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Abstract The paper discusses the effect of local

stresses on the carrying capacity of box girders of

trapezoidal cross-section. The mathematical model used

for identifying the stress–strain state of the local stress is

formed based on the principle of decomposing the cross-

sectional elements. It was confirmed that trapezoidal box

girder has more favourable stress state in comparison

with the traditional rectangular box girder under the same

conditions of global carrying capacity and mass (cross-

sectional area). Relevant parameters of the local stress of

the trapezoidal box girder carrier were identified.

Behaviour of box girders regarding the local stress is

primarily dependent on the width and thickness of the

plate which is exposed to the direct loading effect. The

criteria to be followed when designing box girders were

defined. The study was conducted on two diametrically

opposite positions of the same girder, while experimental

results were verified on the basis of their consistency with

the theoretical and numerical values.

Keywords Box girder � Trapezoidal shape � Plate �
Local stress � Carrying capacity

1 Introduction

Modern trend in designing carrying structures is facing

the design process with complex requirements in

terms of functionality, design, construction technol-

ogy, etc. These features of supporting structures must

comply with the required performance, while mass

needs to be rationalized to the maximum degree. The

performance of carrying structures is inversely

proportional to their masses. When increasing the

structure’s cross-sectional area, its carrying capacity

and mass increase as well. The contradiction between

these two parameters is solved by the method of

optimization of the cross-sectional structure as

discussed in the [1]. The main activity in the design

process consists of finding the cross-sectional shape of

structural element with the best carrying capacity for

the given load conditions. Applying the optimal design

method to steel structures has opened great opportu-

nities in the application of thin-walled elements,

which are sensitive to specific stress effects and loss

of stability. Traditional deterministic optimization

approaches are important in the design process, but

they are insufficient because in most cases their

models are limited and refer only to components of

global stresses. In addition to global stresses,
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structures in actual operating conditions are also

exposed to local stresses, as well as to certain modes

of buckling.

Given the cumulative effect, the interaction of

specific stress types leads to a significant capacity loss,

especially when the influence of a single component

prevails [2]. Research aimed at studying classical box-

girders have shown that the local stress effect takes

precedence over the global component, provided that

the stability of flanges and webs (plates) of the girder is

uncompromised [3]. The majority of research regard-

ing the local stress was conducted on welded I-beams

[4–10]. The reference length for analyzing the local

effect is the length between two diaphragms [6].

Mathematical formulations of the stress–strain beha-

viour of girders are important for defining constraints

in the optimal design procedure. The local stress

phenomenon is closely related to the elastic behaviour

of the girder’s compressed plate elements (flanges or

webs) [11]. Under the influence of a partial load which

can be either fixed (relying on the pillar) or moving

(motion of wheels on the rail above the girder), the

stress is localized around a relatively narrow girder

zone, immediately around the area of action. Resis-

tance of plate elements in thin-walled I-beams under

the influence of concentrated load is analyzed in [5, 6].

The dominant stress mode is identified depending on

the girder type (open or closed) and the position of the

load. This fact is suggested by studying the bearing

capacity of the thin-walled I-beam under a partially

moving eccentric load [12–24]. Installing longitudinal

stiffeners at the upper part of the pressed web of the

thin-walled girder positively influences the bearing

capacity [15, 16], enabling to reduce the structure’s

mass by up to 21 % [17]. Typical forms of longitudinal

stiffeners and their effect on the ultimate bearing

capacity of longitudinally stiffened I-girders are

discussed in [15–18]. The application of sophisticated,

FEM-based (finite element method) procedures is an

important tool in analyzing the girder’s stress state

[19–21], where the dominant position in this respect is

that of the ANSYS software [22].

2 Mathematical model

In [3] the problem of local stresses is discussed using

the principle of decomposing the girder’s cross-

section. The analysis of non-uniform structures, i.e.

girders of more complex cross-section (multi-poly-

gonal forms) requires modification of the principles of

decomposition. This modification will include

changes in the longitudinal direction and changes in

loading conditions in the transverse direction of the

girder. Therefore, the approach of ‘‘moving strip

frame’’ has been developed, and its effect is twofold:

• Enables analyzing non-uniform girders

• Enables defining reaction moments as function of

the external (active) load.

The mathematical model based on the methodology

of decomposing the cross-section using the ‘‘moving

strip frame’’ approach is considered for the case of a

uniform beam with trapezoidal cross-section, and a

patch loaded top flange plate (Fig. 1).

