð Þdxdn

¼
Z L

0

FT xð Þu xð Þdxþ sT0u0 þ sTLuL:

ð26Þ

Based on Eq. (26), the elastic potential energy

stored in the TM beam with long-range interactions

can be defined as sum of local and non-local

contributions:

U dðlÞ xð Þ;e x;nð Þ
� �

¼
Z L

0

/ðlÞ dðlÞ xð Þ
� �

dxþA2

2

Z L

0

Z L

0

/ðnlÞ e x;nð Þð Þdxdn

¼ 1

2

Z L

0

dðlÞT xð ÞD�dðlÞ xð Þdx

þA2

4

Z L

0

Z L

0

eT x;nð ÞG x;nð Þe x;nð Þdxdn

ð27Þ

where the linear-elastic constitutive laws (4) and

Eq. (24) have been introduced. In the previous equa-

tion, /ðlÞ dðlÞ xð Þ
� 	

and /ðnlÞ e x;nð Þð Þ denote the local

and non-local elastic potential energy per unit length,

respectively. The consistency of the elastic potential

energy (27) may be assessed by deriving /ðlÞ dðlÞ xð Þ
� 	

and /ðnlÞ e x;nð Þð Þ with respect to the pertinent state

variables, i.e.:

sðlÞ xð Þ ¼ o/ðlÞ

odðlÞ
¼ D�dðlÞ xð Þ;

q x; nð Þ ¼ o/ðnlÞ

oe
¼ G x; nð Þe x; nð Þ:

ð28a; bÞ

These relationships are coincident with the consti-

tutive equations for the local stress resultants (4) and

the specific long-range forces/moments (24).

Taking into account Eq. (22), the first variation of

the elastic potential energy (27) can be written as:

dU dðlÞ xð Þ; u xð Þ
� �

¼
Z L

0

dðlÞT xð ÞD�ddðlÞ xð Þdx

� A2

Z L

0

Z L

0

~q x; nð Þdu xð Þdxdn:

ð29Þ

The equilibrium equations and the associated

natural B.C. of the non-local TM beam can be derived

by enforcing that the first variation of the total

potential energy functional P = U - Wext vanishes

in correspondence of the solution, i.e.:

dP dðlÞ xð Þ; u xð Þ
� �

¼ dU dðlÞ xð Þ; u xð Þ
� �

� dWext u xð Þð Þ ¼ 0 ð30Þ

where

dWext u xð Þð Þ ¼
Z L

0

FT xð Þdu xð Þdxþ sT0du0 þ sTLduL

ð31Þ

is the first variation of the work done by the external

forces.

Taking into account the local strain–displacement

relationships (2a–c), and applying the standard rules of

variational calculus along with integration by parts,

the stationarity condition (30) yields the following

Euler–Lagrange equations:

E�A
d2u xð Þ
dx2

þ A2

Z L

0

qx x; nð Þdnþ Fx xð Þ ¼ 0;

KsG
�A

d2v xð Þ
dx2

� du xð Þ
dx


 �

þ A2

Z L

0

qz x; nð Þdnþ Fz xð Þ ¼ 0;

E�I
d2u xð Þ
dx2

þ KsG
�A

dv xð Þ
dx

� u xð Þ

 �

þ A2

Z L

0

qu x; nð Þdn ¼ 0: ð32a� cÞ

The associated static and kinematic B.C. read:

NðlÞ xið Þ ¼ E�A
du xð Þ
dx

����
x¼xi

¼ �Ni; or u xið Þ ¼ ui;

T ðlÞ xið Þ ¼ KsG
�A

dv xð Þ
dx

� u xð Þ

 �����

x¼xi

¼ �Ti;

or v xið Þ ¼ vi;

MðlÞ xið Þ ¼ �E�I
du xð Þ
dx

����
x¼xi

¼ �M0; or u xið Þ

¼ ui; ði ¼ 0; LÞ: ð33a� cÞ

Notice that Eqs. (32) and (33) coincide with the

equilibrium equations and B.C. derived in Sect. 3.2 on

a mechanical basis, once the local stress resultants
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N(l)(x), T(l)(x), M(l)(x) are expressed in terms of the

kinematic variables u(x), v(x) and u(x) by using the

strain–displacement and constitutive relationships (2)

and (4). This result demonstrates the variational

consistency of the proposed non-local beam model.

