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Abstract The three-phase-lag model and Green–

Naghdi theory without energy dissipation are em-

ployed to study the deformation of a two-temperature

generalized-magneto thermoelastic medium with an

internal heat source that is moving with a constant

speed under the hydrostatic initial stress and the

rotation. Normal mode analysis is used to obtain the

analytical expressions of the displacement compo-

nents, force stress, thermal temperature and conduc-

tive temperature. The numerical results are given and

presented graphically when mechanical force is

applied. Comparisons are made with the results of

the two models for two different values of the

hydrostatic initial stress. Also, comparisons are made

with results of the two models with and without the

rotation as well as the two-temperature.

Keywords Conductive temperature � Green–Naghdi

theory � Hydrostatic initial stress � Rotation � Thermal

temperature � Three-phase-lag mode

1 Introduction

Biot [1] formulated the coupled thermoelasticity

theory to eliminate the paradox inherent in the

classical uncoupled theory that the elastic deformation

has no effect on the temperature. The field equations

for the both theories are of a mixed parabolic-

hyperbolic type, which predict infinite speeds for

thermoelastic singals, contrary to physical observa-

tions. During the last three decades, generalized

theories involving a finite speed of heat transportation

(hyperbolic heat transport equation) in elastic solids

have been developed to remove this paradox. The first

generalization is proposed by Lord and Shulman [2]

and is known as the extended thermoelasticity theory

which involves one thermal relaxation time parameter

(single-phase-lag model). The second generalization

of the coupled thermoelasticity theory is developed by

Green and Lindsay [3], which involving two relax-

ation times is known as temperature rate dependent

thermoelasticity. The third generalization is known as

low-temperature thermoelasticity introduced by Het-

narski and Ignaczak [4] called H–I theory. The fourth

generalization is concerned with the thermoelasticity

without energy dissipation and thermoelasticity with

energy dissipation introduced by Green and Naghdi

[5–7] and provide sufficient basic modifications in the

constitutive equations that permit treatment of a much

wider class of heat flow problems, labeled as types I,

II, III. The nature of these three types of constitutive

equations is such that when the respective theories are
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linearized, type-I is the same as the classical heat

equation, whereas the linearized versions of type-II

and type-III theories permit the propagation of thermal

waves at finite speed. The fifth generalization of the

thermoelasticity theory is known as the dual-phase-lag

thermoelasticity developed by Tzou [8] and Chan-

drasekhariah [9]. Tzou considered micro-structural

effects in the delayed response in time in the

macroscopic formulation by taking into account that

increase of the lattice temperature is delayed due to

photon-electron interactions on the macroscopic level.

Tzou [8] introduced two-phase-lag to both the heat

flux vector and the temperature gradient. According to

this model, classical Fourier’s law q ¼ �KrT has

been replaced by q(P, t + sq) = � KrT(P, t + sT),

where the temperature gradient rT at a point P of the

material at time t + sT corresponds to the heat flux

vector q at the same point at time t + sq. Here K is the

thermal conductivity of the material. The delay time

sT is interpreted as that caused by the micro-structural

interactions and is called the phase-lag of the

temperature gradient. The other delay time sq is

interpreted as the relaxation time due to the fast

transient effects of thermal inertia and is called the

phase-lag of the heat flux. Recently Choudhuri [10]

has proposed a theory with three-phase lag (3PHL)

which is able to contain all the previous theories at the

same time. In this case Fourier’s law q ¼ �KrT has

been replaced by q(P, t + sq) = � ½KrT(P, t + sT)

þK�rm(P, t + sm)], where rm ð _m ¼ TÞ is the thermal

displacement gradient and K� is the additional mate-

rial constant and sm is the phase-lag for the thermal

displacement gradient. The purpose of the work of

Choudhuri [10] was to establish a mathematical model

that includes (3PHL) in the heat flux vector, the

temperature gradient and in the thermal displacement

gradient. For this model, we can consider several kinds

of Taylor approximations to recover the previously

cited theories. In particular the models of Green and

Naghdi are recovered. Quintanilla and Racke [11] are

introduced a note on the stability in three-phase-lag

heat conduction. Kar and Kanoria [12] studied a

thermo-visco-elastic problem of a spherical shell in

the context of 3PHL model. Quintanilla [13] dis-

cussed the spatial behavior of solutions of 3PHL heat

equations. Kanoria and Mallik [14] studied a gener-

alized thermo—visco-elastic interaction due to a

periodically varying heat source with 3PHL effect.

Abbas [15] discussed the 3PHL model on a thermoe-

lastic interaction in an unbounded fiber-reinforced

anisotropic medium with a cylindrical cavity. The two

dimensional problem of a magneto-thermoelasticity

fiber-reinforced medium under temperature dependent

properties with the 3PHL model was presented by

Othman and Said [16].

