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Abstract We study the vibration of a tapered

cantilever (Euler–Bernoulli) beam carrying a moving

mass. The tapering is assumed to be parabolic. Using

the Galerkin method we find approximate solutions in

an energy formulation that takes into account dynamic

mass-beam coupling due to inertial, Coriolis and

centrifugal effects. The approximate solutions are

expanded in terms of the mode shapes of the free

tapered beam, which can be obtained analytically. We

then study the effect the tapering as well as the

magnitude and velocity of the mass have on the tip

deflections of the beam. We consider two different

initial conditions, one where the mass starts moving

from a statically deformed beam and one where the

beam is initially triggered to vibrate. We find that tip

deflections are more irregular for strongly tapered

beams. Our results are of interest for barreled launch

systems where tip deflections may adversely affect

projectile motion.

Keywords Tapered cantilever beam � Exact mode

shape � Moving mass � Tip oscillations

1 Introduction

The moving mass problem, i.e., the problem of a

continuously distributed system carrying a moving

concentrated mass, has been an interest of research for

more than a century [1]. It has broad applications in

mechanics and engineering, including spacecraft sta-

tions, satellite antennas, robotic arms [2], machine

tools, flexible manipulators [3], high-speed train

railroads and highway bridges with moving vehicles

[4].

The classical example of a moving mass problem is

the idealisation of a vehicle-bridge system. In this case

the moving vehicle is usually treated as a moving

force, or load, of constant magnitude, while the bridge

is modelled as a simply-supported beam. This problem

is therefore more accurately described as a moving

load problem [4]. Pesterev et al. [5] recently revisited

the moving load problem to develop tools for finding

the maximum beam deflection for a given velocity of

the load. The moving load assumption does not take

into account the inertial forces of the moving mass and

the interactions between the moving mass and the

continuous beam. The moving load treatment is

therefore insufficient when the gravitational and

inertial effects of the moving mass are not negligible
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compared to the mass of the structure. In [6] it was

shown that the moving load solution is not an upper

bound for the moving mass solution for the (simply-

supported and clamped-clamped) boundary conditions

considered there.

Ting et al. [7] were among the first to consider the

inertial forces of the moving mass as an interaction

between the mass and the beam. Ryu et al. [8] took all

the inertial effects (including centrifugal and Coriolis

effects) of a moving mass into account when deriving

the equations of motion for an elastically restrained

beam. A cantilever beam with a mass placed at its free

end was investigated by Golnaraghi [9, 10]. A slider

was placed at the free end of a cantilever beam as a

controller to suppress the transient vibrations. A

spring-mass subsystem coupled with a uniform can-

tilever beam was investigated by Khalily et al. [11],

Siddiqui et al. [12–14] and Wu [15–18]. In [15–18] the

spring-mass subsystem was replaced by massless

equivalent springs and the corresponding normal

mode shape solution that satisfied spring constraint

conditions was derived. Perturbation [12, 13] and

average acceleration [14] methods were used to

analyse the distinctive oscillation features of the beam.

Here we consider the effects of a moving mass

on vibration of a tapered beam (i.e., one of varying

cross-section). This problem is for instance relevant

for artillery and similar launch systems and to our

knowledge has not been treated before. In artillery

systems, for release and projection purposes one is

particularly interested in tip deflections as these

effect the initial conditions of the subsequent

projectile motion of the launched mass. In this

paper we ask the question whether the moving mass

has a significant effect on the tip deflection of the

beam. Vibrations of tapered beams have for instance

been studied by Goel [19], Mabie and Rogers [20]

and De Rosa and Auciello [21], who all considered

linearly varying cross-sectional dimensions, and

Zhou [22] who considered more general polynomial

tapering. We choose the tapering to be parabolic, in

which case we can obtain the mode shapes of the

free beam, without a mass, exactly by using a

transformation of the (spatial) independent variable

similar to that used in [22]. We then expand the

time-dependent solution of the moving mass prob-

lem in terms of these mode shapes and investigate

the tip deflection as a function of the three important

parameters of the problem: the relative mass of

moving mass and beam, the velocity of the moving

mass and the degree of tapering.