The mathematical model of local stresses in girders

of trapezoidal cross-section is formed on the basis of

the following assumptions:

• The girder segment’s length which is applicable

for the analysis is determined in accordance with

the recommendations outlined in [3].

• The girder’s cross-sectional elements are consid-

ered as elastically restrained plates.

• Displacements along the joints of the girder’s

elements are negligible compared to their

deflection.

• Effects of plane forces are marginalized in relation

to the active load and reaction moments elastic

restraint.

Fig. 1 The trapezoidal girder segment
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• The compressed girder plates are insensitive to the

loss of stability.

Local stresses in the girder of trapezoidal cross-

section were analyzed on a segment of length L, while

mathematical formulation requires dividing the segment

into three parts. The first and third girder segments are

not directly exposed to the effects of external load and

are symmetrical to the vertical girder axis. The second

part is the girder segment which is directly exposed to the

active load and its length L2 equal to the length of the

partial load u. Mathematical interpretation of the girder’s

deflection and stress state implies that one always should

start from the immediately loaded zone of the segment

(second part), whereas the influence of the load is

manifested on the first and third part through the

corresponding boundary conditions.

2.1 Analyzing the behaviour of part 2 of the girder

segment

The central girder segment zone is part of the structure

through which the load is introduced and its geome-

trical performance characterizes the behaviour of the

entire girder. The top flange plate of the central girder

segment zone (part 2) is directly exposed to load effect.

Through the moment of elastic restraint, the plate

transfers the effect towards the other plates in the cross-

section, due to resist any deformation. The mathema-

tical model for local stress in part 2 of the underlying

girder segment is formed in two phases. The first phase

involves the application of the principle of decompos-

ing the ‘‘strip frame’’ in an arbitrary cross section along

part 2 of the girder segment (Fig. 2a). The second

phase involves the implementation of solutions ob-

tained by analyzing the ‘‘strip frame’’ for plates of

which the box-shaped cross-section was formed.

The term ‘‘strip frame’’ represents the cross-

sectional geometry of the girder, the length of which

is the same order as the plate thickness. Thus, girder

plates in the transverse direction are considered

through the model of line elements. This is a simple

and exact method of relating the geometric properties

of the cross section and the parameters of active and

passive loads. In the local stress analysis, reactive

compressive forces Hi have marginal effect, which is

in accordance with the introduced assumptions

(Fig. 2b). The development of a partial load q(y) along

the transverse direction in part v of the top flange plate

is represented by a single trigonometric series of the

following form [23]:

qðyÞ ¼ 4q0

p

X1

n¼1

1

n
sin

npv
2B1

sin
npy
B1

; q0 ¼ F

uv
ð1Þ

where F—external load, u�v—surface exposed to the

load, B1—width of the plate no. 1.

Deflection of the line element as a result of the

external load q(y) of the top flange plate is determined

according to [23, 24], based on the following differ-

ential equation:

o4wp

ox4
þ 2

o4wp

ox2y2
þ o4wp

oy4
¼ qðyÞ

Di

ð2Þ

where Di—flexural rigidity of the plates (i = 1, 2, 3,

4).

Deflection of the line element exposed to direct

load effect q(y) is obtained by resolving differential

Eq. (2) which determines the behaviour of other ‘‘strip

frame’’ elements.

Functions of deflection, as well as those of the

corresponding inclination for each ‘‘strip frame’’ line

element are given in Table 1.

Functions of deflection provided in Table 1 repre-

sent particular solutions for wp for deflections of plates

of which the girder consists. These functions are

intended to present deflections of the line girder in the

form of single trigonometric series. The purpose of

this procedure is that the particular solution should

have the same form as the homogeneous solution for

easy integration in the resulting expression for the

plate deflection. In Table 1 two types of particular

solutions were used: effects of external (active) load

q(x, y) and reactive moments of the elastic restraint

(passive load), which in the general case are denoted

as Mi and Mi?1.

The active load q(y) = q0 develops into a single

trigonometric series using the following formulation:

qðyÞ ¼ 2

B1

X1

n¼1

sin
npy
B1

Z1
2
B1þvð Þ

1
2
B1�vð Þ

q0 sin
npy
B1

dy

¼ 4q0

p

X1

n¼1

sin np=2ð Þ
n

sin
npv
2B1

sin
npy
B1

ð3Þ

where q(y) is the partial load that results from the

action of the constant-intensity force F on the

(u�v) surface of the upper flange plate the width of
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which is B1. The purpose of developing a single

trigonometric series is to reduce dependence q(y) to a

single independent variable y. Substituting (3) in (2)

leads the differential Eq. (4) that defines the particular

solution wp and it is independent of the variable x.