A theory of the heat conduction in deformable

bodies which depends upon two distinct temperatures,

the conductive temperature and the thermodynamic

temperature, has been established by Chen and Gurtin

[17] and Chen et al. [18, 19]. To time-independent

problems, the difference between these two distinct

temperatures is proportional to the heat supply and in

the absence of any heat supply, these two-temperature

are identical as Chen et al. [18]. For time-dependent

situations and for wave propagation problems, in

particular, the two-temperature are in general differ-

ent, regardless of the presence of a heat supply.

Warren and Chen [20] investigated the wave propaga-

tion in the two-temperature theory of thermoelasticity.

Youssef [21] has proposed a theory in the context of

the generalized theory of thermoelasticity with two-

temperature. The propagation of harmonic plane

waves in the media described by the two-temperature

theory of thermoelasticity is investigated by Puri and

Jordan [22]. Several problems with the two-tem-

perature theory of thermoelasticity have been solved

by Abbas and Youssef [23], Kumar and Mukhopad-

hyay [24], Das and Kanoria [25], Abbas and Zenkour

[26] and Othman et al. [27] etc.

The investigation of the interaction between the

magnetic field, stress, and strain in a thermoelastic

solid is very important due to its many applications in

the field of geophysics, plasma physics and related

topics, especially in the nuclear field, where the

extremely high temperature and temperature gradi-

ents, as well as the magnetic fields originating inside

nuclear reactors, influence their design and operations.

The theory of magneto-thermoelasticity is concerned

with the influence of a magnetic field on the elastic and

thermoelastic deformations of solid bodies. This

theory has aroused much interest in recent years,

because of its applications in various branches of

science and technology. The development of the

interaction of an electromagnetic field, thermal field,

and elastic field is available in many studies [28–32].

Biot [1] showed the acoustic propagation under initial
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stress, which is fundamentally different from that

under a stress-free state. Montanaro [33] investigated

the isotropic linear thermoelasticity with a hydrostatic

initial stress. Ahmed [34] studied the effect of an

initial stress on the propagation of Rayleigh waves in a

granular medium under incremental thermal stresses.

Othman and Said [35] discussed the effect of a

mechanical force on the generalized thermoelasticity

in a fiber-reinforced under three theories.

The present paper is concerned with the investiga-

tions related to the effect of a hydrostatic initial stress

and a rotation with the 3PHL and thermoelasticity

without energy dissipation (G-N II) models on a two-

temperature magneto-thermoelastic medium with an

internal heat source that is moving with a constant

speed by applying normal mode analysis. The varia-

tions of the considered variables with the horizontal

distance are illustrated graphically. Comparisons are

made between the results of the two models for two

different values of a hydrostatic initial stress. Also,

comparisons are made with results of the two models

with and without the rotation as well as the two-

temperature.

2 Formulation of the problem and basic equations

We consider the problem of a rotating thermoelastic

half-space with an internal heat source that is moving

with a constant speed (x� 0). The generalized ther-

moelastic medium is permeated into a uniform

magnetic field with constant intensity H ¼
ð0; H0; 0Þ which is acting parallel to the y-axis and

under the effect of a hydrostatic initial stress. We are

interested in a plane strain in the xz-plane [displace-

ment components u ¼ ðu; 0; vÞ], o
o y

¼ 0. When all

body forces are neglected the governing equations are

1. The constitutive equations of the theory of gener-

alized thermoelasticity are given as in [33]

rij ¼ k ekkdij þ 2l eij � c T̂ dij � P ðxij þ dij Þ;
ð2:1Þ

xij ¼
1

2
ðuj; i � ui; jÞ: ð2:2Þ

where rij are the components of stress, eij are the

components of strain, ekk is the dilatation, k; l are

elastic constants, c ¼ ð 3kþ 2l Þat; at is the thermal

expansion coefficient, T̂ ¼ T � T0; where T is the

temperature above the reference temperature T0; dij is

the Kronecker’s delta and P is the initial pressure. The

strains can be expressed in terms of the displacement

ui as

eij ¼
1

2
ðui;j þ uj;iÞ; ekk ¼ uk;k i: j; k ¼ x; z

ð2:3Þ

Equation (2.1), then yields

rxx ¼ A
o u

o x
þ k

o v

o z
� cT̂ � P; ð2:4Þ

rzz ¼ k
o u

o x
þ A

o v

o z
� cT̂ � P; ð2:5Þ

rxz ¼ S1

o u

o z
þ S2

o v

o x
; rzx ¼ S2

o u

o z
þ S1

o v

o x
;

ð2:6Þ

where A ¼ kþ 2l; S1 ¼ lþ P
2
; S2 ¼ l� P

2
:

2. The dynamical equations of a rotating magneto-

thermoelastic medium are given by Schoenberg

and Censor [36]

q ½€ui þ X ^ ðX ^ uÞf giþ2ðX ^ _u Þi� ¼ rij;j þ Fi;
i; j ¼ 1; 2; 3:

ð2:7Þ

where X ¼ X n̂ is an angular velocity of the rotating

medium, n̂ is a unit vector representing the direction of

the axis of rotation and Fi is the Lorentz force and is

given in the form Fi ¼ l0 ðJ ^ H Þi: The variations of

the magnetic and electric fields are perfectly conduct-

ing slowly moving medium and are given by

Maxwell’s equation in [30]

J ¼ curl h� e0
_E; curl E ¼ �l0

_h;
E ¼ �l0 ð _u ^ HÞ; r � h ¼ 0;

ð2:8Þ

where l0 is the magnetic permeability, e0 is the

electric permeability, J is the current density vector, _u

is the particle velocity of the medium, and the small

effect of the temperature gradient on J is also ignored.