2 Modelling

The system to be studied is shown schematically in

Fig. 1. Here the constant parameters of the beam are

its length l, its mass density q and its modulus of

elasticity E, while the varying parameters are the

cross-sectional area AðxÞ and the second moment of

area about the z-axis IðxÞ. The moving mass M slides

along the length of the beam with local velocity vðtÞ
and acceleration aðtÞ. The beam deflection, in the y

direction, is denoted by wðx; tÞ.
The beam is assumed to undergo small deflections.

We can then write xðtÞ for the position of the mass

along the axis of the beam and wðxðtÞ; tÞ for the

position of the mass in space. The vertical velocity of

the moving mass is then computed as

dw

dt
¼ vðtÞ ow

ox
þ ow

ot
; ð1Þ

and the acceleration as

d2w

dt2
¼ v2ðtÞ o

2w

ox2
þ 2vðtÞ o

2w

oxot
þ aðtÞ ow

ox
þ o2w

ot2
: ð2Þ

The first and second terms on the right-hand side of (2)

are the centrifugal and Coriolis terms, respectively.

We model the beam as an Euler–Bernoulli beam.

The kinetic energy of the beam-mass system is then

T ¼ 1

2

Z l

0

qAðxÞ ow

ot

� �2

dxþ 1

2
M

dw

dt

� �2

; ð3Þ

while the potential energy is

U ¼ 1

2

Z l

0

EIðxÞ o2w

ox2

� �2

dx; ð4Þ

and the gravitational energy is

Fig. 1 Cantilever beam carrying a moving mass
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W ¼
Z l

0

qAðxÞgwðx; tÞ dxþMgwðx; tÞ; ð5Þ

where g is the acceleration due to gravity.

With the Lagrangian defined by

L ¼ W þ T � U; ð6Þ

we then have the action functional of Hamilton’s

principle in the form

S ¼
Z t2

t1

Z l

0

1

2
qAðxÞ ow

ot

� �2
"(

� 1

2
EIðxÞ o2w

ox2

� �2

þqAðxÞgw

#
dx

þ 1

2
M

dw

dt

� �2

þMgw

)
dt:

ð7Þ

We consider deflections of the beam subject to the

cantilever boundary conditions

wjx¼0 ¼ 0;
ow

ox

����
x¼0

¼ 0 at the fixed end ; ð8Þ

and

o2w

ox2

����
x¼l

¼ 0;
o3w

ox3

����
x¼l

¼ 0 at the free end : ð9Þ

We now use a Galerkin approximation to spatially

discretise the problem and write the beam deflection as

a truncated series wðx; tÞ ¼
Pn

i¼1 UiðxÞYiðtÞ, where the

UiðxÞ are (the first n) mode shapes of the free beam and

the YiðtÞ are time-dependent dimensionless coeffi-

cients. After substitution of this series expansion into

(7) the functional S becomes a function of the

functions YiðtÞ; _YiðtÞ and the application of Hamilton’s

principle gives the Euler–Lagrange equations

oL

oYi

� d

dt

oL

o _Yi

� �
¼ 0 ði ¼ 1; :::; nÞ; ð10Þ

taking the matrix form

MðtÞ €YðtÞ þ CðtÞ _YðtÞ þKðtÞYðtÞ ¼ PðtÞ; ð11Þ

where

YðtÞ ¼ ½Y1ðtÞ; Y2ðtÞ; . . .; YnðtÞ�T ; ð12Þ

Mij ¼ q
Z l

0

AðxÞUiðxÞUjðxÞdxþMUiðxðtÞÞUjðxðtÞÞ;

ð13Þ

Cij ¼ 2vðtÞMUiðxðtÞÞU0jðxðtÞÞ; ð14Þ

Kij ¼ E

Z l

0

I00ðxÞUiðxÞU00j ðxÞdx

þ 2E

Z l

0

I0ðxÞUiðxÞU000j ðxÞdx

þ E

Z l

0

IðxÞUiðxÞU0000j ðxÞdx

þ v2ðtÞMUiðxðtÞÞU00j ðxðtÞÞ
þ aðtÞMUiðxðtÞÞU0jðxðtÞÞ;

ð15Þ

Pi ¼ qg

Z l

0

AðxÞUiðxÞdxþMgUiðxðtÞÞ: ð16Þ

Here the prime indicates differentiation with respect to

x. The dimension of the system depends on the number

of the assumed modes n. The mass matrix M is

symmetric. The matrix C in (14) comes from the

Coriolis effect of the moving mass. Although taking

the place of a damping matrix in the equation of

motion (11), C is antisymmetric and therefore does not

actually represent damping, in the sense that there is

no dissipation. The stiffness matrix K in (15) varies

with the beam coordinate xðtÞ as the mass moves along

the beam and as a result it is nonsymmetric.

