
Similarity solutions for unsteady flow behind an exponential
shock in an axisymmetric rotating non-ideal gas

G. Nath

Received: 17 December 2013 / Accepted: 24 January 2015 / Published online: 4 February 2015

� Springer Science+Business Media Dordrecht 2015

Abstract One-dimensional self-similar unsteady

isothermal and adiabatic flows behind a strong expo-

nential shock wave driven out by a cylindrical piston

moving with time according to an exponential law in a

rotational axisymmetric non-ideal gas is investigated.

The medium is assumed to be non-ideal gas rotating

about the axis of symmetry. The fluid velocities in the

ambient medium are assumed to be varying with time

according to an exponential law. Similarity solutions

exist only when the surrounding medium is of constant

density. Solutions are obtained, in both the cases,

when the flow between the shock and the piston is

isothermal or adiabatic by taking into account com-

ponents of vorticity vector. It is found that the

assumption of zero temperature gradient brings a

profound change in the density and compressibility

distributions as compared to that of the adiabatic case.

The effect of an increase in the value of the parameter

of the non-idealness of the gas is investigated. Also, a

comparison between the solutions in the cases of

isothermal and adiabatic flows is made. Further, it is

shown that the consideration of zero temperature

gradient and the effect of variation of the parameter of

non-idealness of the gas decrease the shock strength

and widens the disturbed region between the shock

and piston. The shock waves in non-ideal gas can be

important for description of shocks in supernova

explosions, in the study of a flare produced shock in

solar wind, central part of star burst galaxies, nuclear

explosion, rupture of pressurized vessel, in the

analysis of data from exploding wire experiments,

and cylindrically symmetric hypersonic flow problems

associated with meteors or reentry vehicles, etc. The

findings of the present work provided a clear picture of

whether and how the non-idealness of the gas and

consideration of zero temperature gradient affect the

propagation of shock and the flow behind it.

Keywords Similarity solutions � Shock wave �
Mechanics of fluid � Rotating medium � Interstellar
medium � Non-ideal gas � Isothermal and adiabatic

flows

1 Introduction

Perturbation of different kinds may produce discon-

tinuities in astrophysical fluid flow. Discontinuities in

fluid flow are said to take place over one or more

surfaces when any dynamical and/or thermodynamic

quantity changes discontinuously as such surfaces are

crossed; the corresponding surfaces are called surfaces

of discontinuity. Certain boundary conditions are to

satisfied across such surfaces, and according to those

conditions, surfaces of discontinuities are classified
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into various categories, the most important being the

shock or shocks. Shock waves are generated in various

kinds of supersonic astrophysical flows having intrin-

sic angular momentum, resulting in a flow that

becomes subsonic. This is because the repulsive

centrifugal potential barrier experience by such flows

can be sufficiently strong to brake the motion, and a

stationary solution could be introduced only through a

shock. Rotating, transonic astrophysical fluid flows are

thus believed to be ‘‘prone’’ to shock formation

phenomena. It has been established in recent years

that in order to satisfy the inner boundary conditions

imposed by the event horizon, accretion onto black

hole should exhibit transonic properties in general,

which further indicates that the formation of shock

waves is possible in astrophysical fluid flows onto

galactic and extragalactic black holes. It might also be

expected that shock formation in black hole accretion

disks is a general phenomenon, because shock waves

in rotating astrophysical flows are convincingly able to

provide an important and efficient mechanism for

converting a significant amount of the gravitational

energy (available from deep potential wells created by

these massive compact accretors) into radiation by

randomizing the directed in fall motion of the

accreting fluid. Hence shocks possibly play an impor-

tant role in governing the overall dynamical and

radiative processes taking place in astrophysical fluids

and plasmas accreting onto black holes (Das [1] and

Das et al. [2]).

Shock processes can naturally occur in various

astrophysical situations for example, photo-ionized

gas, stellar winds, supernova explosions, collisions

between high velocity clumps of interstellar gas etc.

Shock phenomena such as a global shock resulting

from a stellar pulsation or supernova explosion

passing outward through a stellar envelope or perhaps

a shock emanating from a point source such as a man-

made explosion in the Earth’s atmosphere or an

impulsive flare in the Sun’s atmosphere, have tremen-

dous importance in astrophysics and space sciences.

Shocks are ubiquitous throughout the observed uni-

verse and are thought to play a crucial role in the

transportation of energy into the interstellar medium,

setting in motion processes observed in nebulae that

eventually could lead to the creation of new stars.

Shock waves are common in the interstellar medium

because of a great variety of supersonic motions and

energetic events, such as cloud–cloud collision,

bipolar outflow from young proto-stellar objects,

powerful mass losses by massive stars in a late stage

of their evolution (stellar winds), supernova explo-

sions, central part of star burst galaxies, etc. Shock

waves are also associated with spiral density waves,

radio galaxies and quasars. Similar phenomena also

occur in laboratory situations, for example, when a

piston is driven rapidly into a tube of gas (a shock

tube), when a projectile or aircraft moves super-

sonically through the atmosphere, in the blast wave

produced by a strong explosion, or when rapidly

owing gas encounters a constriction in a flow channel

or runs into a wall.