The dynamic displacement vector is actually mea-

sured from a steady-state deformed position and the

deformation is assumed to be small. Due to the
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application of the initial magnetic field H; there are an

induced magnetic field h ¼ ð0; h; 0Þ and an induced

electric field E; as well as the simplified equations of

electrodynamics of a slowly moving medium for a

homogeneous, thermal and electrically conducting,

elastic solid. Expressing the components of the vector

J ¼ ðJ1; J2; J3Þ in terms of displacement by eliminat-

ing the quantities h and E from Eqs. (2.8), we get

J1 ¼ � o h
o z
� l0 e0H0 €v ; J2 ¼ 0; J3 ¼ o h

o x
þ l0 e0H0 €u;

thus yields

F1 ¼ �l0H0

oh

ox
� e0l

2
0H

2
0

o2u

ot2
; F2 ¼ 0;

F3 ¼ �l0H0

oh

oz
� e0l

2
0H

2
0

o2v

ot2
:

ð2:9Þ

From Eqs. (2.4)–(2.6) and (2.9) into Eq. (2.7) and

using the summation convection, we note that the third

equation of motion in Eq. (2.7) is identically satisfied

and the first two equations become

q
o2u

ot2
� X2uþ 2X _v

� �
¼ A

o2u

ox2
þ B

o2v

oxoz
þ S1

o2u

oz2

� c
oT̂

ox
� l0H0

oh

ox

� e0l
2
0H

2
0

o2u

ot2
;

ð2:10Þ

q
o2v

ot2
� X2v� 2X _u

� �
¼ S1

o2v

ox2
þ B

o2u

oxoz
þ A

o2v

oz2

� c
oT̂

oz
� l0H0

oh

oz

� e0l
2
0H

2
0

o2v

ot2
; ð2:11Þ

where B ¼ kþ S2:

3. The generalized heat conduction equation in the

3PHL model with two-temperature is given by

[10, 21]

K�r2Uþ s�mr2 _Uþ KsTr2 €U

¼ 1 þ sq
o

ot
þ 1

2
s2
q

o2

ot2

� �
ðqCE

€T þ cT0€e� QÞ:

ð2:12Þ

The relation between the conductive temperature

and the thermodynamics temperature is

U� T ¼ dU;ii; ð2:13Þ

where K� is the coefficient of thermal conductivity, K

is the additional material constant, q is the mass

density, CE is the specific heat at constant strain, Q is a

moving internal heat source, U is the conductive

temperature, d[ 0 a constant called two-temperature

parameter, sT and sq are the phase-lag of temperature

gradient and the phase-lag of heat flux respectively.

Also s�m ¼ K þ sm K�; where sm is the phase-lag of

thermal displacement gradient. Equations (2.10)–

(2.12), when K ¼ sT ¼ sq ¼ sm ¼ 0; reduce to the

equations of thermoelasticity without energy dissipa-

tion (GN-II) theory. In the above equations a dot

denotes differentiation with respect to time, and a

comma followed by a suffix denotes partial derivative

with respect to the corresponding coordinates.

Introducing the following non-dimension

quantities:

ðx0; z0; u0; v0Þ ¼ c1g ðx; z; u; vÞ;

ðt0; s0q; s0m; s0TÞ ¼ c2
1g ðt; sq; sm; sTÞ; X0 ¼ X

c2
1 g

;

h ¼ c T̂
ðkþ 2lÞ ; U0 ¼ c ðU� T0Þ

ðkþ 2lÞ ; r0ij ¼
rij
l
;

Q0 ¼ cQ

qCEc
4
1g

2ðkþ 2lÞ ;

h0 ¼ h

H0

; i; j ¼ 1; 2: ð2:14Þ

where g ¼ qCE

K� ; c2
1 ¼ ðkþ2lÞ

q :

Using the above non-dimension variables, then

employing h ¼ �H0 e; Eqs. (2.10)–(2.13) take the

following form (dropping the primes for convenience)

a
o2u

ot2
� X2uþ 2X _v ¼ A11

o2u

ox2
þ B11

o2v

oxoz
þ S11

o2u

oz2

� oh
ox

;

ð2:15Þ

a
o2v

ot2
� X2v� 2X _u ¼ S11

o2v

ox2
þ B11

o2u

oxoz
þ A11

o2v

oz2

� oh
oz

;