In the following section we derive the exact mode

shapes Ui for the free tapered beam. Once these Ui are

known the matrices M; C and K and the vector P can

be computed and Eq. (11) solved.

3 Exact mode shapes of the free tapered beam

3.1 Variation of the beam’s cross-section

The cross-section of the beam is assumed to be a

circular ring with inner and outer radius varying

parabolically with x (see Fig. 2). Denoting inner

radius by rðxÞ and outer radius by RðxÞ, we write

rðxÞ ¼ r0ð1� ax=lÞ2 and RðxÞ ¼ R0ð1� ax=lÞ2,

where the parameter a 2 ½0; 1� governs the degree of

tapering of the beam and r0 and R0 are the inner and

outer radius at the fixed end, respectively.
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3.2 Mode shapes of the free beam

Based on the cross-sectional properties above, we

have

AðxÞ ¼ pR2ðxÞ � pr2ðxÞ ¼ A0 1� a
l

x
� �4

; ð17Þ

IðxÞ ¼ p½R4ðxÞ � r4ðxÞ�
4

¼ I0 1� a
l

x
� �8

; ð18Þ

where A0 ¼ pðR2
0 � r2

0Þ and I0 ¼ pðR4
0 � r4

0Þ=4.

The motion of the beam without a moving mass

(and without gravity) is governed by

E
o2

ox2
IðxÞ o

2w

ox2

� �
þ qAðxÞ o

2w

ot2
¼ 0: ð19Þ

Using separation of variables in the form

wðx; tÞ ¼
Pn

i¼1 UiðxÞeixi t, where the xi are the first n

natural circular frequencies of the beam, we find that

the shape functions Ui solve the equation

E
d2

dx2
IðxÞ d

2UiðxÞ
dx2

� �
� x2

i qAðxÞUiðxÞ ¼ 0: ð20Þ

By a transformation of the independent variable x

according to x ¼ ln; f ¼ 1� an and f ¼ ez, Eq. (20) is

turned into the constant-coefficient equation

d4UiðzÞ
dz4

þ 10
d3UiðzÞ

dz3
þ 19

d2UiðzÞ
dz2

� 30
dUiðzÞ

dz

� k4
i UiðzÞ ¼ 0; ð21Þ

where k4
i ¼ qA0l4x2

i =EI0a4.

Remarkably, the characteristic equation for (21),

obtained on setting Ui ¼ ekiz,

k4
i þ 10k3

i þ 19k2
i � 30ki � k4

i ¼ 0; ð22Þ

has simple roots, as can be seen by noting that

k2
i þ 5ki � 3

	 
2¼ 9þ k4
i ð23Þ

and hence

ki þ
5

2

� �2

� 37

4

 !2

¼ 9þ k4
i : ð24Þ

Thus the general solution of Eq. (21) can be written as

UiðzÞ ¼ e�5z=2 Ci1 cosðpizÞ þ Ci2 sinðpizÞ½
þCi3 sinhðqizÞ þ Ci4 coshðqizÞ�;

ð25Þ

where,

pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 37

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ k4

i

qr
; qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ k4

i

qr

and the Cij are coefficients yet to be determined. The pi

are real for k4
i [ 76:5625. In our numerical examples

below this condition is always satisfied for all i ¼
1; :::; n (for instance, k4

1 ¼ 108 for a ¼ 0:9 and larger

for smaller a, and ki� k1 for all i).

