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Abstract The stability and bifurcation behaviors for
a cantilever functionally graded materials rectangular
plate subjected to the transversal excitation in thermal
environment are studied by means of combination of
analytical and numerical methods. The resonant case
considered here is 1:1 internal resonances and 1/2
subharmonic resonance. Four types of degenerated
equilibrium points are studied in detail, which are
characterized by a double zero and two negative
eigenvalues, a double zero and a pair of pure
imaginary eigenvalues, a simple zero and a pair of
pure imaginary eigenvalues as well as two pairs of
pure imaginary eigenvalues in non-resonant case,
respectively. For each case, the stability regions of the
initial equilibrium solution and the critical bifurcation
curves are obtained, which may lead to static bifur-
cation and Hopf bifurcation. The numerical solutions
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obtained by using fourth-order Runge-Kutta method
agree with the analytic predictions.
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1 Introduction

Functionally graded materials(FGMs) are extremely
excellent materials. They have received increasing
attention in both research community and industry due
to their excellent thermo mechanical properties. FGMs
have been widely used in thermal, structural, optical
and electronic materials. With the development of
advanced techniques, Functionally graded materials
may be fabricated into various structures including
beam, plate and shell [1].

Cantilever plates are commonly used in a large
number of structures such as solar panels, solar sails of
satellites and aircraft rotary wings and their nonlinear
dynamic analysis is of great importance in safety
design. Liew [2] utilized the Rayleigh-Ritz method to
study the vibration of symmetrically composite lam-
inated cantilever trapezoidal thin plates. Based on the
von Karman’s nonlinear geometry plate theory and
using the methods of multiple scales and finite
difference, Nejad and Nazari [3] investigated the
nonlinear vibrations of an isotropic cantilever plate
with viscoelastic laminate and analyzed the stability
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and chaotic behaviors. Young and Chen [4] employed
a finite element formulation and multiple scales
method to obtain the nonlinear response amplitudes
of a cantilever skew plate under aerodynamic pressure
and in-plane force. Ciancio and Rossit [5] discussed
the vibration behavior of a cantilever rectangular
anisotropic plate when a concentrated mass is rigidly
attached to its center point. Li [6] studied the behavior
of shear-wall type buildings through a cantilevered
beam analogy. Yu [7] utilized the method of super-
position to obtain an analytical solution for free and
forced vibrations of cantilever plates carrying point
masses. However, Studies on the bifurcation and
dynamic behavior of cantilever Functionally graded
material plates are quite limited in number. Hao et al.
[8] studied the complicated nonlinear dynamics of a
FGM cantilever rectangular plate subjected to the
transverse excitation in thermal environment. Zhang
[9] studied the nonlinear dynamic responses and
chaotic motions of a composite laminated cantilever
rectangular plate under the in-plane and moment
excitations. In recent years,the studies on the dynam-
ics of functionally graded material plates [10—-12] are
also helpful to understand the nonlinear dynamics of
cantilever functionally graded materials rectangular
plates. Liew et al. [13, 14] investigated dynamic
behaviors of carbon nanotube-reinforced functionally
graded cylindrical panels under axial compression.
Yaghoobi et al. [15] presents an analytical investiga-
tion on the buckling analysis of symmetric sandwich
plates with functionally graded material face sheets
resting on an elastic foundation based on the first-order
shear deformation plate theory. Zhang et al. [16]
studied the chaotic vibrations of an orthotropic FGM
rectangular plate, in which the heat conduction and
temperature-dependent material properties were also
taken into account. Recently, the meshless methods
[17-19] has been used to analyze the stability of
functionally graded material plates. It is efficient to
determine the boundary conditions of bifurcations.
The objective of this paper is to investigate the local
dynamic behaviors of a functionally graded material
cantilever rectangular plate subjected to the transverse
excitation in thermal environment. The resonant case
considered here is 1:1 internal resonance and 1/2
subharmonic resonance. Both analytical and numeri-
cal approaches are employed to consider the bifurca-
tion and stability of this system. Four types of
degenerated equilibrium points are studied in detail,
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which are characterized by a double zero and two
negative eigenvalues, a double zero and a pair of pure
imaginary eigenvalues, a simple zero and a pair of
pure imaginary eigenvalues as well as two pairs of
pure imaginary eigenvalues, respectively. The stabil-
ity regions of the initial equilibrium solution and the
critical bifurcation curves are obtained in terms of the
system parameters. All numerical results agree with
the analytic predictions.