Self-propagating star formation theory uses the

shock waves from supernova explosions to shape the

spiral pattern.When a supernova shock wave reaches a

gas cloud, it compresses the cloud to stimulate the

formation of stars. Some of them will be massive

enough to produce their own supernova explosions to

keep the cycle going. Coupled with the differential

rotation of the disk, the shock wave will keep the spiral

arms visible.

Thus the study of shock waves in rotating transonic

and supersonic astrophysical fluid flows and black hole

accretion has acquired a very important status in recent

years. The formation of self-similar problems and

examples describing the adiabatic motion of non-

rotating gas mode of stars are considered by Sedov [3],

Zel’dovich and Raizer [4], Lee and Chen [5] and

Summers [6]. The experimental studies and astro-

physical observations show that the outer atmosphere of

the planets and stars rotates due to rotation of the

planets and stars. Macroscopic motion with super-sonic

speed occurs in an interplanetary atmosphere and shock

waves are generated. Shock waves often arise in nature

because of a balance between wave breaking non-linear

and wave damping dissipative forces (Zel’dovich and

Raizer [4]). Thus the rotation of planets and stars

significantly affects the process taking place in their

outer layers; therefore question connected with the

explosions in rotating gas atmospheres are of definite

astrophysical interest. Chaturani [7] studied the

propagation of cylindrical shock wave through a gas

having solid body rotation, and obtained the solutions

by a similarity method adopted by Sakurai [8]. Nath

et al. [9] obtained the similarity solutions for the flow

behind spherical shock waves propagating in a non-

uniform rotating interplanetary atmosphere with in-

creasing energy. Vishwakarma and Nath [10] obtained
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the similarity solution for the propagation of a cylin-

drical shock wave in a rotating dust gas with heat

conduction and radiation heat flux. Nath [11] obtained

the non-similarity solution for the propagation of a

strong cylindrical shock wave in a rotational axisym-

metric dusty gas with exponentially varying density in

both the cases when the flow behind the shock waves

was isothermal or adiabatic. He assumed variable

azimuthal and axial fluid velocity, and exponential time

dependence for the velocity of the shock.

Sedov [3] (see, Ranga Rao and Ramana [12],

Vishwakarma and Nath [13, 14]) indicated that a

limiting case of a self-similar flow-field with a power

law shock is the flow-field formed with an exponential

shock. Ranga Rao and Ramana [12] obtained ap-

proximate analytic solutions for the problem of

unsteady self-similar motion of a perfect gas displaced

by a piston according to an exponential law. Vish-

wakarma and Nath [13, 14] obtained the similarity

solutions for the problem of unsteady self-similar

motion of non-ideal gas or dusty gas (a mixture of

perfect gas and small solid particles) behind a strong

shock driven out by a cylindrical (or spherical) piston

moving with time according to an exponential law.

At extreme conditions that prevail in most of the

problems associated with shock waves, the assump-

tion that the gas is ideal no longer valid when the flow

takes at high temperature. Anisimov and Spiner [15]

have taken an equation of state for non-ideal gases in

simplified form, and investigated the effect of the

parameter for non-idealness on the problem of strong

point explosion, which describes the behavior of the

medium satisfactory at low densities. Ranga Rao and

Purohit [16] have studied the self-similar flow of a

non-ideal gas driven by an expanding piston and

obtained solutions by taking the equation of state

suggested by Anisimov and Spiner [15]. Wu and

Roberts [17] and Roberts and Wu [18] discussed the

shock wave theory of sonoluminesence by taking a

similar equation of state of the medium.

In the present work, we generalize the solution of

Ranga Rao and Ramana [12] in gas (i.e. the solution of

Vishwakarma and Nath [14] in non-ideal gas) to the

case of rotational axisymmetric non-ideal gas, which

has a variable azimuthal and axial fluid velocities

(Nath [11], Levin and Skopina [19]). Here, we

therefore investigate the one-dimensional unsteady

self- similar flow of a rotational axisymmetric non-

ideal gas behind a strong shock driven out by

cylindrical piston moving with time according to an

exponential law. The equation of state of non-ideal gas

is taken in the form as suggested by Anisimov and

Spiner [15]. The motion of piston is assumed to obey

the law (Vishwakarma and Nath [13, 14], Ranga Rao

and Ramana [12]), namely,

rp ¼ B expðktÞ; k[ 0; ð1Þ

where rp is the radius of the piston, B and k are

dimensional constants, t is the time and ‘B’ represents

the initial radius of the piston. It may be, physically,

the radius of the stellar corona or the condensed

explosive or the diaphragm containing a very high-

pressure driver gas, at t = 0. By sudden expansion of

the stellar corona or the detonation products or the

driver gas into the undisturbed ambient gas, a shock

wave is produced in the ambient gas. The shocked gas

is separated from the expanding surface which is a

contact discontinuity. This contact surface acts as a

‘piston’ for the shock wave in the ambient medium

(Rosenau and Frankenthal [20], Higashino [21],

Liberman and Velikovich [22]).