ð2:16Þ
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CKU;ii þ Cm
_U;ii þ CT

€U;ii ¼ 1 þ sq
o

ot
þ 1

2
s2
q

o2

ot2

� �

ð€hþ e€e� QÞ;
ð2:17Þ

U� h ¼ b0U;ii; ð2:18Þ

where, A11 ¼ A1 þ h0H0; B11 ¼ B1 þ
h0H0; ðA1;B1; S11

; h0Þ ¼ ðA;B;S1;l0H
2
0
Þ

qc2
1

; CK ¼ K�

qCEc
2
1

;

Cm ¼ gK
qCE

þ CKsm; CT ¼ gKsT
qCE

; e ¼ c2T0

qCEðkþ2lÞ ; a ¼ 1 þ
e0l2

0
H2

0

q ; b0 ¼ dc2
1g

2:

3 Normal mode analysis

The solution of the considered physical variable can be

decomposed in terms of normal modes as the follow-

ing form:

½u; v; h;U; rij�ðx; z; tÞ ¼ ½u�; v�; h�;U�; r�ij�ðxÞ
expðxt þ ibzÞ;

Q ¼ Q� expðxt þ ibzÞ; Q� ¼ Q0v0; ð3:1Þ

where x is a complex constant, i ¼
ffiffiffiffiffiffiffi
�1

p
; b is the

wave number in the z-direction, v0 is the velocity of a

moving internal heat source andQ0 is the magnitude of

an internal heat source. u�ðxÞ; v�ðxÞ; h�ðxÞ;U�ðxÞ; and

r�ijðxÞ are the amplitudes of the field quantities.

Substituting from Eqs. (3.1) in Eqs. (2.15)–(2.18),

we get

½A11D2 � N1�u� þ ½ibB11D � 2Xx� v� ¼ Dh�; ð3:2Þ

½ibB11D þ 2Xx� u� þ ½S11D2 � N2�v� ¼ ibh�; ð3:3Þ

eN3Du� þ iebN3v
� þ N3h

� ¼ ½N4D2 � N5�U�

þ N0Q0v0; ð3:4Þ

h� ¼ ð1 þ b0b
2 � b0D2ÞU�; ð3:5Þ

where

N1 ¼ S11b
2 þ ax2 � X2;

N2 ¼ A11b
2 þ ax2 � X2;

N3 ¼ x2 1 þ sqxþ 1

2
s2
qx

2

� �
;

N4 ¼ CK þ Cmxþ CTx
2;

N5 ¼ N4b
2:

Introducing Eq. (3.5) in Eqs. (3.2)–(3.4), we get

½A11D2 � N1� u� þ ½ibB11D � 2Xx� v�
¼ D ðN8 � b0D2ÞU�; ð3:6Þ

½ibB11D þ 2Xx� u� þ ½S11D2 � N2�v�
¼ ib ðN8 � b0D2ÞU�; ð3:7Þ

eN3Du� þ iebN3v
� ¼ ½N6D2 � N7�U� þ N0Q0v0;

ð3:8Þ

where

N6 ¼ N4 þ N3b0;

N7 ¼ N5 þ N3N8;

N8 ¼ 1 þ b0b
2;

D ¼ d

dx
:

Eliminating v�ðxÞ and U�ðxÞ between Eqs. (3.6)–

(3.8), we obtain the sixth-order ordinary differential

equation satisfied with u�ðxÞ;

D6 � LD4 þ L1D2 � L2

� �
u�ðxÞ

¼ � 2ibXxN0N8Q0v0

L3

; ð3:9Þ

where

L ¼ L4

L3

;

L1 ¼ L5

L3

;

L2 ¼ L6

L3

;

L3 ¼ ðA11 N6 þ eN3 b0Þ S11;
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L4 ¼ A11N2N6 þ A11N7S11 þ b2eN3b0A11 þ N1N6S11

� b2B2
11N6 � 2b2eN3b0B11 þ eN3N2b0

þ eN3N8S11;

L5 ¼ A11N2N7 þ b2eN3N8A11 � 2b2eN3N8B11

þ N1N2N6 þ S11N1N7 þ b2eN3N1b0 þ 4X2x2N6

� b2B2
11N7 þ eN3N2N8;

L6 ¼ N1N2N7 þ b2eN3N8N1 þ 4X2x2N7:

In a similar manner, we can show that v�ðxÞ and

U�ðxÞ satisfy the equations,

D6 � LD4 þ L1D2 � L2

� �
v�ðxÞ ¼ ibN0N1N8Q0v0

L3

;

ð3:10Þ

D6 � LD4 þ L1D2 � L2

� �
U�ðxÞ

¼ � ð4X2x2 þ N1N2ÞN0 Q0v0

L3

; ð3:11Þ

Equation (3.9) can be factored as

D2 � k2
1

� �
D2 � k2

2

� �
D2 � k2

3

� �
u�ðxÞ

¼ � 2i bXxN0N8Q0v0

L3

; ð3:12Þ

where k2
nðn ¼ 1; 2; 3Þ are the roots of the following

characteristic equation:

k6 � Lk4 þ L1k
2 � L2 ¼ 0:

The solution of Eq. (3.9), which is bounded as x !
1; is given by

u�ðxÞ ¼
X3

n¼1

Mnðb;xÞ expð�knxÞ þ
2ibXxN0N8Q0v0

L3 L2

:

ð3:13Þ

In a similar manner, we get that

v�ðxÞ¼
X3

n¼1

H1nMnðb;xÞexpð�knxÞ�
ibN0N1N8Q0v0

L3L2

;

ð3:14Þ

U�ðxÞ ¼
X3

n¼1

H2nMnðb;xÞ expð�knxÞ

þ ð4X2x2 þ N1N2ÞN0 Q0v0

L3 L2

:

ð3:15Þ

where

H1n ¼
ib ½ðA11 � B11Þ k2

n � N1� þ 2Xxkn
�S11k3

n þ ðN2 � b2B11Þ kn þ 2ibXx
;

H2n ¼
A11k

2
n � N1 � ðibB11kn þ 2XxÞH1n

�N8 kn þ b0 k
3
n

:

Introducing Eq. (3.15) in Eq. (3.5), this yields

h�ðxÞ ¼
X3

n¼1

H3nMnðb;xÞ expð�knxÞ

þ ð4X2x2 þ N1N2ÞN0 N8 Q0v0

L3 L2

ð3:16Þ

where

H3n ¼ ðN8 � b0k
2
nÞH2n:

Substituting from Eqs. (2.14) and (3.1) in

Eqs. (2.4)–(2.6), we get

lr�xx ¼ ADu� þ ibkv� � ðkþ 2lÞ h� � P�; ð3:17Þ

lr�zz ¼ kDu� þ ibAv� � ðkþ 2lÞ h� � P�; ð3:18Þ

lr�xz ¼ ibS1u
� þ S2Dv�; lr�zx ¼ ibS2u

� þ S1Dv�:

ð3:19Þ

Introducing Eqs. (3.13), (3.14) and (3.16) in

Eqs. (3.17)–(3.19), this yields

r�xx ¼
X3

n¼1

H4nMnðb;xÞ expð�knxÞ þ G1; ð3:20Þ

r�zz ¼
X3

n¼1

H5nMnðb;xÞ expð�knxÞ þ G2; ð3:21Þ
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r�xz ¼
X3

n¼1

H6nMnðb;xÞ expð�knxÞ � G3; ð3:22Þ

where

H4n ¼
1

l
½�Akn þ ibkH1n � ðkþ 2lÞH3n�;

H5n ¼
1

l
½ibAH1n � kkn � ðkþ 2lÞH3n�;

H6n ¼
1

l
ðibS1 � S2knH1nÞ;

G1 ¼ ½b2kN1 � ðkþ 2lÞð4X2x2 þ N1N2Þ�N0N8Q0v0

lL3L2

� P�

l
;

G2 ¼ ½b2AN1 � ðkþ 2lÞ ð4X2x2 þ N1N2Þ�N0N8Q0v0

lL3 L2

� P�

l
;

G3 ¼ 2b2XxN0N8S1Q0v0

lL3L2

:

4 Boundary condition

In this section we determine the parameters Mnðn ¼
1; 2; 3Þ: In the physical problem, we should suppress

the positive exponentials that are unbounded at

infinity. The constants M1; M2; M3 have to be chosen

such that the boundary conditions on the surface at

x ¼ 0 take the form

oU
ox

¼ 0; rxx ¼ f ðz; tÞ ¼ �RPf
� exp ðxt þ ibzÞ;

rxz ¼ 0 ð4:1Þ

f ðz; tÞ is arbitrary functions of z; t: f � is constant and

RP is the magnitude of a hydrostatic initial stress.

Using the expressions of the variables considered into

the above boundary conditions [Eq. (4.1)], we can

obtain the following equations satisfied with the

parameters:

�
X3

n¼1

knH2nMn ¼ 0;
X3

n¼1

H4nMn ¼ �RP � G1;

X3

n¼1

H7nMn ¼ G3:

ð4:2Þ

Solving the above system of Eqs. (4.2), we obtain a

system of three equations. After applying the inverse

of matrix method, we have the values of the three

constants Mn ðn ¼ 1; 2; 3Þ: Hence, we obtain the

expressions of displacements, thermal temperature,

conductive temperature and the stress components.