This paper is organized as follows: in Sect. 2, the
averaged equations of transverse motion of the canti-
lever FGM plate are given and the stability conditions
of initial equilibrium solution are obtained explicitly.
Section 3 is devoted to the studies on the dynamical
behaviors of the system in the vicinity of the critical
points: a double zero and two negative eigenvalues; a
double zero and a pair of pure eigenvalues; a simple
zero and a pair of pure imaginary eigenvalues as well as
two pairs of pure imaginary eigenvalues. Finally, some
conclusions are drawn in Sect. 4.

2 Formulation of the problem

The paper focuses on the stability and bifurcation
behaviors of a cantilever functionally graded material
rectangular plate under a combined action of a
transverse excitation and temperature field. The model
is shown in Fig. 1.

The cantilever FGM rectangular plate (a X b X h)
is subjected to a temperature field and a transversal
excitation F(x,y)cos(Q¢). The plate is defined in the
Cartesian coordinate Oxyz where (x,y) are the coor-
dinates of a point in the mid-plane (z = 0) of the plate
and z is perpendicular to the mid-plane and points
downwards. Let (u, v, w) and (1o, vo, wo) represent the
displacements of an arbitrary point and a point in the

a =

Fig. 1 A cantilever functionally graded material plate and the
coordinate system
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mid-plane of the FGM rectangular plate in the x, y and
z directions.

The dimensionless governing differential equations
of transverse motion for the cantilever FGM rectan-
gular plate were derived in [8]

Wi+(g10 + BN )wi + wwi + guwiwa + gaw;

+ g13W% + g14W2W% + 815W1W% + gIGW?
+817Wg + (g18 + BN )ws = ficos(Q1), (la)

Wat(g20 + B NT)Wa + oW + garwiwa + gowi

+ 823W§ + g24W2W% + 825W1W% + 826W?
+ g27w3 + (828 + BrN")wi = frcos(Q1), (1b)

where w and w; are amplitudes of normal modes,
and p, are two combined parameters, including damp-
ing parameters, NT are the thermal stress resultant, f
and f, are the magnitudes of the forcing excitation,
respectively. All other constants are not listed herein
for brevity due to their lengthy expressions.

This paper considers the case of 1:1 internal
resonance and 1/2 subharmonic resonance for the
cantilever FGM rectangular plate. In such a case we
have the resonant relation
w% =—+éa, w% ==+ oy, (2)

2 2
where € is a small perturbation parameter, w; =
gio + B NT and w, = ga9 + P NT are the first order
and second order linear frequencies, ¢ and g, are two
detuning parameters.

Introducing the scale transformations and the
temporal rescaling, the approximate solutions w;(¢)
and w;(t) of (1) were sought in the form of a power
series of small perturbation parameter[8]

wi(t) = Eo(t,€) + e, (t,€)e 3 + Yy (1, €)e ¥
+ 63% (z, e)e”% + ezlpz(r, e)e’im’ + cc,

(3a)

wa(t) = €€ po(t,€) + ey (x, e)e_i%' + EPy(1,€)e ™
+ Es(1, €)e 2 + Edy(1,€)e 2 + ce.
(3b)
Using the asymptotic perturbation method, the

differential equation for the evolution of the complex
amplitudes \/, and ¢, were obtained in [8]

1405
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(4b)

In order to transform (4) into the Cartesian form, let
lrbl = X1 +iXQ, d)l :)C3+iX4. (5)

Substituting (5) into (4), the averaged equations in the
Cartesian form were obtained as follows [8]
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1
X == 5%+ (01 + )%+ (7 +Hh)x+Nf, (6a)

. 1
Xy =(—01 +)x 5% +(y1 —ki)x3+Nf>,  (6b)

1
X3 :(Vz‘f'kz)xz—§N2x3+(02+ﬁ)x4 + Nf3, (6¢c)

X4y =(yy —k2)x1 + (=024 f)x3 —%#2)64 +Nfy, (6d)
where o = agifi + anfr, B =boifi +boufr, 7=
anfi+ anf2, 2 = boafi + boif2, ki = aoa, k2 = boa.
The nonlinear functions Nf;(i =1,2,3,4) and all
coefficients are presented in “Appendix”.