In this regard, it worth remarking that the fully local

nature of the B.C. has been derived also on a

variational basis.

An important remark concerns the B.C. (33): the

fact that they hold the same form of classical local

theory is a remarkable advantage, which allows

standard solutionmethods, such as the finite difference

method or the finite element method, to be applied for

solving the equilibrium Eqs. (32) in a straightforward

manner. In particular, notice that the variational

formulation above can be used for deriving a finite

element formulation of the equilibrium equations, as

customary in the mechanics of elastic solids. On

further advantages involved by the fact that the B.C.

hold the same form of classical local theory, in

particular with respect to lattice mechanics models,

comments can be found in a previous paper by the

authors [42], and are not repeated here for brevity.

5 Numerical applications

The applications focus on the flexural response of the

proposed non-local beam model. Firstly, theoretical

results are presented for epoxy micro-beams of rectan-

gular cross section of width b and thickness h. Simply-

supported and cantilever beams will be considered as

study cases. Secondly, itwill be shown that the proposed

non-local beam model can capture the experimental

static response of a cantilever epoxy micro-beam

subjected to a tip load, as reported by Lam et al. [12].

In all cases, it will be assumed that pure bending

and shear behaviors are governed by the same

attenuation functions, i.e. gs(x, n) = g(x, n),
s = u, z, which are given here an exponential form:

g x; nð Þ ¼ C

h2
exp � x� nj j

l


 �
ð34Þ

where C is a constant; h denotes the thickness of the

cross section; l is an internal length. The larger is the

internal length l, the wider is the so-called influence

distance, i.e. the maximum distance beyond which the

attenuation functions and thus the non-local effects

become negligible. Further, in the local constitutive

Eq. (4) b1 = 1 is selected. As a result of this choice for

b1, the non-local solution will tend to the solution

obtained by the classical local TM theory, as l ? 0 in

the attenuation function g(x, n) given by Eq. (34).

The numerical solution of the equilibrium

Eqs. (32b, c) is found using a finite difference

method. The numerical results reported are obtained

for N = 800 intervals in the beam domain. No

significant differences are encountered for N[ 800.

The finite difference method is applied using a

standard discrete approximation of the differential

operators and a standard trapezoidal approximation of

the integrals in Eqs. (32b, c), and no difficulties are

encountered in enforcing the B.C., as coincide with

those of classical local theory; it can be implemented

by any user, also by those not familiar with more

involved and specific numerical methods as, for

instance, the finite element method. The proposed

finite difference solution involves separate local and

non-local stiffness matrices, which correspond to the

discretized differential operator and scalar integral,

respectively. This means that, when implementing

sensitivity analyses for varying local or non-local

parameters, the local matrix or the non-local matrix

only shall be updated.

5.1 Numerical results

Epoxy micro-beams with the following material

properties are considered: Young’s modulus

E ¼ 1:40GPa, Poisson’s coefficient m = 0.35. The

non-local parameters C and l in Eq. (34) are set on a

theoretical basis, in order to enhance non-local effects

and assess how they affect the static response.

Specifically, C = 1011 Nm-6 and different values of

the internal length l are considered.

5.1.1 Simply-supported beam

A simply-supported epoxy micro-beam with the

following geometrical properties is considered:

L = 300 lm, h = L/20 = 15 lm, b = 30 lm. A uni-

formly distributed load p = 1 Nm-1 is assumed.

