
Nonlinear anisotropic elasticity for laminate composites

E. V. Lomakin • B. N. Fedulov

Received: 14 June 2014 / Accepted: 8 January 2015 / Published online: 18 January 2015

� Springer Science+Business Media Dordrecht 2015

Abstract Many structural materials, which are pre-

ferred for the developing of advanced constructions,

are inhomogeneous ones. These materials have com-

plex internal structure and properties, which make

them to be more effectual in the solution of special

problems required for development engineering. On

the other hand, in consequence of this internal

heterogeneity, they exhibit complex mechanical prop-

erties. In this work, the analysis of some features of the

behavior of composite materials under different load-

ing conditions is carried out. The dependence of

nonlinear elastic response of composite materials on

loading conditions is studied. Several approaches to

model elastic nonlinearity such as different stiffness

for particular type of loadings and nonlinear shear

stress–strain relations are considered. Instead of a set

of constant anisotropy coefficients, the anisotropy

functions are introduced. Eventually, the combined

constitutive relations are proposed to describe simul-

taneously two types of physical nonlinearities, one of

which characterizes the nonlinearity of shear stress–

strain dependency and another one determines the

stress state susceptibility of material properties. The

method for experimental determination of material’s

functions is proposed. Quite satisfactory correlation

between the theoretical dependencies and the results

of experimental studies is demonstrated.

Keywords Structural composites � Non-linear

behavior � Anisotropy � Stress state dependence �
Constitutive relations � Non-linear shear diagram

1 Introduction

Anisotropic heterogeneous materials are widely used

in different modern constructions and the most chal-

lenging of them are composite materials. Experimental

investigations of mechanical properties of composite

materials reveal different types of nonlinearity in their

behavior. There is a variety of mechanisms of defor-

mation of these materials, which are dependent on the

type of reinforcement, matrix properties, loading

conditions, directions of loads with respect to rein-

forcement and some others. These mechanisms and

their interactions determine the stress–strain behavior

of materials. The physical nonlinearity of composite

materials is defined by their heterogeneous nature and

the presence of initial defects caused by imperfections

of manufacturing technologies. This nonlinearity and

shear stiffness loss under finite strains are usually

referred to the damage accumulations in materials

during the loading [1–7]. These processes include
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matrix microstructure variations, cracking, fiber/

matrix splitting and some others, which influence

considerably on stiffness, strength and fatigue proper-

ties of composite materials. One of the difficulties in

model development for composite materials is their

nonlinear response to shear loading [8–20]. The

mechanical properties of composites are strong depen-

dent on fiber/matrix interfacial adhesion and matrix

properties, too. The stress–strain curves of neat poly-

mer resins are nonlinear over the entire strain range and

at very low strain levels [20]. Most composite materials

have initial nonlinearity in stiffness characteristics,

which cannot be explained only by the process of

accumulation of new internal damage, material phase

transformation or some other irreversible processes

because this nonlinearity usually is observed from the

very outset of deformation process when the elastic

strains are dominant. This is visually displayed in the

cases when the loading direction does not coincide

with the reinforcement orientation [14, 20]. Another

type of physical nonlinearity is that the mechanical

properties of these materials are not invariant to the

loading condition but depend on the stress state type

that is caused by heterogeneous structure of composite

materials, which particularly is displayed in stiffness

difference of composites under tension and compres-

sion loadings and other loading conditions, too [21–

27]. This effect is most prominent for fabric based

composites and especially for woven carbon–carbon

composites or carbon composites with three axial

weave [28]. The elastic modulus of these composite

materials under tension can be sometimes grater in

comparison with elastic modulus under compression.