o4wp

oy4
¼ 4q0

D1p

X1

n¼1

sin np=2ð Þ
n

sin
npv
2B1

sin
npy
B1

ð4Þ

The particular solution wp is obtained by solving (4)

and physically represents the deflection of line

element no. 1 of the observed ‘‘strip frame’’ induced

by the force F which has the following form:

wpðqÞ ¼ w1ðqÞ ¼
4q0B

4
1

D1p5

X1

n¼1

sinðnp=2Þ
n5

sin
npv
2B1

sin
npy
B1

ð5Þ

The slope of the elastic line of the no. 1 element

represents the first derivative of the function (5) and its

shape is given in Table 1.

Reactive moments of the elastic restrain represent

the passive load—of intensities of Mi and Mi?1 in the

general case—acting on the element no. 1 and the

observed ‘‘strip frame.’’ This load is induced by the

external force F and its role is to reduce the deflection

of the directly loaded plate by transferring the load to

other cross-sectional elements. Defining the particular

solution wp(Mi, Mi?1) based on Eq. (2) is impossible,

given that its right side is identically equal to zero

when the plate is loaded with moments. Therefore,

unlike in the previous case (when force F is acting),

the inverse procedure need to be used, which includes

defining the single trigonometric series based on the

Fig. 2 Trapezoidal cross-section: geometry (a), reactive forces (b) and moments of elastic restraints (c)

Table 1 Functions of

deflection and inclination of

the ‘‘strip frame’’ line

elements

Element no. Deflection function Inclination function

1 w1;total ¼ w1ðqÞ þ w1ðM1Þ

w1ðqÞ ¼ 4q0B
4
1

D1p5

P1

n¼1

sinðnp=2Þ
n5 sin npv

2B1
sin npy

B1

w1ðM1Þ ¼ �
P1

n¼1

4M1B
2
1

D1p3n3 sin npy
B1

w0
1ðqÞ ¼

4q0B
3
1

D1p4

P1

n¼1

sinðnp=2Þ
n4 sin npv

2B1
cos npy

B1

w0
1ðM1Þ ¼ �

P1

n¼1

4M1B1

D1p2n2 cos npy
B1

2
w2ðM1;M2Þ ¼ �

P1

n¼1

2ðM1�M2ÞB2
2

D2p3n3 sin npy
B2

w0
2ðM1;M2Þ ¼ �

P1

n¼1

2ðM1�M2ÞB2

D2p2n2 cos npy
B2

3
w3ðM2Þ ¼ �

P1

n¼1

4M2B
2
3

D3p3n3 sin npy
B3

w0
3ðM2Þ ¼ �

P1

n¼1

4M2B3

D3p2n2 cos npy
B3

4
w4ðM1;M2Þ ¼ �

P1

n¼1

2ðM1�M2ÞB2
4

D4p3n3 sin npy
B4

w0
4ðM1;M2Þ ¼ �

P1

n¼1

2ðM1�M2ÞB4

D4p2n2 cos npy
B4
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known expression for the elastic line of the ith element

as function of variables Mi and Mi?1.

The function of deflection of the elastic line of the

ith element under the effect of moments Mi and Mi?1

has the following form:

wiðMi;Miþ1Þ ¼
1

6ðEIÞi
y

Bi

Mi 2B2
i � 3Biyþ y2

� ��

þMiþ1 B2
i � y2

� ��
ð6Þ

Developing (6) into a single trigonometric series,

we find the particular solution for deflection of the ith

plate of widthBi under the action of moments of elastic

restraint Mi and Mi?1 which have the following form:

wpðMi;Miþ1Þ ¼ wiðMi;Miþ1Þ

¼ �
X1

n¼1

2ðMi þMiþ1ÞB2
i

Dip3n3
sin

npy
Bi

ð7Þ

where Bi—width of the ith plate.

The negative sign in (7) indicates that the function

of deflection induced by reactive moments Mi and

Mi?1 tends to reduce the deflection induced by the

external load. If some of the reactive moment affects

the increase of deflection, then the value of that

moment should have a negative sign (-). This is the

case with the moments M2 acting on element no. 3 and

the moment M1 acting on elements no. 2 and 4.

Moments of elastic restraint (M1 andM2) of the loaded

‘‘strip frame’’ are determined based on the permanent

conditions of frame elements in areas of mutual connec-

tion (Fig. 2c). These conditions imply that inclinations of

each of two adjacent elements in the zone of their

connections have the same values and character.