The Jacobian matrix of (6) evaluated at the initial
equilibrium solution (xy,x2,x3,x4) = (0,0,0,0) is as

follows
S -
oy o1t 0 71tk
1
—oite —oh " —ki 0
J= 1 (7)
0 72+ ko 5k oy +
1
—kz 0 —o0+f - St
The characteristic polynomial is
F(2) =2 4+ 5127 + bai® + b3+ by, (8)
where
bl =l +:u2a
1 1
by :ZN§+ futy + 07 _0‘2"‘11“%"‘0%_/32
_2'}71?2 +2k1k23
1 1
by = o34y + 3 ot + i — Oy + iy
= V1V2k = V1V2ke T kikapy - kiko g,
1 1 1 1
2 2 2 2,2 2 2 2B
by = aio; — a3 T 70 T 70 _Zﬂzo‘ —zM

— 217208 + 29,k10200+ 29,k101 B+ 291 ka0t B

—2k1ky0100 + 2y ka0 — 2k koo — %Vﬁzmllz

+lk1k2,u1/12 + 2B —2y,7,0102 — a1 B + 913
— ki = k)t ik +%u?u§-

By the Routh-Hurwitz criterion, the equilibrium
solution (x,x;,x3,%4) = (0,0,0,0) is stable, if the
following conditions are satisfied

@ Springer

by >0,b1b2—b3 >O,b4 > 0, b3(b1b2—b3)—b%b4 >0.
9)

Conditions (9) implies that all the eigenvalues of the
Jacobian matrix (7) have negative real parts. When
conditions (9) are not satisfied, the initial equilibrium
solution is unstable, and bifurcations may occur. In the
next section, the detailed analysis will be given when
condition (9) are violated.

3 Stability and bifurcation behaviors

In this section, the stability and bifurcation analysis on
the parameters y; and u, will be investigated, which
can be divided into four parts.

3.1 Double zero and two negative eigenvalues

Taking parameters as follows:

=2 =2,00=10=1u=0,=0,7, =
L,y, =2,k =ka =0, aos = aos = ap7 = apg = ano
=ayp =an =ap =a3 =ays =1, bos = bos = by
=bog =bgy =b1o=b11 =b1 =bi3=b14=1, which
implies that b| = b, =4, b3 = by = 0, then the Jacobian
matrix (7) has the eigenvalues 4, =0,434 = —2.

Let us consider u; and pu, as the perturbation
parameters. Using the parameter transformation
w=2+4+¢&,u,=2+¢&, and the state variable
transformation

r1 1 1 1 7
i 2 02 T2 2 |[n
% LR S R O B (10)
X3 o 2 2 2 2 13’
0 1 0 1
X4 24
L1 0 1 0 |

one may transform (6) into a new system as follows

f =36+ Ga -5 (6 - G+ (G - G
%(51 — &)z + Ngy, (11a)
1
21(51—52)21 ——(51+52)22+ (51 - &)z
+%(51 — &)z4 + Nga, (11b)
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l(f fz)zl‘f‘ (51 &)z

73 =—2z3+
4 (11¢)
(51 + &)+ (51 ¢2)z4 + Ng3,
. 1
u=—2z —Z(fl &)a+ (51 &)z
| | (11d)
- Z(f] — &)z — 1(51 + &2)za + Nga,
where the nonlinear functions Ng;(i =1,...,4) are

exhibited in the “Appendix”.

The Jacobian matrix of (11) evaluated at the initial
equilibrium solution (z1,22,23,24) = (0,0,0,0) at
critical point &, = &, = 0 is the following canonical
form

00 0 0
00 0 0
Tas0 =19 0 2 o
00 0 -2

The local dynamic behaviors of system (11) are
characterized by the critical variables z; and zp.
Further more, the bifurcation solutions for the non-
critical variables z3 and z4 may be determined from
system (11) up to leading orders terms as

1 1 5B,
§(51 —52)214'8(5 &)z 16 16
11 11
162%11 16Z122’ (12a)
1 1 9 31
Z4=——(51—52)Zl+§(§ 5)224-16 +EZS
23 5,
+ 161%11 + 16Z1Z2 (12b)

In order to study the bifurcation and stable prop-
erties of system (11) in the vicinity of the critical point,
one only need to analyze the following two-dimen-
sional system

k4| :[—%(51 +&) +1]—6(51 - 52)2}21 _%(51 - &)

1
-2, (13a)

15 5, 3,
+§Z1 g ) _21Z2 ]

8

—1(51 — &)z + [—i(ﬁ +&)