The law of motion of the piston Eq. (1) implies a

boundary condition on the gas speed at the piston,

which is required in the determination of the problem.

Since we are concerned with self-similar motions, we

may postulate that

R ¼ C expðktÞ; ð2Þ

where R is the shock radius, and ‘C’ is a dimensional

constant which depends on the constant ‘B’ and the

non-dimensional position of the piston [see Eq. (33)].

As is often the case in problems of this type, it is more

convenient to solve for the piston motion in terms of

the shock motion, rather than vice versa. We shall

therefore adopt this point of view forthwith, and

consider ‘C’ a known parameter of the problem, rather

than B (Vishwakarma and Nath [14], Rosenau and

Frankenthal [20]).

Due to high temperature in the flow, intense

radiation heat transfer take place behind a strong

shock. For such flows the assumption of adiabaticity

may not be valid. Therefore, an alternative assumption

of zero temperature gradient throughout the flow

(flows which satisfy this condition are also known as

isothermal flow) may approximately be taken (as in

Laumbach and Probstin [23], Sachdev and Ashraf

[24], Korobeinikov [25], Gretler and Regenfelder

[26], Vishwakarma and Nath [13, 14, 27], Nath [11,
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28, 29]). With this assumption, we therefore obtain the

similarity solutions in Sects. 2 and 3, the similarity

solutions of the problem treated by Vishwakarma and

Nath [14]. In Sect. 4, we present the solutions for the

flow taken to be adiabatic. Solutions are obtained, in

both the cases, when the flow between the shock and

the piston is isothermal or adiabatic by taking into

account the components of vorticity vector. In order to

obtain the similarity solutions of the problem it is

necessary to take the density of the ambient non-ideal

gas to be a constant. The effect of an increase in the

value of the parameter of the non-idealness of the gas

is investigated. It is shown that the assumption of zero

temperature gradient brings a profound change in the

density and compressibility distribution as compared

to that of the adiabatic case. Also, a comparison

between the solutions in the case of isothermal and

adiabatic flows is made. Further, it is shown that the

consideration of zero temperature gradient and the

effect of variation of the parameter of non-idealness of

the gas decreases the shock strength and widens the

disturbed region between the shock and piston. Effects

of viscosity, magnetic field and gravitation are not

taken into account.

2 Fundamental equations and boundary

conditions-isothermal flow

The fundamental equations for one-dimensional, un-

steady and cylindrically symmetric isothermal flow of

non-ideal gas, which is rotating about the axis of

symmetry, can be written as (c.f. Chaturani [7], Levin

and Skopina [19], Vishwakarma and Nath [13, 14, 27],

Laumbach and Probstein [23], Korobeinikov [25],

Zhuravskaya and Levin [30], Nath [11, 28, 29])

oq
ot
þ u

oq
or

þ qou
or
þ uq

r
¼ 0; ð3Þ

ou

ot
þ u

ou

or
þ 1

q
op

or
� v2

r
¼ 0; ð4Þ

ov

ot
þ u

ov

or
þ uv

r
¼ 0; ð5Þ

ow

ot
þ u

ow

or
¼ 0; ð6Þ

oT

or
¼ 0; ð7Þ

where p, q and T are the pressure, the density and the

temperature, u; v and w are the radial, azimuthal and

axial components of the fluid velocity q~ in the

cylindrical coordinates (r, h, z); r and t are the

distance and time respectively.

The above system of equations should be supple-

mented with an equation of state. In most of the cases

the propagation of shock waves arises in extreme

conditions under which the assumption that the gas is

ideal is not a sufficient accurate description. To

discover how deviations from the ideal gas can affect

the solutions, we adopt a simple model. We assume

that the gas obey a simplified van der Waals equation

of state of the form (Wu and Robert [17], Robert and

Wu [18], Nath [32])

p ¼ CT
ðv� bÞ ; e ¼ CmT ¼ pðm� bÞ

ðc� 1Þ ð8Þ

where C is the gas constant, m ¼ 1
q is the specific

volume, Cv ¼ C
ðc�1Þ is the specific heat at constant

volume, e is the internal energy per unit mass of the

non-ideal gas and c is the ratio of the specific heats, b is
the van der Waals excluded volume, it places a limit,

qmax ¼ 1
b
, on the density of the gas, and b is in general,

a function of temperature T, but at high temperature

range it tends to a constant value equal to the internal

volume of the gas molecules which lies between

0.9 9 10-3 and 1.1 9 10-3 m3/kg (Anisimov and

Spiner [15], Wu and Roberts [17], Roberts and Wu

[18], Landau and Lifshitz [33]). Real gas effects can be

expressed in the fundamental equations according to

Vishwakarma and Nath [14], Chandrasekhar [34] by

two thermodynamic variables, namely by the sound

velocity factor (the isotropic exponent) C* and a factor

K, which contains internal energy as follows:

C� ¼ o ln p

o ln q

� �
S

and K ¼ �q
p

oe

o ln q

� �
P

ð9Þ

where the subscript ‘S’ and ‘P’ refers to the process of

constant entropy and pressure respectively. Using the

first law of thermodynamics and Eq. (8), we obtain

C� ¼ c
ð1� bqÞ and K ¼ 1

ðc� 1Þ ð10Þ

This shows that the isentropic exponent C* is non-

constant in the shocked gas, but the factorK is constant
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for the simplified equation of state of the non-ideal gas

in the form (8).