For the case of symmetrically loaded girder or frame

as in examples considered, these conditions are defined

by analyzing only two points and then the following

applies:

Point A : w0
1
ðqÞ
��
y¼0

þw0
1ðM1Þ

��
y¼0

¼ w0
2ðM1;M2Þ

��
y¼B2

ð8Þ

Point B : w0
2ðM1;M2Þ

��
y¼0

¼ w0
3ðM2Þ

��
y¼B3

ð9Þ

By substituting the expression for deflection from

Table 1 in (8) and (9) the required moment values are

stated for the elastic restraints M1 and M2, which have

the following forms:

M1 ¼ k1s ð10Þ

M2 ¼ k2s ð11Þ

where k1 and k2 are coefficients of elastic restraint at A

and B, defined by (12) and (13).

k1 ¼
0:25p2n2 1 þ 2 B3

B2

D2

D3

� �

B1

D1
1 þ 2 B3

B2

D2

D3

� �
þ B3

D3

ð12Þ

k2 ¼ 0:25p2n2

B1

D1
1 þ 2 B3

B2

D2

D3

� �
þ B3

D3

ð13Þ

s—the absolute value of inclination above the supports

of line element which is directly exposed to the load

q(y); it is given through (14).

s ¼ np
B1

	 

� an;1 ¼ 4q0B

3
1

D1p4

X1

n¼1

sinðnp=2Þ
n4

sin
npv
2B1

ð14Þ

Moment distributions along the girder plate are

given by:

M1ðxÞ ¼ ðk1sÞ sin
npx
B1

M2ðxÞ ¼ ðk2sÞ sin
npx
B1

9
>=

>;
ð15Þ

The differential equation for the elastic girder plate

surface on part 2 is the following:

o4wi

ox4
þ 2

o4wi

ox2y2
þ o4wi

oy4
¼ qðyÞ

D
ð16Þ

where i represents the number of girder plates (i = 1,

2, 3 and 4).

Particular solutions of the Eq. (16) for individual

girder elements (plates) corresponding to the zone of

direct loading are equivalent to results obtained by

analyzing the ‘‘strip frame.’’

The homogeneous solution of the differential

Eq. (16), according to [23] is:

wh;i ¼
X1

n¼1

An;i cosh
npy
Bi

þ Bn;i
npy
Bi

sinh
npy
Bi

þ Cn;i sinh
npy
Bi

þ Dn;i
npy
Bi

cosh
npy
Bi

0

BB@

1

CCA

� sin
npx
Bi

ð17Þ
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Functions of the girder plate deflection that apply to

part 2 of the discussed segment are given by:

w2;i ¼ wp;i þ wh;i

¼
X1

n¼1

an;i þ An;i cosh
npy
Bi

þ Bn;i
npy
Bi

sinh
npy
Bi

þ Cn;i sinh
npy
Bi

þDn;i
npy
Bi

cosh
npy
Bi

0
BB@

1
CCA

� sin
npx
Bi

ð18Þ

where coefficients An,i, Bn,i, Cn,i, and Dn,i are

functions of the n parameter and they are defined

through the appropriate boundary conditions. Coef-

ficients an,i are defined by particular solution of

Eq. (2) and they are presented through the deflec-

tion function in Table 1. The interaction of adjacent

parts of the analyzed girder segment is determined

through these conditions. Thus, it is necessary to

define the behaviour of parts 1 and 3, which have a

direct effect on part 2, as well as the boundary

conditions along the contact zone for these girder

segments.

2.2 Analyzing the behaviour of parts 1 and 3

of the girder segment

While parts 1 and 3 of the girder segment are not

explicitly exposed to the load, the load effect is

still transferred to these parts as a result of

continuity of geometry and stress in girder plates.

The behaviour of plates in unloaded girder segment

parts is defined through the following forms of

elastic surfaces [23]:

w1;i ¼
X1

n¼1

A
0

n;i cosh
npy
Bi

þ B
0

n;i

npy
Bi

sinh
npy
Bi

þ

C
0

n;i sinh
npy
Bi

þ D
0

n;i

npy
Bi

cosh
npy
Bi

0

BB@

1

CCA

� sin
npx
Bi

ð19Þ

and

w3;i ¼
X1

n¼1

A
00

n;i cosh
npy
Bi

þ B
00

n;i

npy
Bi

sinh
npy
Bi

þ C
00

n;i sinh
npy
Bi

þ D
00

n;i

npy
Bi

cosh
npy
Bi

0
BB@

1
CCA

� sin
npx
Bi

ð20Þ

Boundary conditions in the contact zone of part 1

and 2 are formulated as follows:

1Þ w1;i ¼ w2;i

2Þ ow1;i

ox
¼ ow2;i

ox

3Þ o2w1;i

ox2
¼ o2w2;i

ox2

4Þ o3w1;i

ox3
¼ o3w2;i

ox3

9
>>>>>>>>>=

>>>>>>>>>;

for x ¼ � u=2; ð21Þ

While supporting conditions at plate ends of part 1

are given by:

5Þ w1;i ¼ 0

6Þ o2w1;i

ox2
¼ 0

9
=

; for x ¼ � L=2 ð22Þ

The first two boundary conditions of the system (21)

represent the geometric continuity (deflection and

inclination), while the remaining two conditions define

the continuity of acting forces (transverse force and

bending moment) of plates in the zone connecting parts

1 and 2. Conditions 3 and 4 of the system (21) are valid

for the case when the correspondent plate parts 1 and 2

are of the same thickness and when the connective line

of these two is without concentrated loads (forces or

moments). Conditions for supporting the plates on their

ends is defined through the system (22), which

corresponds to the properties of simply supporting

(the support is stable, but the plate can rotate around it).

Conditions (22) are verified through experimental and

numerical results [3] and they are reliable for local stress

analysis. When substituting (18) and (19) into (21) and

(22) for four girder plates, the required coefficients are

determined, which are given through the following

functions:
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an;1 ¼ 4q0B
4
1

D1p5

X1

n¼1

sinðnp=2Þ
n5

sin
npv
2B1

An;i ¼ � an;i

cosh an;i
� coshðan;i � 2bn;iÞ
�

þ bn;i sinhðan;i � 2bn;iÞ þ an;i
sinh 2bn;i
2 cosh an;i

�

Bn;i ¼
an;i

2 cosh an;i
coshðan;i � 2bn;iÞ

B0
n;i ¼ � 1

2
tghan;i sinh 2bn;i
� �

� an;i
C0
n;i ¼ bn;i cosh 2bn;i � sinh 2bn;i

� �
� an;i

D0
n;i ¼

1

2
sinh 2bn;i
� �

� an;i

9
>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð23Þ

where: an;i ¼ npBi

2L
and bn;i ¼ npv

4L

Given the fact that the load is symmetrically

distributed along the vertical girder axis, the contour

conditions between parts 2 and 3 are analogous to

systems (21) and (22); thus, the plate deflection

function in part 3, which is given by (19), is symmetric

to (20).

The intensity of von Mises stress is defined as:

re;local ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
x;l þ r2

y;l � rx;lry;l þ 3s2
xy;l

q
ð24Þ

where

rx;local ¼
6 �Mx

d2
i

¼ � 6Di

d2
i

o2wi

ox2
þ t

o2wi

oy2

	 

ð25Þ

ry;local ¼
6 �My

d2
i

¼ � 6Di

d2
i

o2wi

oy2
þ t

o2wi

ox2

	 

ð26Þ

sxy;local ¼
6 �Mxy

d2
i

 !
¼ 6Dið1 � mÞ

d2
i

o2wi

oxoy

	 

ð27Þ

m—Poisson’s ratio (=0.3 for steel), di—thickness of

plates.

The tension due to the girder’s global stress is

determined through (23).

rx;global ¼
FHl

8I
ð28Þ

where: l is the actual girder length, H is the girder

height, and I is the axial moment of the cross-sectional

surface area.

The resulting stress state is given through the

equivalent stress (29):

re;total¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx;gþrx;l
� �2þr2

y;l� rx;gþrx;l
� �

ry;lþ3s2
xy;l

q

ð29Þ

The function of equivalent stress and that of the

corresponding local stress components are provided in

a diagram in Sect. 5.

Practical implications of the proposed model are

characterized by the following three aspects: (1)

identifying the local stress state of girders derived,

(2) optimum design of the girder in order to balance

local and global stress, and (3) identifying local

stresses based on the function of plate deflection,

which significantly reduces the measurement and the

overall costs of the experiment. All three segments are

contained in the present work, and the model devel-

oped can be used for box girders both with and without

diaphragms. This method is particularly important for

stress state analysis in carriers exposed to moving

loads, such as truck-crane booms, main crane girders

and the like. For functional reasons, some of the

supporting structures cannot contain diaphragms, as in

the case of a truck-crane boom, because its sections are

meant to be pulled inside of each other. Due to the

absence of diaphragms, the local stress effect in these

carriers is very strong and makes the major cause of

plastic deformation or damage. In this case, the

intensity of local stress changes depending on the

position of the load, regardless of the constant cross-

section along the entire length. The developed model

allows for application in girders with plates of

stepwise variable thickness. This approach is impor-

tant when the required stiffening cannot be achieved

by using diaphragms; a typical example of this is the

flange portion of the mobile crane boom segments.