3 23 17 13 ,
gzi—gZ; §2%12 §2221 (13b)

+%(f1 - 52)2} 2

To find the stability conditions of the initial equilib-
rium solution (zy,z2) = (0,0), one may evaluate the
Jacobian matrix of (13) at (z1,z2) = (0,0) and obtain

a ap
J=0) = { ] (14)

where
1 1

an = —1(51 + &) +1—6(51 - 52)2,
1

ap = —1(51 - 52),

ay) = %(51 - 52);
1 1

ap = —1(51 + &) +E(51 — &)

The characteristic polynomial is
2 1 [ 2 L]
f(A) =2+ 5(51*’52) (&1 — &) |4

(& - «:z)zr (15)

ox|_‘ °°"—‘

+ [—%(51 + &) +
b (G- &)

The stability conditions for the initial equilibrium

solution (z1,z2) = (0,0) are
%(fﬁ"fz)—é(@ ~ &) >0, (16)
and
1 : 21 2
Z(f]‘i‘fz) (.1—52)} +R(fl—fz)

(17)

2
It is easy to see that {—%(61 + &)+ (& - 52)2} +

(& — &) >0 unless (&,&) = (0,0
&+ &) —5(& -

solution is stable. Then a critical bifurcation curve is
obtained

) . so if

&)* > 0, the initial equilibrium

1 1 .
G+ E) -G-8 =0 (18)
2 8

From (15), we can obtain the eigenvalues of the

Jacobian matrix (14) at the initial equilibrium solution
(z1,22,23,24) = (0,0, 0,0) as follows
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1 1 1
Jp = —1(51 + &) +E(él — &) i4—1(51 - &)i.
Let
1
a=Re(l12) = _Z(fl + &) +1L6(51 - 52)2»

b=1Im(l,) = %(51 - &),

it is easy to see that a = 0,6 > 0, and jT“l # 0, when
(¢1,&) € Ly and (&;,&) #0 or (3,—1). By Hopf
bifurcation theorem, along L;, Hopf bifurcation may
occur. The bifurcation diagram is shown as Fig. 2. We
can observe that the critical curves L; separate &; — &,
plane into two kinds of areas (I and II). The initial
equilibrium solution (x1,x2,x3,x4) = (0,0,0,0) is
stable while (&,¢&,) belongs to area I( the stable
region for E.S. — the initial equilibrium solution).
When (&, &) crosses Ly and goes into area II, the
initial equilibrium solution becomes unstable.

Here the numerical results have been obtained by
fourth-order Runge-Kutta method performed on the
basis of the differential equation (6). Choosing
parameter values of &, and &, from the region II (the
blank area), any numerical solution starting from an
arbitrary initial point((x;,x2,x3,%4) # (0,0,0,0))
diverges to infinity, initiating that the initial

Hopf
bifurcation

0 1 2 3 4 5 6

Fig. 2 Transition curves for the case of a double zero and two
negative eigenvalues
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equilibrium solution is unstable, as predicted by the
analytic study. When the parameter value is chosen
from the region I (the shadow area), such as,
(&1,&) = (0.2,0.2), a numerical solution starting
from an initial point (x;,x,,x3,x4) = (0.01,0,0,0.02)
is obtained, which converges to the origin, implying
that the initial equilibrium solution is stable. This is
shown in Fig. 3, where the phase trajectories are
projected onto the x; — x, and x3 — x4 plane. It should
be noted that since the study is focused on the local
dynamic behaviors of the cantilever FGM plate in the
vicinity of a critical point, so the parameter (&, &,)
should be chosen near the critical point (&;,&,) =
(0,0).

When (¢1,&) = (0.2,—-0.1664) € L;, the trajec-
tory starting from an initial point (xi,x2,x3,X4) =
(—0.001,0.001,0.002,0) yields a stable limit cycle
shown in Fig. 4.

3.2 Double zero and a pair of pure imaginary
eigenvalues

Choosing the following parameter values: u; =

— _1 _3 _ 1 _3 — —
0,/12—0,0']—5,0’2—1,05—5, _Zayl_OaVZ_

_ 1 o _
Liki=1, kp =3, aps = aops = ap7 = dog = dapy

ayp = aj] = ap =ap = dig = 1, bos = bpg = by; =
bog = boy = b1p = by = b1y = bi3 = b4 = 1, which
implies that b, = 1, by = b3 = by = 0, then the Jaco-
bian matrix (7) has the eigenvalues 4, =0,
13_4 = +i.