In terms of the original spatial variable x the

solution (25) becomes

UiðxÞ ¼ 1� a
l

x
� ��5=2

Ci1 cos pi log 1� a
l

x
� �h in

þ Ci2 sin pi log 1� a
l

x
� �h i

þ Ci3 cosh qi log 1� a
l

x
� �h i

þCi4 sinh qi log 1� a
l

x
� �h io

:

ð26Þ

3.3 Determination of the coefficients Cij

The coefficients Cij ðj ¼ 1; 2; 3; 4Þ are determined by

the boundary conditions (8) and (9), which yield the

system of equations

Uið0Þ ¼ 0;

U0ið0Þ ¼ 0;

U00i ðlÞ ¼ 0;

U000i ðlÞ ¼ 0:

8>>><
>>>:

ð27Þ

Substituting the mode shapes (26) into (27), we obtain

a system of linear homogeneous equations in the

coefficients Cij, for each i ¼ 1; :::; n, in the form

Fig. 2 Cantilever beam with varying cross-section; a is the

cross-section of the fixed end; b is the cross-section of the free

end
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SðkiÞCi :¼

S11ðkiÞ S12ðkiÞ S13ðkiÞ S14ðkiÞ
S21ðkiÞ S22ðkiÞ S23ðkiÞ S24ðkiÞ
S31ðkiÞ S32ðkiÞ S33ðkiÞ S34ðkiÞ
S41ðkiÞ S42ðkiÞ S43ðkiÞ S44ðkiÞ

0
BBB@

1
CCCA

Ci1

Ci2

Ci3

Ci4

0
BBB@

1
CCCA

¼

0

0

0

0

0
BBB@

1
CCCA;

ð28Þ

where the SijðkiÞ ðj ¼ 1; 2; 3; 4Þ are functions of ki.

For non-trivial mode shapes we require the determi-

nant of the matrix SðkiÞ to be zero. This gives us a

transcendental equation with infinitely many solutions

the first n of which yield the ki (and hence the natural

circular frequencies xi). We solve this equation using

Newton iterations. For convergence it turns out to be

sufficient to take the natural circular frequencies of the

uniform beam ða ¼ 0Þ as initial guesses. Table 1 gives

the first three natural frequencies for a number of a
values. We note that the first natural frequency

increases with a, while the second and third natural

frequencies decrease with a. Once the ki have been

obtained we can solve for the Cij, subject to a

normalisation condition. Figure 3 shows the first three

mode shapes of the cantilever beam for various values

of a. Here we have used the normalisation that the

absolute tip deflections jUiðlÞj are 1. It is found that

when a tends towards zero (uniform beam), the beam

deflections (away from the end) become larger.

4 Solutions of the moving mass problem

4.1 Example problem

In this section we consider a steel beam ðE ¼ 2:0�
1011 Pa; q ¼ 7;850 kg=m3Þ of length l ¼ 2 m and with

R0 ¼ 0:1 m and r0 ¼ 0:05 m. The tapering ratio ðaÞ,

the magnitude ðMÞ and the velocity ðvÞ of the moving

mass will be varied. We will focus on the effect of

these parameters on beam tip and mass deflections as

the beam is excited by the travelling mass. We

compute expansions of the beam deflection in terms of

the first three mode shapes Ui, i.e., we take n ¼ 3.

Table 1 First three natural frequencies of a pure beam with different tapering ratios a

a 0 0.1 0.3 0.5 0.7 0.8

1st natural frequency (Hz) 39 43 52 62 77 85

2nd natural frequency (Hz) 247 236 214 191 167 154

3rd natural frequency (Hz) 693 637 530 427 325 272
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Fig. 3 The first three mode shapes of a parabolically tapered

cantilever beam with varying tapering parameter a
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4.2 Numerical solutions and discussion

We discuss solutions for two different initial condi-

tions. In the first the mass starts moving when the

beam is in the static equilibrium configuration. We

write the solution as

YðtÞ ¼ eYðtÞ þ Y0; eYð0Þ ¼ 0 ð29Þ

and the load PðtÞ as

PðtÞ ¼ ePðtÞ þ P0; ð30Þ

noting that P0i ¼ qg
R l

0
AðxÞUiðxÞ dx. The governing

matrix Eq. (11) is then transformed into

MðtÞ €eYðtÞ þ CðtÞ _eY þKðtÞeYðtÞ ¼ ePðtÞ;
KðtÞY0 ¼ P0:

(
ð31Þ

We solve the initial solution Y0 ¼ Yð0Þ as Y0 ¼
K�1ð0ÞP0 and obtain for the deflection w of the beamPn

i¼1 UiðxÞY0i (with n ¼ 3 in our case), which corre-

sponds to the static deflection of the beam. This

solution is displayed in Fig. 4.