The natural phenomena of this behavior are described

in [21, 23]. The variety of deformation mechanisms

and corresponding nonlinear behavior of composite

materials impede the model development for the

characterization of their behavior. A current and

widely used method to perform the stress–strain

analysis of structures is based on the use of averaged

properties of the material in combination with linear

elastic model. This could give a satisfactory for

engineering practice estimations of stresses and

strains, but always keeps some doubts about the

reliability of results obtained with the use of simplified

properties in the cases of complex loadings. That

makes design cycle of a composite structure less clear

and over expensive due to increased number of

specimen’s tests and full-scale experiments. Moreover

in the case of essential nonlinearity of material used in

structure, the experimental results of subcomponents

cannot guarantee the same response of tested ones in

complete assembly of components. Thus, the only

analysis of the designing construction with well-tested

mathematical model of the material could be the

trusted engineering tool. Typical stress–strain curves

for uniaxial tension, uniaxial compression and pure

shear tests of composite material on the base of glass

cloth and polyether matrix are shown in Figs. 1, 2 and 3

[8]. Widely used approaches to characterize the

behavior of this type of materials are based on the

study of composites constituents and their cohesion

interphase properties with the use of multi-scale

modelling. With corresponding homogenization meth-

ods, these approaches can describe the internal mech-

anisms of material nonlinearity with the variety of

types of inclusions and defects [29–34]. Nevertheless,

the phenomenological approaches, which analyze

directly the experimental data for composite materials

obtained under different loading conditions, and based

on complex constitutive equations, can demonstrate

well promising capabilities to characterize the material

behavior and evaluate the stress and strain fields in

structures. This paper presents the analysis of some

features of the material behavior without separate

consideration of the composite constituents and the

formulation of corresponding phenomenological con-

stitutive relations that can characterize them. It repre-

sents a continuation and extension of the research

described in [21] to take additionally into consideration

the nonlinear material behavior under conditions of

shear loading. This analysis is confined to the consid-

eration of deformation properties of composite mate-

rials under low strain levels when elastic deformations

prevail to take into account different types of nonlin-

earity of material’s behavior on initial stage of loading,

which can promote more accurate results of calcula-

tions. The modelling of irreversible processes in

composite materials under large deformations is in

advance. The nonlinear models proposed in this

research have a general form and they are suitable for

any heterogeneous materials but mostly are directed to

anisotropic laminate composites subjected to loadings

under plane stress conditions.
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2 Stress state dependent anisotropic elastic

material model

Considering different possible responses of materials of

heterogeneous structure to the loading conditions, the

characterization of stress state type is required to develop

corresponding mathematical model. To describe this

feature of the behavior of composite materials, it is

possible to introduce the stress state parameter n ¼
r=r0; where r ¼ rii=3, is the hydrostatic stress

component, and r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2SijSij

p

is the effective

stress, where Sij ¼ rij � rdij is stress deviator [21].

The parameter n has clear mechanical sense charac-

terizing on an average the ratio of normal stresses to

shear stresses in a solid, and it has notable advantages

such as an invariant nature and scalar simplicity. This

introduced parameter can be found in the literature

under the name of stress triaxiality. Using this

parameter to describe the initial elastic behavior of

anisotropic material of stress state dependent proper-

ties, the constitutive relations can be formulated on the

base of potential represented in the following form:
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Fig. 1 The stress–strain diagrams for laminate composite material under conditions of tension at the angles 0� (a), 22.5� (b) and 45�
(c) to the direction of the warp of the cloth. 1 for longitudinal strain, 2 for transverse strain
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Fig. 2 The stress–strain diagrams under conditions of compression of the composite at the angles 0� (a), 22.5� (b) and 45� (c) to the

direction of the warp of the cloth. 1 for longitudinal strain, 2 for transverse strain
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Fig. 3 The stress–strain diagrams for the conditions of shear with tension/compression directions 0�/90� (a), 22.5�/112.5� (b) and 45�/

135� (c). 1 for longitudinal strain, 2 for transverse strain
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U ¼ 1

2
aijklðnÞrijrkl ð1Þ

The values of parameter n cover the entire numer-

ical axis from -? (uniform triaxial compression) to

? (uniform triaxial tension). These cases require

special investigation of asymptotic behavior of mate-

rial functions to satisfy the requirement of finite

correspondence between stresses and strains. This can

be achieved by corresponding analytical representa-

tions for anisotropic functions aijklðnÞ. In case of plane

stress conditions the values of the parameter are

limited�3=2� n� 3=2 and the constitutive equations

obtained on the base of potential (1) can be represented

in following form:

e11 ¼ a1111ðnÞr11 þ a1122ðnÞr22

þ 1

3n
þ 3

2
n

� �

r� 3

2
nr11

� �

U1r
�2
0 ;

e22 ¼ a1122ðnÞr11 þ a2222ðnÞr22

þ 1

3n
þ 3

2
n

� �

r� 3

2
nr22

� �

U1r
�2
0 ;

e12 ¼ a1212 nð Þ � 3

2
nU1r

�2
0

� �

r12;