Choosing u; and y, as perturbation parameters, and
using the parameter transformation p; = &y, u, = &.
The characteristic polynomial (8) of the Jacobian
matrix (7) becomes

f()b) =4 —‘y—l;lis +5212+E3)~+64, (19)
where
by =& + &,

~ 1 1
bzizf%+zf§+51fz+1,
P D B |
b3:Zf1§2+Zfzfl+§é1+§fz7
1, 1

b4:E %C%Jrzﬁfz-

The stability conditions for the initial equilibrium
solution (xi,x2,x3,x4) = (0,0,0,0) are
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Fig. 3 Trajectory 0

(xl ,Xz,X3,X4) =

(0.01,0,0,0.02) converges

to the E.S. when

(€1,6) = (02,0.2), a the

phase portrait on plane

(x1,x2); b the phase portrait

on plane (x3,x4) x2(t)

—0.001

-0.002

—0.003

—0.004

(a)

Fig. 4 Trajectory
projection starting from

(X| ax2>x37x4) -
(—0.001,0.001,0.002,0)
when (&),&,) =
(0.2,—-0.1664), a the phase
portrait on plane (x1,x2);

b the phase portrait on plane

: : : : :
. . 0002 0004 0006 0008 0.0\0 0012
projection starting from x1(0

0.020

0.0154

x4(t) 0.010

0.005 4

0 T T T T T T T T
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

x3(t)

(b)

T T T
-0.0015 -0.0010 -0.0005 O

(X3 ) x4)

-0.0005

Ai=b; >0,ie & +E >0,
Ay =bib, — b3 >0,

ie. (& +E)(E+E+386E+2)>0,
A3 :53(1;1152—1;3)_5%54;

ie. (6 + &) (G+EEF2)(E+EE+2) >0,

From the three inequalities above, one may get the
following three transition curves

Lz : 51 + 62 - 0, (20)
Ly: 84+ 5 +368+2=0, (21)
Lyt (§+&E+2)(E + &6 +2)=0. (22)

Then, the transition curves are shown as Fig.5.

T T T
0.0005 0.0010 0.0015
0

When &, +& >0, & + & +38& +2> 0, and
(é% + &1& + 2)(5% + &€ +2) >0 are all satisfied,
the initial equilibrium solution is stable. By the Fig. 5,
we can observe that the critical curves L,, L3, Ly
separate &; — &, plane into two kinds of areas (I and
II). When (&, &,) belongs to region I, the initial
equilibrium solution is stable, and when (&, &)
belongs to region II, the initial equilibrium solution
of the system is unstable.

Similar to the case in the Sect. 3.1, different
parameters are chosen to confirm the analytical results
obtained in this section. When the parameter is chosen
as (&1,&,) = (0.4,0.4), which is located in the region
I, numerical results show that a trajectory starting from
(x1,x2,x3,x4) = (0.1,—0.1,0.2, —0.2) converges to
the origin, implying that the initial equilibrium
solution is stable. The phase trajectories are projected
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|

N N

o N

-2 7 Unstable region for E.S,
| .

Fig.5 Transition curves for the case of double zero and a pair of
pure imaginary eigenvalues

onto the x; — x, and x3 — x4 sub-spaces as shown in
Fig. 6.

3.3 A simple zero and a pair of pure imaginary
eigenvalues

Choosing the following parameter values: j; =2, yu, =
0,01=0,00=1,0=1,=0, )=k =1, p,=k, =
0, aos =aps =ap7 =acs =ag = aip= aj=dap=
aiz=aiy =1, bos=bos=Dby7 =bos= by =b1o=
byy = b1, =bi3 =by4 =1, which implies that b, =1,

Fig. 6 Trajectory
projection starting from
(x1,x2,%3,x4) =
(0.1,-0.1,0.2,-0.2)
converges to the E.S. when
(&1,&) =(0.4,0.4), a the
phase portrait on plane
(x1,x2); b the phase portrait
on plane (x3,x4)

(a)
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by =b3;=2,by =0, and the Jacobian matrix (7) has
the eigenvalues A} =0, Ay 3 = %i, 44 = 2.
Using the parameter transformation p; =2 + ¢,

U, =&, and the subsequent state variable
transformation
6 2
X s 5 —Hra
X2 4 2 22
|1 2 -Z 23
X3 5 5 23 23)
0 1 O 0
X4 24
0 0 1 0
into (6) yields
. 1 1
21 :*55121 +§(*f1 +&,)z3 + Nhy, (24a)
. 1
2=, 220 + Nhy, (24b)
. 1
3=—22— E &>23 + Nhs, (24C)
) 1 1
u=—2zn +E(f1 - &) +§(§1 - &)z
| (24d)
—=&1z4 + Nhy,
2
where the nonlinear functions Nh;(i = 1,...,4) are

exhibited in the “Appendix”.