The remaining system of ordinary differential

equations for eY in (31) is solved numerically using

the fourth-order Runge–Kutta method. Solutions are

given in the dynamic tip deflection plots of Figs. 5, 6

and 7. In each plot the tip deflection wðl; tÞ of the beam

is given as a function of the instantaneous position xðtÞ
of the moving mass. We call this the beam coordinate.

It can be interpreted as a time coordinate when the

speed is constant. When xðtÞ ¼ l ¼ 2, the mass has

reached the end of the beam. Figure 5 shows three

plots for three different velocities v and with varying

mass M at fixed tapering ratio a ¼ 0:1. M is here

specified as the percentage of the total mass of the

beam-mass system. We see that the beam tip barely

vibrates. Alternatively, in the case of a relatively low

speed, such as v ¼ 100 m=s, we can say that the

vibration frequency is so low that the tip has barely

moved by the time the mass has traversed the length of

the beam. In this case the static load effect of the

moving mass dominates over the dynamic trigger

effect. Tip deflection when the mass leaves the beam is

almost proportional to the mass magnitude. At higher

speeds, v ¼ 340 m=s and v ¼ 1;800 m=s in the figure,

the mass movement triggers the beam tip to vibrate.
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Generally, the higher the velocity v and the larger the

mass M, the higher the vibration frequency of the

beam tip. The tip deflections are no longer propor-

tional to the mass magnitudes when the mass reaches

the tip end. The amplitude of deflection reduces as the

speed v increases.

Figure 6 presents the beam tip deflection when the

mass travels along the beam (again with a ¼ 0:1) at

various velocities when the mass magnitude accounts

for 20 % of the total mass of the system. Though the

static load effect dominates the tip deflection at low

velocities, in the range of v ¼ 10 m=s to v ¼ 150 m=s,

these velocities have different effects on the deflection

trace. Again we note that generally the maximum tip
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Fig. 6 Tip deflections at various values of v, for a travelling

mass M accounting for 20 % of the total mass and a ¼ 0:1
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deflection decreases as the velocity increases. In the

last plot, at high velocities, we see that the tip

deflection reaches its maximum when the mass is at

about x ¼ 1:7 m, almost independent of velocity.

Figure 7 shows the tip deflection under a travelling

mass accounting for 20 % of the total mass and

moving at a speed of v ¼ 20 m=s along a beam at

different tapering ratios a, including a uniform beam

in the limit a ¼ 0. It is seen that a higher tapering ratio

makes the beam effectively more slender: as a
increases, the maximum deflection of the tip increases.

In the second choice of initial conditions the

beam is initially triggered to vibrate by both its

own gravity and the moving mass. The situation

can be described as follows. The beam is originally

fixed at one end and simply supported at the other
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Fig. 10 Tip (a) and mass

(b) oscillations for different

masses sliding along the

beam at a constant velocity

of v ¼ 10 m=s from an

initial non-equilibrium

position ða ¼ 0:1Þ
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(b) oscillations for different

velocities v when a mass

accounting for 20 % of the

total mass moves along the

beam from an initial non-

equilibrium position

ða ¼ 0:1Þ
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end. The simple support is then instantaneously

removed at t ¼ 0 when the mass starts moving from

the fixed end. In this situation, the beam starts from a

position of non-equilibrium. Beam gravity acts as an

external load. It triggers vibration along with the

moving mass. In this situation the tapering ratio

matters significantly for the tip oscillation, as illus-

trated in Fig. 8. As the tapering ratio increases, the tip

is more sensitive to the moving mass. Irregular

oscillations occur when a is large. The frequency

content of the tip oscillation trace for a ¼ 0:1 in Fig. 8

is displayed in a spectrogram in Fig. 9. It shows the

power spectral density (PSD) obtained by Fourier

transformation (after multiplication by 104 and taking

the logarithm for plotting purposes). The spectral

decomposition is strongly dominated by frequencies

close to, and slightly lower than, the first natural

frequency of the corresponding free tapered beam
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Fig. 12 Tip (a) and mass

(b) oscillations when a mass

accounting for 20 % of the

total mass travels along the

beam with an initial velocity

v0 ¼ 10 m=s and various

constant accelerations a

ða ¼ 0:1Þ
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(b) oscillations when a mass

accounting for 20 % of the

total mass travels along the

beam with an initial velocity
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constant decelerations a

ða ¼ 0:1Þ

Meccanica (2015) 50:1419–1429 1427

123



(43 Hz according to Table 1). We find generally that

the travelling mass has the effect to lower the

frequency of vibration of the beam.