Figures 4 and 5 illustrate the dimensionless deflec-

tion v(x)/L and rotation u(x) versus the non-dimen-

sional location x/L, for different values of the internal

length l. For comparison, the dimensionless classical

local TM beam response is also reported. It is apparent
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that the non-local response is generally smaller than

the classical local TM beam response. This behavior

can be explained considering that the elastic long-

range interactions provide additional stiffness with

respect to the local terms in Eqs. (32b, c) and, since

such terms coincide with the classical local TM beam

terms [b1 = 1 has been set in Eq. (4)], the additional

stiffness yields a non-local response that is stiffer than

the classical local TM response. It can be also noted

that the larger is the internal length l, the smaller is the

non-local response: a larger internal length l corre-

sponds indeed to a larger amount of mutually inter-

acting non-adjacent beam segments, with a

consequent stiffening of the solution.

To have a better insight into the response of the

proposed non-local beam model, the ratio of the mid-

span maximum non-local deflection to the mid-span

maximum local deflection, vmax
(nl) /vmax

(l) , versus h/

L (thickness-to-length ratio) is reported in Fig. 6,

for fixed values of L and b, i.e. L = 300 lm,

b = 30 lm, different values of thickness h and

internal length l (from 5 to 40 lm). It is seen that,

for a given value of l, the smaller is h, the smaller is

the non-local deflection, i.e. more significant are the

non-local effects and, consequently, the deviation

from the corresponding classical local TM response.

To explain this behavior it is noticed that, if one

considers the classical local TM beam without long-

range interactions, for L = cost and b = cost the

deformability increases with decreasing thickness

h. As the beam undergoes deformation, the relative

motion between non-adjacent beam segments acti-

vates the elastic long-range interactions, and their

magnitude, for a given distance between two beam

segments, depends on the magnitude of the relative

motion [see Eqs. (11), (12), (13) and (14)]. For this

reason, it is evident that the ‘‘weight’’ of the non-local

terms shall increase as the deformability of beam

increases, with the consequent stiffening effect with

respect to the classical local TM beam response

observed in Fig. 6, for decreasing thickness h. It can be

also noted that larger deviations from the classical

local response are encountered, as expected, for

increasing values of the internal length l. It is quite

Fig. 4 Simply-supported beam: non-local and local dimen-

sionless deflection for different l (internal length)

Fig. 5 Simply-supported beam: non-local and local rotation for

different internal lengths l

l

Fig. 6 Simply-supported beam: non-local to local maximum

deflection ratio for L = cost (length), b = cost (width), variable

h (thickness) and different values of the internal length l (from 5

to 40 lm)

2114 Meccanica (2015) 50:2103–2122

123



interesting to point out that the stiffening effects

shown in Fig. 6, for L = cost and b = cost and

decreasing h are predicted by other non-local theories

[27] and are considered in agreement with experimen-

tal evidence on small-size effects in many materials

[12, 13].

Further insight into the behavior of the proposed

non-local beam model is provided by Fig. 7, that

shows the ratio of the mid-span maximum non-local

deflection to the mid-span maximum local deflection,

vmax
(nl) /vmax

(l) , versus thickness h, for fixed values of the

ratios L/h = 10, b/h = 2, and different values of the

internal length l (from 5 to 40 lm). As in the previous

case, it is seen that the smaller is h (i.e. the smaller are

the overall dimensions of the beam being L/h = cost),

the smaller is the non-local deflection, i.e. more

significant are the non-local effects. Such a behavior,

for a given value of the internal length l, can be

expected in consideration of the fact that L decreases

with h (L/h = cost). As the beam becomes shorter

while the internal length l is fixed, each beam segment

interacts with a relatively increasing number of beam

segments (i.e., relatively to the total number of

interacting beam segments) and, as a consequence,

the ‘‘weight’’ of the non-local terms does increase with

respect to that of the local ones. It can be also noted

that larger deviations from the classical local response

are encountered, as in Fig. 6, for increasing values of

the internal length l. It is quite interesting to point out

that the stiffening effects shown in Fig. 7, for L/

h = cost, b/h = cost, and decreasing h are predicted

by other non-local theories [25] and are generally

considered in agreement with experimental evidence

on small-size stiffening effects in several materials

[12, 13].