The Jacobian matrix of (24) evaluated at the initial
equilibrium solution (z1,22,23,24) = (0,0,0,0) at
critical point &, = &,. = 0 is the following canonical
form

0.1 0.2

x4(t) -0.104

-0.154

|

V _/ -0.20 —\

(b)



Meccanica (2015) 50:1403-1418 1411
0 0 0 0 29
}’2 < &+ —fz>,
0 0 1 0 398
J(z=0) = (25) (32)
0 —-1.0 0 , 100 5 5
0 0 0 -2 "= 597\ 51 T2 )

The dynamical behaviors of this system in the vicinity
of the critical point is determined by the critical
variables z;, 22, z3. Referred to paper [20], introducing
a nearly identity non-linear transform z; = y; + g;(y;)
(which are omitted, since they are not significant in the
following analysis) and a cylindrical coordinate
transform

=y, zp=rcost, zz=rsinl, zg=z, (260)

yields the normal form of (24) in the cylindrical co-
ordinate system as follows

Y=y< ér"—r—2y> (27a)
. 1 87 , 12
r—r<—2§ —|—100 +5y> (27b)
and
177 24
0=1 4y 28
tag Y (28)

The steady state solutions and their stability conditions
can be found from Eq. (27), while Eq. (28) determines
the frequency of possible periodic solutions. Letting
y =0, 7 =0 1n Eq. (27) leads to the following steady
state solutions:

The initial equilibrium solution (E.S.)

y=r=0. (29)

The static bifurcation solution (S.B.)

4 (30)

The Hopf bifurcation solution (H.B.)

y=0,
) 50 (31)
r —géz

The secondary Hopf bifurcation or the second static
bifurcation solution (2nd H.B. or 2nd S.B.)

Here, the notation 2nd H.B. denotes a dynamic
bifurcation from the S.B. solution (i.e., from a non-
zero equilibrium to a periodic solution), while the
notation 2nd S.B. represents a static bifurcation from
the H.B. solution (i.e., a periodic solution having a static
shift). These two bifurcation solutions actually belong
to the same family of limit cycles described by Eq. (32).

The stability conditions can be determined from the
Jacobian matrix of Eq. (27), given by

——51—5—7;’2—6 2 —55—7yr
1= 24 15 261, 12,1 (33)
—yr —=Co+—r
57 200" 757

Evaluating the Jacobian matrix (33) on the E.S. (29)
shows that if the conditions

51 >0 and 52 >0 (34)

are satisfied, then the E.S. is stable. The region defined
by equation (34) in the parameter space is shown in
Fig. 7. Two critical lines which define the stability
boundaries of the E.S. can be obtained from conditions
(34), one of them is

e L — «— Li
| Secondiry - .
5 Hopf A\ 5B stable - — == ===
blfurcatlo T— R
a7 = .
/ / - Stable region for

/ /\ T—~—| Es
|2nd H. B stable’

& // / N

/s .
24/ / / "~
/ VAN I
L~/
1 9 / / — = — == —— .
2-D torus / Lg
0 !
h 1 Hopf bifurcation
“8
e

Al

Fig.7 Transition curves for the case of a simple zero and a pair
of pure imaginary eigenvalues

@ Springer



1412

Meccanica (2015) 50:1403-1418

Ls: & =0(& >0), (35)

from which non-trivial equilibrium solutions (S.B.)
described by Eq. (30) bifurcate from the initial equilib-
rium solution (29). The other critical line is defined by

Ls: & =0(& > 0), (36)

along which the H.B. solution (31) may occur.

To find the stability condition of the S.B. solution
(30), evaluate the Jacobian (33) on the S.B. solution
(30) to obtain

i 0
Jsp = 3 1 ; (37)
0 —ZI¢ —=
56
which implies that the S.B. solution is stable if
3 1

The stability boundaries defined by conditions (38)
include the critical line Ls and another critical line

L7:§§1+%@=0(§1<0). (39)

Thus, the S.B. solution (30) is stable in the region

bounded by the critical lines Ls and L;(see Fig.7).
Next, the stability of the H.B. solution (31) is found

by evaluating the Jacobian (33) on Eq. (31) to yield

1 95
_ —551—§52 0 7 (40)
0 &

which, in turn, shows when

JuB.