M1

M2

M3

0
B@

1
CA¼

k1H21 k2H22 k3H23

H41 H42 H43

H71 H72 H73

0
@

1
A

�1
0

�RP�G1

G3

0
@

1
A

5 Numerical calculation and discussion

With a view to illustrating the analytical procedure

presented earlier, we now consider a numerical

example for which computational results are given,

to compare these in the context of the 3PHL and the

thermoelasticity without energy dissipation (GN-II)

theory, and to study the effect of rotation and a

hydrostatic initial stress on the wave propagation in a

two-temperature generalized-magneto thermoelastic

medium, we now present some numerical results for

the physical constants as [16].

k ¼ 7:76 � 109 N m�2; l ¼ 3:86 � 1010 N m�2;

q ¼ 8954 kg m�3; CE ¼ 383:1 J kg�1 K�1;

sT ¼ 7 � 10�5 s; sq ¼ 9 � 10�5s;

sm ¼ 6 � 10�5 s; at ¼ 3:78 � 10�4 K�1;

K� ¼ 386 w m�1 K�1;

K ¼ 150 w m�1 K�1; x ¼ x0 þ in; x0 ¼ 0:8;

n ¼ 0:5; Q0 ¼ 3 K; v0 ¼ 0:5 m s�1;

H0 ¼ 100; P ¼ 5 N:m�2; b ¼ 0:3; e0 ¼ 0:7;
l0 ¼ 2:5; f � ¼ 1:0; RP ¼ 0:9; 3:5;

T0 ¼ 273 K; d ¼ 3 � 10�15; X ¼ 0; 2:5:
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The computations were carried out for a value of

time t ¼ 0:9: The variations of the thermal tem-

perature h; the conductive temperature U; the dis-

placement components u; v; and the stress

components rxx; rzz; rxz with distance x for the value

of z, namely z ¼ �1; were substituted in performing

the computation. The results are shown in Figs. 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

and 21. The graphs show the four curves predicted by

the two different models of thermoelasticity. In these

figures, the solid lines represent the solution in the

3PHL model and the dashed lines represent the

solution derived using the thermoelasticity without

energy dissipation (G-N II) theory. Here all the

variables are taken in non-dimensional forms and we

consider five cases

1. The corresponding equations for a two-tem-

perature generalized-magneto thermoelastic

medium in the presence of the rotation ðX ¼
2:5Þ for two different values of a hydrostatic

initial stress from the above mentioned cases by

taking RP ¼ 0:9; 3:5:

2. The corresponding equations for a two-tem-

perature generalized-magneto thermoelastic
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Fig. 1 Horizontal displacement distribution u for two different

values of a hydrostatic initial stress
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values of a hydrostatic initial stress

0 2 4 6 8 10 12
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

3PHL
G-N II

R
P
 = 0.9 

R
P
 = 3.5 
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values of a hydrostatic initial stress
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Fig. 4 Thermal temperature distribution h for two different
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medium in the presence of a hydrostatic initial

stress ðRP ¼ 0: 9 Þ and in the absence of a rotation

from the above mentioned cases by taking X to

vanish.

3. The corresponding equations for a generalized-

magneto thermoelastic medium in the presence of

a hydrostatic initial stress ðRP ¼ 0: 9 Þ and a

rotation ðX ¼ 2:5Þ from the above mentioned

cases by taking d to vanish.

4. Equations of the 3PHL model when

K; sT ; sq; sm [ 0; and the solutions are always

(exponentially) stable if 2KsT
sq

[ s�m [K�sq as in

[11].

5. Equations of the thermoelasticity without energy

dissipation (G-N II) theory when

K ¼ sT ¼ sq ¼ sm ¼ 0:

Figures 1, 2, 3, 4, 5, 6 and 7 show comparisons

between the displacement components u; v; the ther-

mal temperature h; the conductive temperature U; and

the stress components rxx; rzz; rxz for two different

values of a hydrostatic initial stress ðRP ¼ 0: 9; 3:5 Þ
with two-temperature and in the presence of rotation

ðX ¼ 2:5Þ:
Figure 1 depicts that the distribution of the

horizontal displacement u begins from positive values.

In the context of the two models, u starts with
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Fig. 8 Horizontal displacement distribution u in the absence
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increasing to a maximum value in the range

0� x� 0:8; then decreases to a minimum value in

the range 0:8� x� 3:9; and also moves in a wave

propagation for RP ¼ 0:9: However, in the context of

the two models, u starts with decreasing to a minimum

value in the range 0� x� 3; then increases in the

range 3� x� 6; and also moves in a wave propagation

for RP ¼ 3:5: The values of u increase with increasing

the magnitude of a hydrostatic initial stress in the first,

then decrease, again increase and so on. Figure 2

exhibits that the distribution of the vertical displace-

ment v begins from positive values. In the context of

the two models, v starts with increasing to a maximum

value in the range 0� x� 0:1; then decreases to a

minimum value in the range 0:1� x� 2; and also

moves in a wave propagation for RP ¼ 0:9: However,

in the context of the two models, v starts with

decreasing to a minimum value in the range

0� x� 1:5; then increases to a maximum value in

the range 1:5� x� 4:4; and also moves in a wave

propagation for RP ¼ 3:5: The values of v decrease

with increasing the magnitude of a hydrostatic initial

stress in the first, then increase, again decrease and so

on. The displacement components u and v show

different behaviors, because the elasticity of the solid

tends to resist a vertical displacement in the problem

under the investigation. It is clear from Fig. 3 that the
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Fig. 9 Vertical displacement distribution v in the absence and

presence of rotation
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Fig. 10 Conductive temperature distribution U in the absence
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Fig. 11 Thermal temperature distribution h in the absence and
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conductive temperature U begins from positive values.