5.1.2 Cantilever beam

A cantilever epoxy micro-beam with the following

parameters is considered: L = 300 lm, h = L/

20 = 15 lm, b = 30 lm. A tip load P = 100 lN is

assumed. Figure 8 through Fig. 11 show: (i) the

dimensionless deflection v(x)/L (Fig. 8) and rotation

u(x) (Fig. 9) versus the non-dimensional location x/L,

for different values of the internal length l; (ii) the ratio

of the tip maximum non-local deflection to the tip

maximum local deflection, vmax
(nl) /vmax

(l) , versus h/

L (Fig. 10), for fixed values of L and b, i.e.

L = 300 lm, b = 30 lm, and different values of the

internal length l (from 5 to 40 lm); (iii) the ratio of the

tip maximum non-local deflection to the tip maximum

local deflection, vmax
(nl) /vmax

(l) , versus h (Fig. 11), for fixed

values of the ratio L/h = 10, b/h = 2, and different

values of the internal length l (from 5 to 40 lm). All

the results appear in agreement with those obtained for

a simply-supported beam. They can be explained

based upon the same reasoning and, for this, further

comments are omitted for brevity. It is only worth

remarking that similar behaviors are predicted by

alternative non-local theories [25, 27] and are gener-

ally considered in agreement with small-size stiffen-

ing effects in many materials [12, 13].

l

Fig. 7 Simply-supported beam: non-local to local maximum

deflection ratio for L/h = cost (length to thickness ratio), b/

h = cost (width to thickness ratio), variable h (thickness) and

different values of the internal length l (from 5 to 40 lm)

Fig. 8 Cantilever beam: non-local and local dimensionless

deflection for different l (internal length)
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5.2 Comparison with experimental results

Lam et al. [12] have reported the experimental

response of a cantilever epoxy micro-beam with a

rectangular cross section, subjected to a tip static load

P. They have considered the following parameters [12,

36]: b = 0.235 mm, E = 1.44 GPa, m = 0.38 (Pois-

son’s coefficient), P = 300 lN. The response has been
measured for a fixed ratio h/L = 0.1 and four different

thickness values h: 20, 38, 75 and 115 lm. The results

reported by Lam et al. [12] show that the experimental

bending rigidity of the beam increases as the thickness

decreases. This stiffening effect is not predicted by the

classical EB beam theory, where the bending rigidity

is constant when the ratio h/L is held constant. It is now

of interest to assess if, instead, it can be captured by the

proposed non-local beam model.

For this purpose, the parameters/functions defining

the proposed non-local beam model are selected as

specified above, say: (i) b1 = 1 in Eq. (4) for the local

terms in Eqs. (32b, c), i.e. the local stiffness coincides

with the stiffness of the classical TM theory; in this

manner, the sought non-local solution will be stiffer

than the local solution, consistently with the ex-

perimental behavior reported by Lam et al. [12]; (ii)

the attenuation functions gu(x, n) and gz(x, n) govern-
ing pure bending and pure shear non-local effects are

given the exponential form (34). Being b1 = 1 and

due to the exponential form (34) of the attenuation

functions, the sought non-local solution will revert to

the classical local TM beam solution as l ? 0, as

already pointed out in Sect. 5.