1 95
— — 41
251+2952>0 and &, <0, (41)

the H.B. solution is stable, and the frequency of the
periodic solution (31) is given by
59

=1+2¢,. 42
o)1 + 19 & (42)
The second inequality of Eq. (41) is not satisfied since
the H.B. solution emerges when &, > 0, so the H.B.
solution is unstable. Therefore the limit cycles
expressed by Eq. (32) cannot bifurcate from the H.B.
solution along

1 95
L85§§1+552:0(52<0)- (43)

@ Springer

and only bifurcate from the S.B. solution along L.

When the parameter values are varied such that the
critical boundary L, is intersected, the S.B. solution
becomes unstable and bifurcates into a family of limit
cycles (the 2nd H.B.solution). The solution of the
family is given by Eq. (32). The frequency of the
family of limit cycles is given by

36 169

—@élJF@fz- (44)

602:1

To investigate the stability of this family of limit cycles,
evaluate the Jacobian matrix (33) on Eq. (32) to obtain

57

—4 =

JonanB. = o 37 . (45)
—yr =7
5 50

Then the stability conditions are found from the trace
and determinant of the Jacobian as

= = 198005 (63481¢&, +217905¢,) <0, (46)

1194
Det = ——y*i2.

2% (47)

It is easy to see that the condition (47) is automatically
satisfied as long as the H.B. (II) solution exists. There-
fore there exists stable H.B.(II) solution when %él—i—
8¢&>0,2¢ +1¢& <0and 63481¢,+217905&, > 0.
The transition curves which define the stability
boundaries of the H.B.(II) solution are L7 and

3 1
Lo : 63481¢, + 217905¢, = 0(§ G+56 <0>.
(48)

From previous analysis, we get the only possible
sequence of bifurcations as follows: first, the static
bifurcation solution (30) bifurcates from the initial
equilibrium solution (29) along the transition curve Ls,
then, as the parameters cross the transition curve Ly,
the static bifurcation solution loses its stability and
bifurcates into a family of limit cycle. Finally, the
H.B.(II) solution loses its stability and bifurcates into a
two-dimensional torus along the transition curve Lo.
The bifurcation critical lines and bifurcation solutions
are shown in Fig.7.

Now choosing different parameter values from the
different regions in Fig. 7 to confirm the previous
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analytical results. When the parameter values are
chosen as (&, &,) = (0.1,0.2), which is located in the
region bounded by the critical lines Ls and Lg,
numerical results show that the trajectory starting
from a point near the origin converges to the origin
asymptotically. An example is shown in Fig. 8, in
which the initial condition is (xy,x2,X3,X4) =
(—0.1,0,0.02,0.2).

When the parameter values are chosen as
(&,&) = (—0.02,0.06), which is located in the
region bounded by the critical lines Ls and L,
numerical results show that the trajectory starting
from a point near the origin converges to the static
bifurcation solutions. An example is shown in Fig. 9,
in which the initial condition is (xy,x2,x3,Xx4) =
(—0.2,-0.03,0,—0.02). It is interesting to note that
the trajectory first converges to the dark area and then
moves to the non-trivial equilibrium point.

When the parameter values are chosen as
(¢1,&) = (0.02,—0.0031), which is located in the
region bounded by the critical lines L; and Lo, the
trajectory starting from an initial point (xi,xp,x3,
x4) = (—0.1,0,0.02,0.2) yields a stable limit cycles
shown in Fig. 10.

3.4 Two pairs of pure imaginary eigenvalues

Choosing the following parameter values: p; =0,
U =0,00=-1,0,=-2, «=0,=0, y, =—1,
ki =0, 7,=0,kp =0,a0s =aps = aop7 =aeg =
ago = ajp = ay = app = a;3 = a4 = 1, bos = bos =
by; = bog = bog = b1o = b1; = bp» —bla =byy =1,

Fig. 8 Trajectory
projection starting from

(X] 7-x27x37x4) =
(—0.1,0,0.02,0.2)
converges to the E.S. when
(&1,&) =(0.1,0.2), a the
phase portrait on plane
(x1,x2); b the phase portrait
on plane (x3,x4)

which implies that by = b3 =0,b, =3,by = 1, and
the Jacobian matrix (7) has the eigenvalues 4, =
\/_—l /L3 4= i@i.
Using the parameter transformation u; = &, u, =