Having so far only considered the deflection of the

beam tip, we now also focus on the deflection of the

moving mass, or, equivalently, the position along the

beam where the mass is instantaneously located. We

call this the mass local deflection. Figures 10 and 11

display the effects on both tip and mass deflection of

the magnitude of mass and its velocity at a low

tapering ratio ða ¼ 0:1Þ. We take again the second set

of non-equilibrium initial conditions. The figures

show that the oscillations are regular. Frequencies

and tip amplitudes in Fig. 10a decrease slightly with

the beam coordinate, which is due to the Coriolis

acceleration o2w
oxot

. We conclude that periods and

amplitudes of vibration increase as we raise the

magnitude of the travelling mass M, and so does the

deviation of the equilibrium position from the

horizontal. When interpreting Fig. 11 it should be

noted that the different periods for different velocities

are the result of plotting deflections against a spatial

coordinate (the beam coordinate). Plotted against time

the curves would nearly fall on top of each other, with

only a small divergence towards the right end (i.e., a

slightly extended period for larger velocities).

Figures 12 and 13 show oscillations when the

moving mass is in constant acceleration, respectively

deceleration (starting from an initial velocity

v0 ¼ 10 m=s), the beam again having tapering ratio

a ¼ 0:1. For easier interpretation the deflections are

here plotted against time rather than the beam

coordinate. The period of both tip and mass oscilla-

tions is seen to vary slightly in time. This variation is in

accordance with the slight extension of the period

under increasing velocity of the moving mass ob-

served in Fig. 11. In addition there is a small inertial

effect: the periods of oscillation increase with increas-

ing acceleration (and decreasing deceleration).

Note that there is a critical value for any realistic

deceleration of the mass: the deceleration should be

within the range� v2
0

2l
to zero, otherwise the mass would

go backwards before it reaches the tip end of the beam.

The curves for a ¼ �25 m=s2 in Fig. 13 show the

oscillations at this critical deceleration. Imposing a

deceleration can be interpreted as a simple way of

modelling friction between the moving mass and the

beam.

We finally consider tip oscillations at large tapering

ratio. Figures 14 (at constant mass M) and 15 (at

constant velocity v) show that when a ¼ 0:8 these

oscillations are very irregular.

5 Conclusion

In barreled launch systems the motion of the mass after

it leaves the barrel (beam) is of obvious interest.

However, after the moment of departure, the mass and

beam motions are completely decoupled and can be

studied by classical theory. In this paper we have

studied the interaction between mass and beam while

the former is travelling along the latter.

For this purpose approximate equations, in the form

of a system of second-order ordinary differential

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

Beam Coordinate m

B
ea

m
T

ip
D

ef
le

ct
io

n
m

m

M 30 of the total mass

M 20 of the total mass

M 10 of the total mass

Fig. 14 Tip oscillations for different masses M sliding along the

beam at constant velocity v ¼ 10 m=s from an initial non-

equilibrium position ða ¼ 0:8Þ
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Fig. 15 Tip oscillations at different velocities v when a mass

accounting for 20 % of the total mass moves along the beam

from an initial non-equilibrium position ða ¼ 0:8Þ
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equations with time-dependent coefficients, were

derived from an energy formulation that takes into

account dynamic mass-beam coupling due to inertial,

Coriolis and centrifugal effects and uses an expansion

in terms of the mode shapes of the free tapered beam,

which can be obtained analytically. We consider

cantilever boundary conditions, which are natural for

launch applications, but other boundary conditions

could be analysed as well. Using two different sets of

initial conditions we then investigated the effect the

travelling mass has on tip vibrations of the beam,

important for the subsequent projectile motion of the

released mass. Our results show that these tip vibra-

tions become more irregular and grow in amplitude as

the degree of tapering of the beam is increased.
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