Under these assumptions, the unknown parameters

left are C and l in Eq. (34). To determine these

parameters an error minimization procedure is pur-

sued, based on the experimental data reported in

Fig. 12 of the paper by Lam et al. [12]. They describe

the ratio of the experimental bending rigidity to the

classical bending rigidity of the EB beam theory,

computed by Lam and coworkers as the ratio of the tip

deflection of the classical EB beam theory v(l)(L) to the

experimental tip deflection vex(L) (see pag. 1503 of the

paper by Lam et al. [12]), i.e. as

l

Fig. 10 Cantilever beam: non-local to local maximum deflec-

tion ratio for L = cost (length), b = cost (width), variable

h (thickness) and different values of the internal length l (from 5

to 40 lm)

l

Fig. 11 Cantilever beam: non-local to local maximum deflec-

tion ratio for L/h = cost (length to thickness ratio), b/h = cost

(width to thickness ratio), variable h (thickness) and different

values of the internal length l (from 5 to 40 lm)

Fig. 9 Cantilever beam: non-local and local rotation for

different l (internal length)
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Rex ¼
v lð Þ Lð Þ
vex Lð Þ : ð35Þ

Therefore, in the error minimization procedure the

sought values of C and l are computed as those that

minimize, for the different thicknesses (20, 38, 75 and

115 lm) in Fig. 12 of the paper by Lam et al. [12], the

squared difference between Rex, Eq. (35), and

Rth ¼
v lð Þ Lð Þ
v Lð Þ ; ð36Þ

where v(L) is the tip deflection predicted by the

proposed non-local beam model. As in Sect. 5, the

latter is computed by a finite difference approxima-

tion, with N = 800 intervals in the beam domain. For

completeness it shall be also noted that, in Fig. 12 of

the paper by Lam et al. [12], a few experimental data

are reported for each thickness (20, 38, 75 and 115

lm). However since they appear very close, for each

thickness their average value will be assumed as

reference value in the error minimization procedure.

The results obtained in this manner are reported in

Fig. 12. It can be seen that a very good agreement

between the experimental bending rigidity ratios and

those predicted by the proposed non-local beammodel

is attained for C ¼ 3:17 � 1011 Nm�6 and l = 30 lm
in Eq. (34). Figure 12 reports the results obtained also

for two alternative sets of C, l (Set II: C ¼
1:8 � 1011 Nm�6, l = 30 lm; Set III: C ¼
1:8 � 1011 Nm�6, l = 40 lm), in order to show that

even for different sets of parameters, the qualitative

behavior of the proposed non-local beam model still

reflects the experimental data trend.

Fig. 12 Cantilever beam: bending stiffness ratio predicted by

the proposed model for a varying thickness versus experimental

data by Lam et al. [12]

Fig. 13 Simply-supported beam: non-local and local dimen-

sionless deflection for different b1 in Eq. (4) and l (internal

length)
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6 Conclusions

A displacement-based non-local TM beam model has

been illustrated. The key idea involves modeling non-

local effects as elastic long-range volume forces/mo-

ments exchanged by non-adjacent beam segments,

that contribute to the equilibrium of any beam segment

along with the classical stress resultants. The long-

range volume forces/moments have been built as

linearly-elastic terms that depend, through appropriate

attenuation functions, on the product of the volumes of

the interacting beam segments and on generalized

measures of their relative motion based on the pure

deformation modes of the beam, to ensure invariance

with respect to rigid body motion. This modeling has

allowed a meaningful mechanical interpretation of the

long-range interactions as resulting from three spring-

like connections acting in parallel, which account

separately for pure axial, pure bending and pure shear

modes.

The variational consistency of the model has been

proved by deriving the beam equilibrium equations

along with the pertinent B.C. based on a total elastic

potential energy involving local and non-local contri-

butions. The mechanical B.C. have been derived in the

same form of the classical local theory. These aspects

allow a straightforward implementation of classical

solution methods, such as the finite difference method

or the finite element method.

A certain number of parameters/functions shall be

set in the proposed non-local beam model, concerning

the local terms, [see b1 in Eq. (4)] as well as non-local
terms, namely the attenuation functions [gx(x, n),
gu(x, n), gz(x, n)] with the related parameters. In

practical applications, they shall be generally deter-

mined via an optimization procedure, where a fitting to

experimental data is sought. It is worth remarking that

a similar procedure is not necessary in the proposed

non-local beam model only, but is necessary in all

classical non-local theories involving an enriched

continuum with additional non-local terms. Depend-

ing on the formulation, the non-local terms always

involve a number of unknown parameters/functions

that only experimental evidence may allow to select.