The isentropic speed of sound ‘a’ is given by

a2 ¼ op

oq

� �1
2

S

¼ C� p

q
: ð11Þ

The deviation of the behavior of non-ideal gas from

that of a perfect gas is indicated in Eq. (4) by the

isothermal compressibility

siso ¼
1

a2
iso
q
; ð12Þ

where aiso ¼ op
oq

� �1
2

T
¼ 1�bq

p

h i1
2

expressing the isother-

mal sound speed and the subscript ‘T’ refers to the

process of constant temperature.

Also,

v ¼ Ar; ð13Þ

where ‘A’ is the angular velocity of the medium at

radial distance r from the axis of symmetry. In this

case the vorticity vector 1
! ¼ 1

2
Curl q

!
has the compo-

nents (c.f. Levin and Skopina [19], Nath [28, 29, 31])

1r ¼ 0; 1h ¼ � 1

2

ow

or
; 1z ¼

1

2r

o

or
ðrvÞ ð14Þ

In order to obtain the solution, it is assumed that a

strong cylindrical shock wave is propagating outwards

from the axis of symmetry in the undisturbed medium

(non-ideal gas) with constant density, which has zero

radial velocity, and variable azimuthal and axial

velocities. The flow variables immediately ahead of

the shock front are

u ¼ 0; ð15Þ

q ¼ qa ¼ constant; ð16Þ

va ¼ C� expðdtÞ; ð17Þ

wa ¼ E expðatÞ; ð18Þ

where C*, E, d and a are dimensional constants and the

subscript ‘a’ refer to the values in the initial state.

Ahead of the shock, the components of the vorticity

vector, therefore, vary as

1ra ¼ 0 ð19Þ

1ha ¼ � Ea
2kR

exp(at), ð20Þ

1za ¼
C�ðkþ dÞ

2kR
expðdtÞ: ð21Þ

The initial angular velocity of the medium at radial

distance R is given by, from Eq. (13)

Aa ¼
va

R
: ð22Þ

From Eqs. (22) and (17), we find that the initial

angular velocity vary as

Aa ¼
C� expðdtÞ

R
: ð23Þ

The law of conservation of mass, momentum and

energy across the shock front propagating with

velocity V ¼ dR
dt

� �
into the non-ideal gas give the

following shock conditions

qnðV � unÞ ¼ qaV ¼ ms sayð Þ;
pn þ qn V � unð Þ2¼ pa þ qaV

2;

en þ
pn

qn
þ 1

2
ðV � unÞ2 �

Fn

ms

¼ ea þ
pa

qa
þ 1

2
V2 � Fa

ms

;

vn ¼ va;

wn ¼ wa

ð24Þ

where the subscript ‘n’ denotes the conditions imme-

diately behind the shock front, and ‘F’ is the radiation

heat flux. The pressure ahead of a strong shock is very

small in comparison to the pressure behind of the

shock, and therefore it is neglected (Zel’dovich and

Raizer [4])

pa � 0; ea � 0: ð25Þ

Then the shock conditions (24) across a strong

shock propagating into a rotating non-ideal gas reduce

to

un ¼ 1� bð ÞV ;

qn ¼
qa
b
;

pn ¼ 1� bð ÞqaV2;

vn ¼ C�exp dtð Þ;
wn ¼ Eexp atð Þ;

ð26Þ

where the density ratio b(0\ b\ 1)across the shock

is given by the relation
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ðb� �bÞ
ðc� 1Þ þ b� 1

2
ð1þ bÞ ¼ ðFn � FaÞ

Vpn
; ð27Þ

where �b ¼ bqa:As the shock is strong, we assume that

(Fn - Fa) to be negligible in comparison with the

product of pn and V (Laumbach and Probstin [23],

Vishwakarma and Nath [13, 14, 27], Nath [11, 29,

32]). Therefore, Eq. (27) reduces to

b ¼ c� 1þ 2�b

ðcþ 1Þ : ð28Þ

Following Levin and Skopina [19] (see also, Nath

[11, 29, 31]), we obtain the jump conditions for the

components of vorticity vector across the shock front

as

1hn ¼
1ha
b
; ð29Þ

1zn ¼
1za
b
: ð30Þ

Equation (7) together with Eq. (8) give

p

pn
¼ qð1� bqnÞ

qnð1� bqÞ : ð31Þ

3 Similarity solutions

Zel’dovich and Raizer [4] shown that the gas dynamic

equations admit similarity transformations, that there

are possible different flows similar to each other which

are derivable from each other by changing the basic

scales of length, time, and density. The motion itself

may be described by the most general functions of the

two variables r and t, q(r,t), p(r,t), u(r,t), v(r,t) and
w(r,t). These functions also contain the parameters

entering the initial and boundary conditions of the

problem (and specific heat ratio c).
However, there exist motions whose distinguishing

property is the similarity in the motion itself. These

motions are called self-similar (Sedov [3], Zel’dovich

and Raizer [4]). The distribution as a function of

position of any of the flow variables, such as the

pressure p, evolves with time in a self-similar motion

in such a manner that only the scale of the pressure

P(t) and the length scale R(t) of the region included in

the motion change, but the shape of the pressure

distribution remains unaltered. The p(r) curves corre-

sponding to different times t can be made the same by

either expanding or contracting theP and the R scales.