ð2Þ

U1 ¼
1

2
a01111ðnÞr2

11 þ a02222ðnÞr2
22

�

þ 2a01122ðnÞr11r22 þ a01212ðnÞr2
12

�

;

where prime denotes the derivative with respect to

parameter n.

The coefficients a1111ðnÞ; a2222ðnÞ; a1122ðnÞ and

a1212ðnÞ can be represented as a piecewise linear

functions of n and the data used for determination of

these functions should be obtained experimentally

using the proposed procedure [21]. The constitutive

Eq. (2) describe a special form of physical nonlinear-

ity concerned the dependence of material properties on

the stress state type.

In practice, it is a common situation when the

curves obtained on the base of experimental data for

different loading conditions are approximated by

linear ones. This simplifies the calculations and might

be dictated by a linear elastic model, which is

supposed to be used for further structural analysis. It

could be a straight line with initial modulus or

averaged one. For some composite materials, the

linear dependencies approximating experimental

stress–strain diagrams can be significantly different

in dependence on the type of loading: for example, the

compression modulus could be essentially lower than

one for tension. In this situation, the Eq. (2) can

describe this effect. The formulated constitutive

Eq. (2) represent a linear relation between stress and

strain components in the case of proportional loading,

where the type of loading is fixed and consequently the

parameter n is constant. The form of proposed

equations has some advantages in experimental

determination of material functions and experimental

validation of theoretical approach. For example, in the

cases of uniaxial tension or uniaxial compression

when the values of parameter n ¼ �1=3, the nonlinear

parts of equations for e11 and e22 in square brackets are

equal to zero. Consequently, one can reduce the

system of Eq. (2) to the following form for tension:

e11 ¼ a1111ð0:33Þr11 þ a1122ð0:33Þr22;

e22 ¼ a1122ð0:33Þr11 þ a2222ð0:33Þr22;

for compression:

e11 ¼ a1111ð�0:33Þr11 þ a1122ð�0:33Þr22;

e22 ¼ a1122ð�0:33Þr11 þ a2222ð�0:33Þr22:

Also in the case of pure shear, when parameter n ¼ 0,

the corresponding equation has the following form:

e12 ¼ a1212ð0Þr12;

which can be easily resolved.

In the case of proportional biaxial loading, the

analysis of constitutive relations (2) shows that for the

loading conditions when the directions of loads

coincide with fiber orientation and transverse one, it

is possible to obtain the analytical relation that can be

checked for satisfaction to experimental data. If the

loading time parameter is referred as t, the proposed

Eq. (2) can be reduced to the following form:

e11 ¼ ða1111ðnÞ þ a1122ðnÞConst1 þ Const2Þt;

e22 ¼ ða1122ðnÞ þ a2222ðnÞConst3 þ Const4Þt;

where Consti and the value of n are determined by the

ratio of applied loads.

These relations for determination of a set of

coefficients a1111ðnÞ; a2222ðnÞ and a1122ðnÞ are linear

ones. Considering different sets of applied forces,

which keep the same value of n, but have the

exchanged values of r11 and r22, it is possible to
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prove that the system of four equations for three

unknown coefficients a1111ðnÞ; a2222ðnÞ and a1122ðnÞ
can be resolved in unambiguous way.

Thus, the analysis of the proposed mathematical

model for the laminate composite material under

elastic conditions shows that the data for any set of

uniaxial, biaxial and in-plane shear tests, where

experimental loading directions are coincident with

the principal axes of anisotropy, can be satisfied by

appropriate combination of functions

a1111ðnÞ; a2222ðnÞ and a1122ðnÞ. Different off-axis tests

can be supposed as the independent and verified ones.