In the context of the two models, U starts with

increasing to a maximum value in the range

0� x� 2:2; then decreases in the range 2:2� x� 6;

and also moves in a wave propagation for RP ¼ 0:9:

However, in the context of the two models, U starts

with increasing to a maximum value in the range

0� x� 1:8; then decreases to a minimum value in the

range 1:8� x� 5:5; and also moves in a wave

propagation for RP ¼ 3:5: The values of U increase

with increasing the magnitude of a hydrostatic initial

stress in the first, then decrease, again increase and so

on. It is clear from Fig. 4 that the thermal temperature

h begins from positive values. In the context of the two

models, h starts with increasing to a maximum value,

then decreases to a minimum value, and also moves in

a wave propagation for RP ¼ 0: 9; 3:5: The values of h
increase with increasing the magnitude of a hydro-

static initial stress in the first, then decrease, again

increase and so on. Figure 5 displays that the distri-

bution of the stress component rxx begins from

negative values and satisfies the boundary condition

at x ¼ 0: In the context of the two models, rxx starts

with decreasing to a minimum value, then increases to

a maximum value, and also moves in a wave

propagation for RP ¼ 0:9; 3:5: Fig. 6 shows the

distribution of the stress component rxz and demon-

strates that it reaches a zero value and satisfies the
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Fig. 13 Distribution of stress component rxz in the absence and

presence of rotation
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Fig. 15 Horizontal displacement distribution u in the absence

and presence of two-temperature parameter
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boundary condition at x ¼ 0: In the context of the two

models, rxz starts with decreasing to a minimum value,

then increases to a maximum value, and also moves in

a wave propagation for RP ¼ 0: 9; 3:5: Fig. 7 depicts

that the distribution of the stress componentrzz begins

from negative values. In the context of the two models,

rzz starts with decreasing to a minimum value, then

increases to a maximum value, and also moves in a

wave propagation for RP ¼ 0: 9; 3:5: The values of

stress components rxx; rzz; rxz decrease with increas-

ing the magnitude of a hydrostatic initial stress in the

first, then increase, again decrease and so on. Fig-

ures 1, 2, 3, 4, 5, 6 and 7 demonstrate that the

hydrostatic initial stress has a significant role on all the

physical quantities.

Figures 8, 9, 10, 11, 12, 13 and 14 show compar-

isons between the displacement components u; v; the

thermal temperature h; the conductive temperature U;
and the stress components rxx; rzz; rxz in the absence

ðX ¼ 0Þ and presence ðX ¼ 2:5 Þ of the rotation with

two-temperature and in the presence of a hydrostatic

initial stress ðRP ¼ 0:9 Þ :
Figure 8 depicts that the distribution of the

horizontal displacement u begins from positive values

for X ¼ 2:5; but it begins from a zero value for X ¼
0: In the context of the two models, u starts with

decreasing to a minimum value in the range
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Fig. 17 Conductive temperature distribution U in the absence

and presence of two-temperature parameter
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Fig. 18 Thermal temperature distribution h in the absence and

presence of two-temperature parameter
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0� x� 0:9; then increases in the range 0:9� x� 4;

and in the last becomes nearly constant for X ¼ 0: The

values of u increase in the presence of the rotation in

the first, then decrease in the last. Figure 9 exhibits

that the distribution of the vertical displacement v

begins from positive values for X ¼ 2:5; but it begins

from negative values for X ¼ 0: In the context of the

two models, v starts with increasing to a maximum

value in the range 0� x� 1:8; then decreases in the

range 1:8� x� 4; and in the last becomes nearly

constant for X ¼ 0: The values of v increase in the

presence of the rotation in the first, then decrease, and

in the last increase. It is clear from Fig. 10 that the

conductive temperature U begins from positive values.

In the context of the two models, U increases in the

range 0� x� 12 for X ¼ 0: The values of U increase

in the presence of the rotation. It is clear from Fig. 11

that the thermal temperature h begins from positive

values. In the context of the two models, h starts with

decreasing to a minimum value, then increases to a

maximum value, and in the last decreases for X ¼ 0:

The values of h increase in the presence of the rotation

in the first, then decrease, and in the last increase.