The function p(r, t) can be written in the form

pðr; tÞ ¼ PðtÞP r

R

� �
;

where the dimensional scalesP and R depend on time in

somemanner, and the dimensionless ratio p
P ¼ P r

R

� �
is a

‘‘universal’’ (in the sense that it is independent of time)

function of the new dimensionless coordinates g ¼ r
R
:

Multiplying the variables P r
R

� �
and g by the scale

function P(t) and R(t), we can obtain from the

universal function P(g) the true pressure distribution

curve p(r) as a function of position for any time t. The

other flow variables, density and component of

velocity are expressed similarly.

For self-similar motions of the system of partial

differential Eqs. (3)–(6) of gas dynamics reduces

to a system of ordinary differential equations in

new unknown functions of the similarity variable

g ¼ r
R
: Let us derive these equations. To do this we

represent the solution of the partial differential

Eqs. (3)–(6) in terms of products of scale functions

and the new unknown functions of the similarity

variable g,

g ¼ r

R
; R ¼ RðtÞ

The pressure, density, velocity, and length scales

are not all independent of each other. If we choose R

and qa as the basic scales, then the quantity dR
dt
� V can

serve as the velocity scale, qaV
2 as the pressure scale.

This does not limit the generality of the solution, as

scale is only defined to within a numerical coefficient

which can always be included in the new unknown

function. We seek a solution of the form (Vishwakar-

ma and Nath [13, 14])

u ¼ VU gð Þ; v ¼ V/ gð Þ;w ¼ VW gð Þ; q ¼ qaD gð Þ; p
¼ qaV

2P gð Þ
ð32Þ

where U, /, W, D and P are the function of the non-

dimensional variable (similarity variable) g ¼ r
R
only.

The variable g assumes the value ‘1’ at the shock front

and gp on the piston. Equations (1), (2) and (32) yields
a relation between B and C in the form

C ¼ B

gp
: ð33Þ
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Equation (31) with the aid of Eqs. (32) and (26)

yields a relation between P and D in the form

PðgÞ ¼ ðb� �bÞð1� bÞDðgÞ
ð1� �bDðgÞÞ

: ð34Þ

Using Eqs. (32) and (34), in fundamental Eqs. (3)–(6),

we obtain

ðU � gÞ dD
dg

þ D
dU

dg
þ DU

g
¼ 0; ð35Þ

ðU � gÞ dU
dg

þ ð1� bÞðb� �bÞ
Dð1� �bDÞ2

dD

dg
þ U � /2

g
¼ 0;

ð36Þ

ðU � gÞ d/
dg

þ Uð/þ gÞ
g

¼ 0; ð37Þ

ðU � gÞ dW
dg

þW ¼ 0: ð38Þ

From Eqs. (35–38), we obtain

dU

dg
¼ L; ð39Þ

dD

dg
¼ � D

ðU � gÞ
U

g
þ L

� 	
; ð40Þ

d/
dg

¼ �/ðU þ gÞ
gðU � gÞ ; ð41Þ

dW

dg
¼ � W

ðU � gÞ : ð42Þ

where

L¼ LðgÞ

¼ ½ð1� �bDÞ2ðU� gÞð/2�UgÞþ ð1�bÞðb� �bÞU�
½ð1� �bDÞ2ðU� gÞ2�ð1�bÞðb� �bÞ�g

:

Applying the similarity transformations (32) on

Eq. (14), we obtain the non-dimensional components

of the vorticity vector lr ¼ 1r
V=R

; lh ¼ 1h
V=R

; lz ¼ 1z
V=R

;

in the flow-filed behind the shock as

lr ¼ 0; ð43Þ

lh ¼
W

2ðU � gÞ ; ð44Þ

lz ¼ � /
ðU � gÞ : ð45Þ

The isothermal compressibility siso can be ex-

pressed in the non-dimensional form as

ðsisoÞqaV2 ¼ ð1� bDÞ
P

: ð46Þ

Using the self-similarity transformations (32),

Eq. (26) can be written as

Uð1Þ ¼ 1� bð Þ; Dð1Þ ¼ 1

b
; /ð1Þ ¼ C�

kC
;

Wð1Þ ¼ E

kC
; Pð1Þ ¼ ð1� bÞ;

ð47Þ

where it was necessary to use k = a = d to obtain the
similarity solutions. In addition to shock conditions

(47), the condition to be satisfied at the piston surface

is that the velocity of the fluid is equal to the velocity

of the piston itself. This kinematic condition from

Eq. (32) can be written as

U gp
� �

¼ gp: ð48Þ

Now, Eqs. (39)–(42) can be numerically integrated,

with boundary conditions (47) to obtain the solution of

the problem.