3 Nonlinear shear anisotropic material model

Another regularity of the composites behavior that

ought to be taken into account is the nonlinear

deformation under the action of shear stresses. For

the development of nonlinear shear material model,

the parameter that represents the degree of shear

stresses or deformations should be formulated. For this

purposes, the parameter q ¼ Dijeij can be introduced in

constitutive relations, where coefficients Dij have the

following representation in coordinate system coinci-

dent with the orientation of anisotropy axes in the

cases of unidirectional or cross ply reinforcement:

Dij ¼
0

1

2
0

1

2
0 0

0 0 0

2

6

6

6

4

3

7

7

7

5

:

The tensor Dij can be considered as an additional

structural parameter characterizing the anisotropic

properties of a material. Tensor Dij is defined with

respect to the same coordinate system and the dyads

correspond to ones of stress or strain tensors. In the

cases of coordinate system transformation, the corre-

spondent transformation of components Dij has to be

done according to the equations of transformation of

second rank tensor [35]. In coordinate system coinci-

dent with the orientation of material reinforcement,

the introduced parameter is q ¼ e12. The proposed

parameter can be regarded as the scalar invariant and

could be used for the formulation of intended consti-

tutive equations.

Following the approach similar to previous material

model formulation, one can write the potential for the

characterization of nonlinear shear elastic deformation

of solids in the following form:

U ¼ 1

2
EijklðqÞeijekl ð3Þ

Using the potential (3), the constitutive equations

can be written as:

rij ¼
oU

oeij

¼ 1

2

oEmnklðqÞ
oeij

emnekl þ EijklðqÞekl ð4Þ

In order to describe shear nonlinearity, it is enough

to keep the dependency on parameter q only in shear

modulus G. Consequently, in the case when coordinate

system coincides with principle axes of anisotropy, it

is possible to show that the first part of the Eq. (4) can

be reduced to the following form:

oEmnklðqÞ
oe12

emnekl ¼
dGðqÞ

dq

dq

de12

e12e12 ¼ G0e2
12 ð5Þ

where prime denotes the derivative with respect to

parameter q.

Thus, the Eq. (4) can be written for r12 stress

component as following one:

r12 ¼
1

2
G0e12 þ G

� �

e12 ð6Þ

One can assume that the shear modulus function

GðqÞ is represented by arbitrary polynomial of

parameter q:

GðqÞ ¼
X

n

Cnqn:

Then Eq. (6) can be reduced to the following one:

r12 ¼
1

2

X

n

Cnnqn�1

 !

qþ
X

n

Cnqn

" #

e12

¼
X

n

Cn

1

2
nþ 1

� �

qn

" #

e12:

Using the substitution of Bn ¼ Cnðn=2þ 1Þ, which

keeps the arbitrariness of coefficients Bn, it is possible

to obtain the following relation:

r12 ¼
X

n

Bnqn

" #

e12: ð7Þ

Eventually the Eq. (7) shows that the dependency

between shear stress and shear strain could be

described by arbitrary function that can be
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approximated by means of polynomial, and, what is

practically important, it could be a piecewise linear

function.

The constitutive relation with proposed potential

for plane stress condition in Cartesian coordinates can

be written in the following form:

e11 ¼
r11

E1

� m
r22

E1

;

e22 ¼ �m
r22

E1

þ r22

E2

;

e12 ¼
r12

~GðqÞ
;

ð8Þ

where ~GðqÞ characterizes the nonlinearity of shear

stress–strain diagram.

Thus, the proposed constitutive Eq. (8) can

describe any nonlinear in-plane shear test data in the

case of loading directions coincident with material

orientation axes. Similar to the previous material

model, in general case of arbitrary loads directions, the

experiments with off-axis specimens should be con-

sidered as verification ones. In this case, the coeffi-

cients of anisotropy are transformed according to the

equations of transformation of components of a forth

rank tensor [35]. The form of the developed material

model is very close to the classical laminate theory

that makes this approach mostly convenient for

practical engineering applications.