Figure 12 displays that the distribution of the stress

component rxx begins from a negative value and

satisfies the boundary condition at x ¼ 0: In the

context of the two models, rxx starts with decreasing,

then increases, again decreases, and in the last

increases for X ¼ 0: Fig. 13 shows the distribution

of the stress componentrxz and demonstrates that it

reaches a zero value and satisfies the boundary

condition at x ¼ 0: In the context of the two models,

rxz starts with increasing to a maximum value, then

decreases, and in the last becomes nearly constant for

X ¼ 0: Fig. 14 depicts that the distribution of the

stress component rzz begins from negative values. In

the context of the two models, rzz starts with

decreasing to a minimum value, then increases, and

in the last becomes nearly constant for X ¼ 0: The

values of stress components rxx; rzz; rxz decrease in

the presence of the rotation in the first, then increase,

again decrease, and the last increase. Figures 8, 9, 10,

11, 12, 13 and 14 explain that in the absence of the

rotation all the physical quantities have different

behavior and the rotation has an important effect on all

the physical quantities.

Figures 15, 16, 17, 18, 19, 20 and 21 show

comparisons between the displacement components

u; v; the thermal temperature h; the conductive

temperature U; the stress components rxx; rzz; rxz
with one ðd ¼ 0Þ and two ðd ¼ 3 x 10�15 Þ tem-

peratures in the presence of rotation ðX ¼ 2:5Þ and a

hydrostatic initial stress ðRP ¼ 0:9 Þ:
Figure 15 depicts that the distribution of the

horizontal displacement u begins from positive values.

In the context of the two models, u starts with

increasing to a maximum value, then decreases to a

minimum value, and also moves in a wave propaga-

tion for d ¼ 0: Fig. 16 exhibits that the distribution of

the vertical displacement v begins from positive

values. In the context of the two models, v starts with

increasing to a maximum value, then decreases to a

minimum value, and also moves in a wave propaga-

tion for d ¼ 0: The values of displacement compo-

nents u; v increase in the presence of the two-

temperature parameter in the first, then decrease,

again increase, and so on. It is clear from Fig. 17 that

the conductive temperature U begins from positive

values. In the context of the two models, U starts with

increasing to a maximum value, then decreases, and

also moves in a wave propagation for d ¼ 0: The

values of U decrease in the presence of the two-

temperature parameter. It is clear from Fig. 18 that the

thermal temperature h begins from positive values. In

the context of the two models, h starts with increasing

to a maximum value, then decreases, and also moves

in a wave propagation for d ¼ 0: The values of h
increase in the presence of the two-temperature
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parameter in the first, then decrease, again increase,

and so on. Figure 19 displays that the distribution of

the stress component rxx begins from a negative value

and satisfies the boundary condition at x ¼ 0: In the

context of the two models, rxx starts with decreasing to

a minimum value, then increases, and also moves in a

wave propagation for d ¼ 0: Fig. 20 shows the

distribution of the stress component rxz and demon-

strates that it reaches a zero value and satisfies the

boundary condition at x ¼ 0: In the context of the two

models, rxz starts with decreasing to a minimum value,

then increases to a maximum value, and also moves in

a wave propagation for d ¼ 0: Fig. 21 depicts that the

distribution of the stress component rzz begins from

negative values. In the context of the two models, rzz
starts with decreasing to a minimum value, then

increases, and also moves in a wave propagation for

d ¼ 0: The values of stress components rxx; rzz; rxz
decrease in the presence of the two-temperature

parameter in the first, then increase, again decrease,

and so on. Figures 15, 16, 17, 18, 19, 20 and 21

demonstrate that the two-temperature parameter has a

significant role on all the physical quantities.

6 Conclusion

In the present study, normal mode analysis is used to

study the effect of the rotation and the hydrostatic

initial stress on the problem under consideration at the

free surface of a two-temperature generalized-magne-

to thermoelastic medium with an internal heat source

that is moving with a constant speed based on the

3PHL model and the G-N II theory. We obtain the

following conclusions based on the above analysis:

1. The values of all the physical quantities converge

to zero with increasing distance x; and all

functions are continuous.

2. Deformation of a generalized thermoelastic medi-

um depends on the nature of the applied force as

well as the type of boundary conditions.

3. Analytical solutions based upon normal mode

analysis of the thermoelastic problem in solids

have been developed and utilized.

4. There are significant differences in the field

quantities under the G-N II theory and 3PHL

model due to the phase-lag of temperature gradi-

ent and the phase-lag of heat flux.

5. All the physical quantities satisfy the boundary

conditions.

6. It is clear that the rotation and hydrostatic initial

stress ðRP Þ play significant roles on all the

physical quantities.

7. The two-temperature has great influence on the

distribution of all physical quantities.

8. Three-phase-lag model is a mathematical model

that includes the heat flux vector, the temperature

gradient and the thermal displacement gradient,

which are useful in the problems of heat transfer,

heat conduction, nuclear boiling, exothermic

catalytic reactions, phonon-electron interactions,

phonon-scattering. So the 3PHL model is the most

adequate theory to describe the present problem.

9. The curves in the context of the 3PHL model and

the G-N II theory, decrease exponentially with

increasing x; this indicates that the thermoelastic

waves are unattenuated and non-dispersive, while

purely thermoelastic waves undergo both atten-

uation and dispersion.
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