For instance, examples of enriched continua with five

additional parameters for non-local terms exist in the

literature [12, 50], or non-local beam models with

different potential choices of the attenuation functions

[49, 51]. Obviously, any optimization procedure to fit

experimental evidence shall be generally preceded by

numerical simulations, that may serve to determine the

expected order of magnitude of the non-local terms,

with respect to the local ones.

Numerical results, presented in Sect. 5 for a variety

of geometrical parameters, have shown stiffening

effects with respect to the classical local TM beam

solution in agreement with the behavior predicted by

alternative non-local theories [12, 25, 27, 36]. It has

been also seen that the proposed non-local beam

model captures very satisfactorily the experimental

small-size stiffening effects reported by Lam et al.

[12], for a cantilever epoxy micro-beam subjected to a

tip static load. In all these applications, b1 = 1 has

been set in Eq. (4) for the local terms in Eqs. (32b, c)

and exponential attenuation functions have been

selected, depending on an internal length l governing

the spatial decay of non-local effects.

In the authors’ opinion, the proposed non-local TM

beam model involves some advantages, summarized

as follows.

Due to the fact that non-local effects are modeled

on a mechanical basis, specifically as elastic long-

range force/moments counteracting the relative mo-

tion between couples of non-adjacent beam segments,

the results provided by the proposed model are readily

predictable. In general it can be stated that, because of

the elastic long-range forces/moments counteracting

the relative motion between beam segments, the non-

local solution is generally stiffer than the local

solution, i.e. the solution that would be obtained if

only the local terms were considered in the equilib-

rium Eqs. (32). In particular:

(i) if b1 = 1 is set in Eq. (4) for the local terms, as

in the numerical applications of Sect. 5, the

non-local solution will always be stiffer than

the classical TM beam solution, because for

b1 = 1, the local terms in Eq. (4) coincide

with the classical terms of the TM beam

theory;

(ii) if b1\ 1 is set in Eq. (4) for the local terms,

the non-local solution will be either stiffer or

softer than the classical TM beam solution.

Because of the additional stiffness provided by

the long-range interactions, the non-local

solution will be stiffer than the local solution

corresponding to the selected value b1\ 1;

however, because the latter is softer than the
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classical TM beam solution (that corresponds

to b1 = 1), the non-local solution will be

either stiffer or softer than the classical TM

beam solution depending on the amount of

additional stiffness provided by the non-local

terms, i.e. depending on the parameters of the

attenuation functions gx(x,n), gu(x,n) and

gz(x,n) (for the exponential functions consid-

ered in the paper such parameters are constant

C and internal length l). A pertinent example

of this behavior is provided in Appendix 2. As

a concluding comment in this respect, it is

pointed out that the possibility of obtaining

either stiffer or softer solutions with respect to

the classical TM beam solution can be con-

sidered, in the authors’ opinion, a quite useful

feature of the proposed model, especially in

view of the fact that experimental evidence on

non-local effects is not yet fully available for

all existing materials, and considering that

most likely more complex materials will be

produced in the future.

It is finally important to remark that the proposed

mechanical description of non-local effects allows

predicting how results may vary with beam geometry

(e.g., for varying thickness with constant length and

cross-section width, or for varying thickness with

constant length-to-thickness and width-to-thickness ra-

tios of the cross section), as discussed thoroughly in the

comments on the numerical results reported in Sect. 5.