4 Stress state dependent anisotropic elastic

material model with shear nonlinearity

The useful development of proposed constitutive

relations for practical applications consists in the

formulation of the combined approach. Due to com-

plexity of the first set of proposed system of Eq. (2)

and the difficulties that are concerned the resolving it

with regard to the stress components, the reasonable

way of formulation of constitutive relations is to use

system (2) as a basis, and to modify the formulation of

the relations (8) into the stress components form. For

this propose in Eq. (8) it is undoubtedly straightfor-

ward to replace the strain e12 by the shear stress

component r12 in the statement of parameter q.

Consequently, the new parameter of degree of shear

loading could be defined as:

Q ¼ Dijrij;

where Dij in coordinate system coincident with

orientation of the material axes, can be represented

in the following form similar to previous formulation

of nonlinear shear model:

Dij ¼
0

1

2
0

1

2
0 0

0 0 0

2

6

6

6

4

3

7

7

7

5

:

The parameter Q equals to r12 in the coordinate

system coincident with principal anisotropy axes.

According to the idea of taking into account the

combination of effects considered above, the potential

in this case have to include simultaneously the

dependency on both parameters n and Q and it can

be written in the following form:

U ¼ 1

2
Aijklðn;QÞrijrkl: ð9Þ

For plane stress conditions of an orthotropic solid

some of anisotropy coefficients Aijklðn;QÞ are equal to

zero except for A1111, A1122, A2222 and A1212. Similar to

the previous formulations, one can keep also the shear

dependency on the parameter Q only for the coeffi-

cient A1212. Further, taking into account that

oQ=or11 ¼ oQ=or22 ¼ 0, new constitutive equations

based on potential (9) can be represented in the

following form:

e11¼A1111ðnÞr11þA1122ðnÞr22

þ 1

3n
þ3

2
n

� �

r�3

2
nr11

� �

U1r
�2
0 ;

e22¼A1122ðnÞr11þA2222ðnÞr22

þ 1

3n
þ3

2
n

� �

r�3

2
nr22

� �

U1r
�2
0 ;

e12¼ A1212ðn;QÞþ
1

2

oA1212ðn;QÞ
oQ

� �

�3

2
nU1r

�2
0

� �

r12;

ð10Þ

where U1 has the same meaning as in (2):

U1 ¼
1

2
A01111ðnÞr2

11 þ A02222ðnÞr2
22

�

þ 2A01122ðnÞr11r22 þ A01212ðn;QÞr2
12

�

:
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The prime denotes the derivative with respect to

parameter n.

It is possible to see that in the system of Eq. (10)

only the third equation differs from system (2).

Following the same technique as in previous nonlinear

shear model, let us assume that

A1212ðn;QÞ ¼
X

n

CnðnÞQn;

Then, the part of the equation for e12 containing the

coefficient A1212 and its derivative can be written in the

form:

A1212ðn;QÞ þ
1

2

oA1212ðn;QÞ
oQ

� �

¼
X

n

CnðnÞQn þ 1

2

X

n

CnðnÞnQn�1

 !

Q

¼
X

n

1þ n

2

	 


CnðnÞQn:

Using the substitution

BnðnÞ ¼ 1þ n

2

	 


CnðnÞ;

it is possible to obtain

A1212ðn;QÞ þ
1

2

oA1212ðn;QÞ
oQ

� �

¼
X

n

BnðnÞQn:

Thus, the equation of system (10) for the shear

strain component can be written in the following form:

e12 ¼ B n;Qð Þ � 3

2
nU1r

�2
0

� �

r12; ð11Þ

where Bðn;QÞ is an arbitrary function that could be

approximated by polynomial dependency. In spite of

the complexity of relation (11), in the case of pure in-

plane shear experiment, the stress state parameter

n ¼ 0, and the equation for e12 is reduced to

e12 ¼ Bð0; r12Þr12: ð12Þ

Consequently, due to the arbitrariness of function

Bð0; r12Þ, it means that arbitrary nonlinear test data for

in-plane shear test can be satisfied at any required

precision.