Likewise, most girders allow the use of the di-

aphragms; then, the length of the sample authoritative

for the analysis of local stress corresponds to their

spacing.

3 Analyzing the girder segment using the FEM

procedure

In this chapter, the finite element method (FEM) is

used to simulate the behaviour of the trapezoidal box

girder segment, applicable to local stress analysis.
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The FEM analysis procedure was conducted using the

Static Structural module of the ANSYS software [22].

The FEM approach is completely independent of

mathematical model on which the analytical proce-

dure is based, enabling comparative analysis of their

results. Ends of the girder segments are simply

supported, while the cross-section and the parameters

of partial load correspond to the conditions defined in

the mathematical model. Three-dimensional elements

known as Solid 10node 187 were applied for

generating finite elements meshes in accordance with

the nomenclature of the library in the ANSYS

software [22]. FEM simulation involves the analy-

sis of two cases due to better identification of

parameters that dominantly affect local carrying

capacity of girder. The first case (alternative A)

refers to the alternative when the 8 mm thick upper

flange is directly exposed to the effects of load of

15 kN. The alternative B refers to the position of

the girder which is rotated 180� relative to the first

case (cross-sectional dimensions are identical in

both cases). Thus, the thickness of the top flange

plate is 4 mm, while the load has value 3 kN. The

deflection and equivalent stress for the position of

the girder that corresponds with alternatives A and

B is shown in Figs. 3 and 4.

The load corresponding to the variant A is five

times higher than to the variant B, while the equivalent

(von Mises) stress is identical in both cases. Under

these conditions, the deflection corresponding to the

variant A is 5.8 times smaller in regards to variant B.

When comparing alternatives A and B it can be

concluded that greater width and smaller thickness of

flange which is directly exposed to the load have an

adverse effect on the local stress state, i.e. carrying

capacity of girder. Conditions of global carrying

capacity, i.e. the cross-sectional geometric pa-

rameters, are exactly identical for both alternatives.

This clearly indicates that the orientation of the cross

section has a key role in the overall carrying capacity

of the structure’s supporting elements.

Convergence results of FEM model (deflection and

equivalent stress) implies a numerical approaching to

exact values, starting from the previously obtained

solutions. Convergence of solutions with FEM model

is evaluated on the basis of finite elements mesh and

the value of the results obtained. Proof of convergence

is carried out by forming successive finite element

meshes of different sizes. The degree of convergence

defines the dependence of the number of finite

elements from the accuracy of solution. Convergence

of deflection and equivalent (von Mises) stress of the

considered FEM models (Figs. 3, 4) is graphically

illustrated via the diagrams, which are shown in Fig. 5.

It can be concluded that for the adopted finite element

size of 8 mm deviation from the true value is\2 %.

This is an indication of the validity of the type and size

of the finite elements.

Verification of the FEM model for the analysis of

the local stress state is carried out by experimental

tests, which is important for identifying the influential

parameters of carrying capacity.

Fig. 3 Overall girder deflection: alternative A (left) and alternative B (right)
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4 Experimental analysis

Analytical and FEM procedure-based models are

verified through experimental analysis. Tests were

carried out on a carrier segment for two opposed

positions of the cross-section (alternatives A and B),

according to Fig. 6. Characteristics of the girder in

terms of cross-sectional geometry, load and support

are identical to those involved in the mathematical and

the FEM model. In the present study, experimental

testing is conducted in the domain of elastic material

behaviour and the primary goal is to verify the

presented method, which is based on the mathematical

model discussed in Sect. 2.

4.1 The test program

The program of experimental testing involves defining

all characteristics of the sample, test device, organi-

zation procedure and data processing. The primary

experimental parameters are related to the qualitative

and quantitative characteristics of the cross-section,

the loading surface area and its position relative to the

Fig. 4 Equivalent stress of the girder: alternative A (left) and alternative B (right)

Fig. 5 Convergence solutions of the considered FEM models
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girder. The relevant test requirements and procedure

are given in this chapter.