4 Adiabatic flow

In this section, we present the similarity solutions for

the adiabatic flow behind a strong shock driven out by

a cylindrical piston moving according to the expo-

nential law (1), in the case of axisymmetric rotating

non-ideal gas, which is rotating about the axis of

symmetry. The strong shock conditions, which serve

as the boundary conditions for the problem, are given

by

un ¼
2ð1� �bÞ
ðcþ 1Þ V; qn ¼

ðcþ 1Þ
ð2�bþ c� 1Þ qa

;

pn ¼
2ð1� �bÞ
ðcþ 1Þ qaV

2; vn ¼ C�exp dtð Þ;

wn ¼ E expðatÞ

ð49Þ

which are the same as given by Eqs. (26) and (28) in

the case of isothermal flow.

For adiabatic flow, Eq. (7) is replaced by (Vish-

wakarma and Nath [13, 14, 27], Nath [11])
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oe

ot
þ u

oe

or
� p

q2
oq
ot
þ u

oq
or

� �
¼ 0: ð50Þ

The adiabatic compressibility of non-ideal gas may

be calculated as (c.f. Moelwyn-Hughes [35], Nath

[11])

Cadi ¼
1

q
oq
op

� �
S

¼ 1

qa2
¼ ð1� ZÞ

Cp
: ð51Þ

With the help of Eqs. (32) (3)–(6) and (50), can be

transformed and simplified to

dU

dg
¼ � 1

ðU � gÞ
1

D

dP

dg
þ U � /2

g

� 	
; ð52Þ

dD

dg
¼ 2ð1� �bDÞD

cðU � gÞ þ ð1� �bDÞD
cP

dP

dg
; ð53Þ

dP

dg
¼

PD cUð2g�UÞ � 2gð1� �bDÞðU � gÞ �/2c

 �

ðU � gÞ2Dð1� �bDÞ � Pc
h i

g
;

ð54Þ

d/
dg

¼ �/ðU þ gÞ
gðU � gÞ ; ð55Þ

dW

dg
¼ � W

ðU � gÞ : ð56Þ

The transformed shock conditions, the kinematic

condition at the piston and the non-dimensional

component of the vorticity vector will be same as in

the case of isothermal flow.

The ordinary differential Eqs. (52)–(56) with the

boundary conditions (47) can now be numerically

integrated to obtain the solution for the adiabatic flow

behind the shock front.

By using Eq. (32) in Eq. (51), we obtain the

expression for the adiabatic compressibility Cadi as

ðCadiÞqaV2 ¼ ð1� bDÞ
cP

: ð57Þ

Normalizing the variables u, v, w, q and pwith their

respective values at the shock, we obtain

u

un
¼ UðgÞ

Uð1Þ ;
v

vn
¼ /ðgÞ

/ð1Þ ;
w

wn

¼ WðgÞ
Wð1Þ ;

q
qn

¼ DðgÞ
Dð1Þ ;

p

pn
¼ PðgÞ

Pð1Þ : ð58Þ

Because of the dependence of the boundary condi-

tions (47) and the Eqs. (34), (39), (40), (46) and (52)–

(57) on the parameter of non-idealness of the gas

b ð¼ b qaÞ, the similarity solutions exist only when b

is constants. Therefore, for existence of similarity

solutions it is necessary to take the initial density qa to
be a constant.

5 Results and discussion

The distribution of the flow variables between the

shock front (g = 1)and the inner expanding surface or

piston (g = gp) is obtained by the numerical integra-

tion of Eqs. (39–42) for isothermal flow, and from

Eqs. (48–56) for adiabatic flow with the boundary

conditions (47) by the Runge–Kutta method of the

fourth order. The typical values of physical quantities

involved in the computation are taken as (Vishwakar-

ma and Nath [10, 27], Nath [28, 31]) c = 1.4; �b ¼
0; 0:05; 0:075; 0:1; 0:2; 0:3: The values b~¼ 0 corre-

sponds to the perfect gas case (see curve-1 in Figs. 1, 2).

The GRP scheme was successfully employed for

solving complex shock wave interactions in pure gas

(see for example, Falcovtiz et al. [36], Igra et al. [37,

38], Falcovtiz and Ben-Artzi [39]). In these papers the

numerical solutions were compared with experimental

findings and excellent agreement was found between

the two, confirming the reliability of the numerical

solution obtained for the considered cases. We refer

readers to Falcovitz and Ben-Artzi [39] for an

extensive review of the GRP principles and its fluid

dynamical implementations.

In the present case, the flow takes place in a

axisymmetric rotating non-ideal gas. Unfortunately, to

the best of our knowledge, there are no experimental

results that can be used as a bench mark for the

presently considered flows. The present study is the

generalization of our earlier work (Vishwakarma and

Nath [14]) by considering the presence of the

azimuthal and axial fluid velocities and vorticity

components (Figs. 1b, c, f, g, 2b, c, f, g). In the present

work, we also studied the variation of isothermal and

adiabatic compressibility with respect to the parameter

b, (Figs. 1h, 2h).
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Table 1 shows the variation of density ratio

b ¼ qa
qn

� �
across the shock front and the position of

the piston gp for different values of �b with c = 1.4.