Analyzing the proposed system of Eq. (10) one can

see that it has an improvement in comparison with

system (2), which is concerned the taking into

consideration the nonlinear shear properties of com-

posite materials. Nevertheless the material model

represented by (2) has essential advantage, namely,

the linear response in the case of proportional loading

(n ¼ const). The linear stress–strain relations remain

in the cases of Eq. (10), too, when specimen orienta-

tion and the loading direction coincident with princi-

ple axes of anisotropy of a material. For these types of

loadings the stress component r12, which adds

nonlinearity, is equal to zero. Consequently, all goals

demonstrated for system (2) in case of uniaxial and

biaxial tests are preserved by a combined approach

represented by Eq. (10).

The possibilities of proposed nonlinear elastic

constitutive relations (10) in the description of

mechanical behavior of laminate composite materials

can be demonstrated on the base of experimental data

for laminate based on the glass cloth and polyether

matrix, shown in Figs. 1, 2 and 3 [7]. These results of

the tests have a particular interest, because they cover

three different stress states: tension (n ¼ 1=3), com-

pression (n ¼ �1=3), and shear (n ¼ 0); and for each

type of loadings there are experiments with three

different orientations, which for constant values of

parameter n display the anisotropic properties of

composite material.

For the determination of coefficients or functional

dependencies of proposed model, there are different

ways of doing this. For the first step, some relatively

simple method with reduced number of parameters

might be used. In practical way, the piecewise linear

functions could be used, but following the idea to keep

less number of parameters in the model one can define

Aijkl and function B in the following form:

0 20

4E-4
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1.5E-4
40 60

Γ(
σ 

 )=
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 /σ
 

12
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Fig. 4 Shear deformation parameter Cðr12Þ ¼ e12=r12 (1/MPa)
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A1111ðnÞ ¼ a0
11 þ c11n;

A2222ðnÞ ¼ a0
22 þ c22n;

A1122ðnÞ ¼ a0
12 þ c12n;

Bðn;QÞ ¼ CðQÞ:

ð13Þ

The function CðQÞ can be determined by means of

Eq. (12) Cðr12Þ ¼ e12=r12 and the results of shear

test, which are presented in Fig. 3c. The correspond-

ing dependency is shown in Fig. 4.

The rest of coefficients can be obtained by means of

the analysis of results of uniaxial tests. The possible

set of coefficients introduced in Eq. (13) for experi-

mental data correlation is presented in Table 1, which

can be used for experimental data correlation. The

experimental and theoretical stress–strain dependen-

cies determined with the use of obtained values for

coefficients (Table 1) are shown in Figs. 1, 2 and 3.

One can obtain quite satisfactory correlation for test

curves shown on Figs. 1, 2 and 3, because for each

type of loading, there are different values of parameter

n. It is possible to determine for each value of n the

corresponding set of compliances and approximate

this data by some functions, for example, piecewise

linear ones. Furthermore, in the proposed definition of

coefficients (13), the dependency on stress state

parameter is not introduced into function Bðn;QÞ,
which can modify and improve the shear dependency

for each set of tests with corresponding type of

loading. Nevertheless, taking into consideration the

dependencies of material’s functions on all parameters

included in proposed mathematical model simulta-

neously makes essentially difficult the analysis of

obtained results with the use of analytical methods.

5 Conclusions

The most of composite laminate materials, even under

small elastic strains, exhibit different forms of the

nonlinearity of mechanical properties. This work

shows the possibilities of taking into account the

elastic nonlinear behavior of laminate composite

materials, which include the stress state dependence

of their characteristics and the nonlinearity of shear

stress–strain relations. The mathematical model for

these anisotropic materials with dependence of prop-

erties on the type of loading is analyzed. It has been

shown that for uniaxial, biaxial and in-plane shear

tests this model can guarantee the experimental data

satisfaction.

The capabilities of proposed approach to the

characterization of nonlinear shear behavior and the

extension of classical elasticity, which is used for

usual laminate composite theory, are studied espe-

cially. The simplicity of the final constitutive equa-

tions makes this nonlinear shear approach essentially

useful from point of engineering applications.

The proposed material model is used for the study

of experimental data. The analysis of test results based

on fiberglass fabric composite specimens is carried

out. Experiments with off-axis specimens are also

studied and show that the proposed nonlinear

approach, even with simplest introduction of nonlinear

parameters, can approximate the results with quite

satisfactory precision.
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