4.1.1 The test subject

The test sample is a 1016 mm long trapezoidal box

girder segment. The girder is formed by CO2 welding

of 4, 5 and 8 mm plates in a longitudinal continuous

manner, while sides of the boxes were closed by

welding two, 8 mm thick diaphragms. Before weld-

ing, the box girder’s flange plates and webs were rolled

to eliminate the initial geometric imperfections and

calibrate them to the exact dimensions. Plates were

made of structural steel S235JRG2, according to EN

10025.

4.1.2 Preparation of the test sample and the device

Immediately prior to the experiment it is necessary to

carry out a range of activities related to the test sample

and device. The sample’s bottom flange should

entirely rely on cylindrical supports of the device in

order to prevent the girder from bending and unpre-

dictable dislocations. The girder’s measuring points

along the line where extreme displacements are

expected should be marked. The test device is a

mechanical machine in which the load is introduced by

simultaneously moving the top and bottom traverse.

The central traverse is fixed and enables directing the

load-inducing head. In order to remove residual

stresses, at the beginning of the test the sample is

exposed in several cycles to loads equal to &75 % of

stress which corresponds to the elastic limit.

4.1.3 Organizing the test

The experimental tests were conducted on a general-

purpose mechanical press, which is capable of

simulating the maximum load of 400 kN. The test

sample was mounted on a rotating base with roller-

shaped supports, providing thereby the possibility to

freely support the girder. The load was introduced

manually through the control board. This board has the

opportunity of working in two modes, which provides

higher precision: the first is related to the range up to

40 kN (which was used in this study), whereas the

second is related to the range of 40–400 kN. The

relative deflection of plates is measured which allowed

interpretation of local behaviour of carriers. Reading

the achieved load is done via an analogous scale, while

deflection is registered using a dial gauge.

4.1.4 Conducting the test

The procedure of testing the local stress was realized

in two diametrically opposite position of the same

girder. The top flange plate is loaded by applying

directly the load-inducing head with the dimension

100 9 50 mm in its base. The load is registered

through a measure cell located under the rotating base,

on the mechanical scale of the control board. Relative

deflections of girder plates are measured and identified

Fig. 6 Configuration of measurement points: a alternative A and b alternative B
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using a mechanical dial gauge of 0.01 mm accuracy

(Fig. 7). At the beginning and the end of each

measurement the dial gauge displays zero value,

which is a prerequisite for deflection measurement to

be adequately realized, without any plastic deforma-

tion or unexpected dislocation.

4.1.5 Results of the experimental analysis

Results of experimental tests are classified into two

groups: direct and indirect. Direct test results are

related to explicitly measured plate deflection values

with the use of a measuring device, i.e. a dial gauge

(Fig. 8). Relative deflection was measured at prede-

fined points of the four girder plates. At each

measuring point, the measurement is repeated 3 times,

while the final value was determined as the geometric

mean. Indirect results were obtained based on the

direct results using specific calculation procedure.

These results represent equivalent (von Mises) stress-

es. The detailed procedure based on which the stress

values can be obtained, as well as the verification of

the procedure are outlined in Sect. 4.2.

4.2 Implicit stress state determination

Using the method of direct measurement, the relative

deflections of girder plates are explicitly defined

(Sect. 4.1.5). However, due to identify the phe-

nomenon of local stress, it is necessary to define the

values of equivalent stresses, in addition to deflection.

This study is focused on the experimental–theoretical

approach to analyzing the local stress which includes

the following activities:

• Direct measurement of deflection of girder plates.

• Calculating the stress based on the measured

deflection values.

The basic idea behind this approach is in the fact

that defining the stress state of plates to the full extent

also requires sufficient knowledge about the function

of deflection [23, 24]. It is necessary to experimentally

define the discontinuous deflection values, which can

be further transformed into appropriate functional

dependence using the extrapolation procedure. A

convenient function for the extrapolation procedure

for the ith plate is the following:

wi ¼ Ai cosh
px
Bi

þ Bi

px
Bi

sinh
px
Bi

	 

sin

py
Bi

ð30Þ

where Ai and Bi are coefficients determined from

extrapolation conditions (the method of least squares).