Figures 1 and 2 show the variation of the flow

variables u
un
; v
vn
; w
wn
; q
qn
; p
pn

the non-dimensional az-

imuthal component of vorticity vector lh, the non-

Fig. 1 Distribution of the flow variables in the region behind

the shock front in the case of isothermal flow: a radial

component of velocity u
un
, b azimuthal component of velocity

v
vn
, c axial component of velocity w

wn
, d density q

qn
, e pressure p

pn
,

f non-dimensional azimuthal component of vorticity vector lh,

g non-dimensional axial component of vorticity vector lz,

h isothermal compressibility (siso)qaV
2: 1. b ¼ 0 (Perfect gas);

2. b ¼ 0:05, 3. b ¼ 0:075; 4. b ¼ 0:1; 5. b ¼ 0:2; 6. b ¼ 0:3
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dimensional axial component of vorticity vector lz and

compressibility with g at various values of the

parameter of non-idealness of the gas �b in isothermal

and adiabatic cases respectively.

These figures demonstrate that the flow variables
u
un
; q
qn
; p
pn
and the non-dimensional axial component of

vorticity vector lz increase and the flow variables v
vn
; w
wn
,

the non-dimensional azimuthal component of vorticity

vector lh, the isothermal compressibility (siso)qaV
2 and

adiabatic compressibility (Cadi)qaV
2 decrease from the

shock front to the piston. The flow variables u
un
; q
qn
; p
pn

and the non-dimensional axial component of vorticity

vector lz have higher values at the piston than that at

the shock front. In fact, since the total energy increases

with time, the velocity of the piston is higher than the

radial component of fluid velocity just behind the

shock, therefore, most of the mass is concentrated near

the piston.

Fig. 1 continued
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Figure 2d shows that there is unbounded density

distribution near the piston, in some cases, when

the flow is adiabatic. This is quite acceptable and

may be explained as follows. First of all, Sedov [3]

(see also Ranga Rao Ramana [12], and Vishwakar-

ma and Nath [13, 14]) indicating that a limiting

case, as n ? ?, of a self-similar flow-field with a

power law shock,

Fig. 2 Distribution of the flow variables in the region behind

the shock front in the case of adiabatic flow: a radial component

of velocity u
un
, b azimuthal component of velocity v

vn
, c axial

component of velocity w
wn
, d density q

qn
, e pressure p

pn
, f non-

dimensional azimuthal component of vorticity vector lh, g non-

dimensional axial component of vorticity vector lz, h adiabatic

compressibility (Cadi)qaV
2: 1. b ¼ 0 (Perfect gas); 2. b ¼ 0:05,

3. b ¼ 0:075; 4. b ¼ 0:1; 5. b ¼ 0:2; 6. b ¼ 0:3
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R� tnþ1; ð59Þ

is the flow field formed with an exponential shock

described by Eq. (2). For such flow with a power law

shock, in the adiabatic case, it can be easily seen from

the asymptotic form of the adiabatic integral (see

‘‘Appendix’’)

Dcþ n
nþ1ð Þ

ð1� �bDÞc
¼ Pg

2
nþ1ð Þ

C1
½U � ðnþ 1Þ��

n
nþ1ð Þ; ð60Þ

that the density tends to infinity for n[ 0 as the piston

is approached, provided ð1� �bDÞ does not tends to

zero. The density distribution exhibits such behavior

in the case of a perfect gas ð�b ¼ 0Þ or in the case of

non-ideal gas with �b	 0:1 (see Fig. 2d), when �b ¼
0:2; 0:3 this behavior of density is absent. This is

perhaps due to the fact that, in this case, the expression

ð1� �bDÞ in (60) tends to zero as the piston is

approached for n[ 0. This phenomenon can be

physically interpreted as follows. In the case of perfect

gas or in case of a non-ideal gas with �b	 0:1 the path

of the piston converges with the path of the particle

immediately ahead, thus compressing the gas to

infinite density; whereas in the case of �b ¼ 0:2; 0:3;

Fig. 2 continued
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the path of the piston is almost parallel to the path of

the particle immediately ahead, the above behavior of

the density distribution is not observed.

It is evident from Fig. 1d, g, h that in the case of

isothermal flow the density, compressibility and the

non-dimensional axial component of the vorticity

vector lz are finite at the piston for all values of �b. Thus,
one may note that the feature of unbounded density,

compressibility and the non-dimensional axial com-

ponent of vorticity vector near the piston in the

adiabatic flow, is absent when the flow is isothermal

for all values of �b. This seems to be necessary because

with an unbounded density near the piston the

temperature there approaches zero, thus violating the

basic assumption of zero temperature gradient

throughout the flow. Therefore, it may be observed

that the assumption of zero temperature gradient

brings a profound change in the density, compress-

ibility and non-dimensional axial component of vor-

ticity vector distributions as compared to that of the

adiabatic flow (except the case when �b ¼ 0:2 and
�b ¼ 0:3); whereas the distributions of pressures,

components of velocity and the azimuthal component

of the vorticity vector are slightly affected.