Appendix 1

In this Appendix, the derivation of identity (22) is

presented. To this aim, first Eq. (22) is rewritten in the

following form:

Z L

0

Z L

0

qx x; nð Þu xð Þ þ qz x; nð Þv xð Þ þ quu x; nð Þu xð Þ
�

þquz x; nð Þu xð Þ
�
dxdn

¼ � 1

2

Z L

0

Z L

0

qx x; nð Þg x; nð Þ þ quu x; nð Þh x; nð Þ
�

þquz x; nð Þw x; nð Þ
�
dxdn ð37Þ

where the definitions of the vectors

u xð Þ; ~q x; nð Þ; e x; nð Þ and q x; nð Þ have been introduced

[see Eqs. (20a, c), (23a, b)]. Then, Eq. (37) holds if the

following identities are fulfilled:

Z L

0

Z L

0

qx x; nð Þu xð Þdxdn

¼ � 1

2

Z L

0

Z L

0

qx x; nð Þg x; nð Þdxdn;
ð38Þ

Z L

0

Z L

0

quu x; nð Þu xð Þdxdn

¼ � 1

2

Z L

0

Z L

0

quu x; nð Þh x; nð Þdxdn;
ð39Þ

Z L

0

Z L

0

qz x; nð Þv xð Þ þ quz x; nð Þu xð Þ
� �

dxdn

¼ � 1

2

Z L

0

Z L

0

quz x; nð Þw x; nð Þdxdn: ð40Þ

To prove Eq. (38), it is observed that due to the

symmetry of gx(x, n), one may write:

Z L

0

Z L

0

qx x; nð Þu xð Þdxdn

¼ �
Z L

0

Z L

0

qx x; nð Þu nð Þdxdn:
ð41Þ

Adding to both sides of Eq. (41) the termR L

0

R L

0
qx x; nð Þu xð Þdxdn, Eq. (38) can be obtained.

Equation (39) can be derived following a similar

reasoning. Indeed, the symmetry of gu(x, n) allows us
to write:

Z L

0

Z L

0

quu x; nð Þu xð Þdxdn

¼ �
Z L

0

Z L

0

quu x; nð Þu nð Þdxdn: ð42Þ

Then, adding to both sides of the previous equation

the term
R L

0

R L

0
qu x; nð Þu xð Þdxdn, Eq. (39) is readily

obtained.

Equation (40) can be split in the following two

identities

Z L

0

Z L

0

qz x; nð Þv xð Þdxdn

¼ � 1

2

Z L

0

Z L

0

quz x; nð Þ 2
v nð Þ � v xð Þ

n� x


 �� �
dxdn;

ð43Þ
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Z L

0

Z L

0

quz x; nð Þu xð Þdxdn

¼ 1

2

Z L

0

Z L

0

quz x; nð Þ u xð Þ þ u nð Þ½ �dxdn:
ð44Þ

To prove Eq. (43), let us first substitute in this

equation the definitions (13b) and (14b) of qz(x, n) and
quz(x, n), respectively:Z L

0

Z L

0

2
sgn n� xð Þ

n� xj j gz x; nð Þw x; nð Þv xð Þdxdn

¼ � 1

2

Z L

0

Z L

0

gz x; nð Þw x; nð Þ

� 2
v nð Þ � v xð Þ

n� x


 �� �
dxdn:

ð45Þ

Due to the symmetry of the attenuation function

gz(x, n), the following relationship holds:

Z L

0

Z L

0

2
sgn n� xð Þ

n� xj j gz x; nð Þ

� 2
v nð Þ � v xð Þ

n� x


 �� �
v xð Þdxdn

¼ �
Z L

0

Z L

0

2
sgn n� xð Þ

n� xj j gz x; nð Þ

� 2
v nð Þ � v xð Þ

n� x


 �� �
v nð Þdxdn:

ð46Þ

Then, adding to both sides of Eq. (46) the integral

on the l.h.s. of this equation, the following identity is

obtained:

Z L

0

Z L

0

2
sgn n�xð Þ

n�xj j gz x;nð Þ 2
v nð Þ�v xð Þ

n�x


 �� �
v xð Þdxdn

¼�1

2

Z L

0

Z L

0

gz x;nð Þ 2
v nð Þ�v xð Þ

n�x


 �� �

�2
v nð Þ�v xð Þ

n�x


 �
dxdn: ð47Þ

where sgnðn�xÞ=jn�xj¼1=ðn�xÞ has been set on

the r.h.s. Furthermore, the symmetry of the function

gz(x, n) allows us to write:

Z L

0

Z L

0

2
sgn n� xð Þ

n� xj j gz x; nð Þ u xð Þ½

þu nð Þ�v xð Þdxdn

¼ �
Z L

0

Z L

0

2
sgn n� xð Þ

n� xj j gz x; nð Þ u xð Þ½

þu nð Þ�v nð Þdxdn:

ð48Þ

Then, adding to both sides of Eq. (48) the integral

on the l.h.s., yields:

Z L

0

Z L

0

2
sgn n� xð Þ

n� xj j gz x; nð Þ u xð Þ þ u nð Þ½ �v xð Þdxdn

¼ � 1

2

Z L

0

Z L

0

gz x; nð Þ u xð Þ þ u nð Þ½ �

� 2
v nð Þ � v xð Þ

n� x


 �
dxdn:

ð49Þ

where, as in Eq. (47), sgnðn� xÞ=jn� xj ¼ 1=ðn� xÞ
has been set on the r.h.s. Subtracting both sides of

Eqs. (47) and (49) and recalling the definition (10) of

w(x, n), Eq. (43) is obtained.
Finally, to prove Eq. (44), it is observed that due to

the symmetry of gz(x, n), the following identity holds:Z L

0

Z L

0

gz x; nð Þw x; nð Þu xð Þdxdn

¼
Z L

0

Z L

0

gz x; nð Þw x; nð Þu nð Þdxdn:
ð50Þ

Then, adding the l.h.s of Eq. (50) to both sides of

the same equation and taking into account the

definition (14b) of quz(x, n), Eq. (44) is obtained.

Appendix 2

The purpose of this Appendix is to briefly illustrate the

behavior of the proposed non-local beam model when

b1\ 1 is set in Eq. (4) for the local terms in Eqs. (32b,

c). This is of interest to show, as discussed in the

Conclusions, that the proposed non-local beam model
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is potentially capable of predicting non-local solutions

that may be either stiffer or softer with respect to the

classical local TM beam response.

A simply-supported beam is considered. Pa-

rameters and loading conditions are taken as in

Sect. 5.1.1, while b1 in Eq. (4) is given the following

values: b1 = 0.4; 0.6; 0.8. The dimensionless deflec-

tion v(x)/L versus the non-dimensional location x/L is

reported in Fig. 13, for different values of the internal

length l. For comparison, the classical local TM beam

response, corresponding to b1 = 1 and no long-range

resultants in Eqs. (32b, c), is also reported.

For a given value b1, it is seen that the non-local

response may be either stiffer or softer than the

classical local TM beam response, depending on the

internal length l. This behavior can be explained

considering that, for b1\ 1, the solution provided by

the local terms only in Eqs. (32b, c), i.e. without long-

range resultants, is obviously softer than the classical

local TM beam response [corresponding to b1 = 1 and

no long-range resultants in Eqs. (32b, c)]. The long-

range resultants provide additional stiffness with

respect to that of the local terms in Eqs. (32b, c), but

such additional stiffness may not be enough to make

the non-local response stiffer than the classical local

TM beam response. In particular, Fig. 13 shows that

the non-local response becomes progressively stiffer

with increasing l, consistently with the fact a larger

internal length l corresponds indeed to a larger amount

of mutually interacting non-adjacent beam segments,

with a consequent stiffening (see also comments on

Figs. 4 and 5). The comments above explain also the

fact that, in Fig. 13, a softer non-local response is

obtained as parameter b1 decreases, for a given

internal length l.

The rotation response is in accordance with the

deflection response in Fig. 13 and pertinent results are

not reported for conciseness. Likewise, results for a

cantilever beam subjected to a tip load agree with

those for the simply-supported beam and are omitted.
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