Defining the patterns in which deflections are

distributed is the basis for calculating the components

and equivalent stress according to Eqs. (18–21). The

proposed approach is verified in accordance with the

experimentally obtained deflection values and equiva-

lent stress in girder plates of rectangular cross section

presented in [3]. In addition, the extrapolated deflec-

tion function is also necessary to identify the values of

Fig. 7 Characteristic positions for testing the girder: alternative A (left) and alternative B (right)
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deflection under the loaded surface, which cannot be

explicitly registered using a measuring device. This

is of high practical importance when measuring the

deflection of actual girders. In research [3], this

problem is resolved by making openings on the

girder, which is acceptable for experimental sam-

ples, but not for members of actual supporting

structures. Deflection values determined in this way

are shown as red rectangles in Fig. 9. The discussed

experimental–theoretical approach to defining the

girder’s stress state also has its practical importance

because it allows identification of stress state

implicitly on the basis of experimentally obtained

deflection values, without using measuring tapes,

auxiliary devices and without processing measure-

ment signals. Thus, it is possible to identify stresses

at close distance (a few millimetres), and this

method greatly speeds up the process and reduces

the cost of experimental testing.

5 Comparative analysis

This chapter is focused on comparative analysis of the

analytical–theoretical, numerical and experimental

procedures regarding the identification of local

stresses in box girders. Results based on a methodo-

logical approach obtained through the mathematical

model (Sect. 2) and finite element model formed in

ANSYS software [22] (Sect. 3) are compared with the

experimentally obtained values in terms of their

verification. Distribution functions of deflections of

plate ‘‘1’’ of a trapezoidal girder are shown in Fig. 9.

Functions of dominant stresses in components rx
and ry of top flange plates are shown in Fig. 10. As a

dimension, the shearing component sxy is of lower

order and its influence is negligible compared to

normal stresses rx and ry. All presented diagrams are

related to the position of girder corresponding to

alternative A.

Fig. 8 Measuring the deflection of the top flange plate of the girder for alternative A: left—point 13 (0.15 mm), centre: point 14

(0.08 mm) and right: point 15 (0.05 mm)

Fig. 9 Comparative diagram of deflection w1 of plate ‘‘1’’ (longitudinal and transverse direction)
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6 Conclusion

The previous chapters of this study have identified

the influential parameters of carrying capacity from

the aspects of loading a trapezoidal box girder with

global and local stress. The presented methodology

for defining the local stress state of the trapezoidal

girder is based on the principle of decomposing the

cross-sectional elements and it is obtained by

modifying the model presented in [3]. The impor-

tance of the above approach is of both theoretical

and practical nature as it enables straightforward

implementation on elements of carrying structures

of more complex geometric shapes. Irrespective of

the derived mathematical model, the relative deflec-

tion and the stress state of girder plates were also

analyzed using the finite element method and the

ANSYS software [22]. The analytical methodology

(theoretical approach) and the finite element model

were verified by experimental analysis. The test was

carried out for two diametrically opposite positions

of the same sample of trapezoidal cross-section.

Dimensions obtained by experimental measurements

refer to relative girder plate displacements, i.e.

deflections. By combining the experimental results

and theoretical approaches, the new methodology

for local stress analysis of the trapezoidal box

girders has been developed. In this implicit way, the

girder’s stress image has been quantitatively and

qualitatively defined, without the need for explicit

measurements, which significantly simplifies the

testing process and reduces its costs. The presented

experimental/theoretical stress-determining approach

has been verified through the experiment presented

in [3]. The presented mathematical model is

intended to identify the stress state of the quad-

rilateral box girder (rectangular and trapezoidal

cross-section). The model is explicit in its form

and enables to define displacements and local

stresses of each plate for the given input parameters

(geometry and load) in a simple way (without

iterations). The mathematical model is based on the

classical plate bending theory that takes into account

the first-order shear stresses. Reliability of the

proposed mathematical model is evaluated against

the FEM approach and verified experimentally for

two load cases (variants A and B). The published

mathematical model is a useful engineering tool,

specifically when designing new support structures

and reconstructing the existing ones, given that it

considers local stresses in interaction with the global

load. The methodology presented in this paper

provides a wide range of application in carriers of

complex shape using the identical procedure and

identical expressions that was presented in the

paper. Thus, more complex cross-sections which

consist of more than four plates e.g. hexagonal

cross-sections can be analyzed. The main difference

in that case is that a larger number of continuity

conditions (8) and (9) are needed that should match

the number plates for asymmetric load (if the load is

symmetrical, the number of conditions is twice as

small). This fact makes the basis for further studies

in the field of local stresses in carriers, especially in

cases of deformable longitudinal stiffeners. Espe-

cially important segment of future research from the

aspect of rationality of the introduced mathematical

model is its application in the process of cross-

Fig. 10 Comparative diagram of stress rx and ry of plate ‘‘1’’
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section optimization. The entire procedure of the

proposed model is easy to develop as simple

software with the purpose of automating and

simplifying the work in engineering practice.
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