Table 1 also shows that the distance of the piston

from the shock front is less in the case of adiabatic flow

in comparison with that in the case of isothermal flow.

The radial component of velocity, density, pressure,

axial component of vorticity vector, isothermal and

adiabatic compressibility in the disturbed region

decrease, in general as we move inward from the

shock front, whereas axial component of velocity, the

azimuthal component of velocity and vorticity vector

increase with an increase in the parameter of non-

idealness �b of the gas (see Figs. 1a–h, 2a–h). Also, the
density ratio b across the shock front and the distance

of the piston from the shock front increase with an

increase in the parameter of non-idealness �b of the gas
i.e. there is a decrease in the shock strength and the

flow field behind the shock become somewhat rarefied

(see Table 1).

6 Conclusion

The present work investigates the self-similar flow

behind a strong exponential cylindrical shock wave,

propagating in a rotational axisymmetric non-ideal

gas, in the case of isothermal and adiabatic flows. The

shock wave is driven out by a piston moving with time

according to an exponential law. The article concerns

with the explosion problem in rotating medium,

however the methodology and analysis presented here

may be used to describe many other physical systems

involving non-linear hyperbolic partial differential

equations. The shock waves in rotational axisymmet-

ric non-ideal gas can be important for description of

shocks in supernova explosions, in the study of a flare

produced shock in solar wind, central part of star burst

galaxies, nuclear explosion, rupture of a pressurized

vessel etc. The findings of the present work provided a

clear picture of whether and how the non-idealness

parameters affect the flow behind the shock front in

rotating medium. On the basis of this work, one may

draw the following conclusions:

1. The consideration of zero temperature gradient

decreases the shock strength.

2. An increase in the parameter of non-idealness of

the gas affects significantly the flow-variables,

decreases the shock strength and widens the

disturbed region between the shock and the piston.

3. The assumption of zero temperature gradient

removes the singularities in the density, the non-

dimensional axial component of vorticity vector

and compressibility distributions near the piston

(which arise in some cases of the adiabatic flow).

4. The potential applications of this study include

analysis of data from exploding wire experiments,

and cylindrically symmetric hypersonic flow

problems associated with meteors or reentry

vehicles (c.f. Hutchens [40]).

Table 1 Variation of the density ratio b ¼ qa
qn

� �
across the

shock front and the position of the piston surface gp for dif-

ferent values of b with c = 1.4

b b Position of the piston gp

Isothermal flow Adiabatic flow

0 0.166667 0.933640 0.957585

0.05 0.208333 0.910618 0.933552

0.075 0.229167 0.898865 0.921293

0.10 0.250000 0.886944 0.908865

0.20 0.3333300 0.837428 0.857308

0.30 0.416667 0.784504 0.802335
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Appendix

From the basic equations of continuity, momentum

and energy in Eulearian co-ordinates for the rotational

axisymmetric flow of non-ideal gas with the similarity

transformations

g ¼ r

R
; ð61Þ

u ¼ r

t
UðgÞ; v ¼ r

t
/ðgÞ;w ¼ r

t
WðgÞ; q ¼ qaD gð Þ;

p ¼ r2

t2
qaPðgÞ;

ð62Þ

where the variable g assumes the value ‘1’ at the shock

front and gp on the piston surface, such that the piston

radius rp = gpR, R(* tn?1)being the shock radius, we

obtain

U � ðnþ 1Þ½ � dD
dg

þ D
dU

dg
þ 2DU

g
¼ 0 ð63Þ

U � ðnþ 1Þ½ � dU
dg

þ 1

D

dP

dg
þ UðU � 1Þ

g
þ ð2P� /2DÞ

Dg
¼ 0

ð64Þ

U � ðnþ 1Þ½ � d/
dg

þ ð2U � 1Þ/
g

¼ 0 ð65Þ

U � ðnþ 1Þ½ � dW
dg

þ ðU � 1ÞW
g

¼ 0 ð66Þ

dP

dg
� P c

Dð1� �bDÞ
dD

dg
þ 2ðU � 1ÞP
g U � ðnþ 1Þ½ � ¼ 0 ð67Þ

The boundary conditions for a strong shock in the

rotating non-ideal gas at g = 1 are given by

U 1ð Þ ¼ 1� bð Þ nþ 1ð Þ; Dð1Þ ¼ 1

b
; P 1ð Þ

¼ 1� bð Þ nþ 1ð Þ2;

/ð1Þ ¼ C� Cð Þ�
1

nþ1;Wð1Þ ¼ E Cð Þ�
1

nþ1 ð68Þ

where it was necessary to use a ¼ d ¼ n
nþ1

for

existence of similarity solutions. In addition to the

shock conditions (68), the kinematic condition

U(gp) = (n ? 1) at the piston surface must be satis-

fied. From Eqs. (63) and (67), we obtain the relation

Dcþð n
nþ1

Þ

ð1� �bDÞc
¼ P gð

2
nþ1

Þ

C1

½U � ðnþ 1Þ��ð n
nþ1

Þ ð69Þ

where C1 is a constant to be determined from (68).
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