&,, and the state variable transformation

3+4/5 3—+/5]
X1 2 2 2
X2 _ 3+\/§ 0 3_\/5 0 22
X3 2 2 23
X 0 —1 0 —1 2
|1 0 1 0 |
(49)
onecanget
V51 1 35
21 = ) 22+ —Z—T &
1 35 1 3V5
+<_Z+T>€2]Z1+l<Z_W>él
1 3V5
n <—+f> &\ 23 + NIy, (50a)
4" 2
o 1=45 1 3V5
= 5 21+ <—4 )fz
1 35 1 3V5
+<—Z+2—O>fz 22+ (Z—z—())f
1 35
+<—Z+2‘—f> & |24 + NI, (50b)

0.219

x4(t) 0.1

(b)

@ Springer



1414 Meccanica (2015) 50:1403-1418

x1(t)

-020 -0.18 -0.16 -0.14 -0.12 -0.10 -0.08
L ! I ! ! ! !

Fig. 9 Trajectory
projection starting from

(xl ,Xz,X3,X4) =
(-0.2,-0.03,0,—0.02)
converges to the B.S. when
(¢1,&) = (~0.02,0.06),

a the phase portrait on plane
(x1,x2); b the phase portrait
on plane (x3,x4)

Fig. 10 Trajectory
projection starting from

(xl 7x2)x37x4) =
(—0.1,0,0.02,0.2)
converges to the 2nd H.B.
when (élv éz) =
(0.02,—0.0031), a the phase
portrait on plane (x;,x2);

b the phase portrait on plane
(x3,%4)

13 N With the aid of normal form theory and the method
5= — [(Z‘LW) & of computer algebra, we get the normal form of (50) in
polar coordinate system as follows
1 3V5 1 3V5 r T
+<_Z_2_0>4Z1+ l(‘ﬂT)é‘ i |30 e 4 (<125,
U4 20 ) 4720 )72
135 ) )
+(-Z-2—{) s (509 (513
[ 1.3 : 1 35 5_
143 1 35 135 RERI T 0 ) T T 20 )
U=T58 Z+W ¢+ 10 & |2 L -
(51b)

244N, and

N

1 3V5 1 3V5
<_Z+2—o>51+ (‘Z‘To) =

wh.er.e thf: nonlinear fun'ctions NJi(i=1,...,4) are (=120 + 72\/§)r§], (52a)
exhibited in the “Appendix”.

_|_
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here
: 5 1 1 W
0 :£+ +—

2 220 (52b) 1 3\[ 1 35
x (120+72\/§)r%+(—85+51\/§)r§] cn=\-37"20 )T ("3t )

On the base of (51), by setting r; =r> =0, the steady o — _1 3\/_ £+ _1 _ 3\/_ ¢
state solutions are obtained. In this case, it is easy to 2 4 1+ 4 o
show that (51) has one solution (ry,r,) =(0,0). The

Jacobian matrix of (51) at the initial equilibrium The stability conditions for the initial equilibrium

solution is as follows solution are (—i - %5) &+ (— 14 M) &, <0 and
1, 3V5

Jo {cn 0 ] (53) (_Z+ 20)51 (————)52<0 or the initial

0 e equilibrium solution is unstable. So the transition

curves which define the stable boundaries of the initial
equilibrium solution are

Ly : <—%—3f>51 <—%+£>52_0

(54)

and

35 1 35
Lni(4 )fl <4>520

(55)

The transition curves are illustrated in Fig. 11.

The numerical computation is performed on the
base of the original differential equations (6). When
the parameter is chosen as (¢, &,) = (0.2,0.2), which
is located in the region bounded by the critical lines
Fig. 11 Transition curves for the case of two pairs of pure Lyp and Li;, numerical results show that the trajec-
imaginary eigenvalues tory starting from initial point (xy,xp,X3,X4) =

Fig. 12 Trajectory
projection starting from
(XI,X2>X37X4) =
(0.06,0,—0.02,0)
converges to the E.S. when
(£| s 62) = (027 02), a the
phase portrait on plane
(x1,x2); b the phase portrait
on plane (x3,xs)

2 003 004 005 006
x1(0)

(a) (b)
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(0.06,0,—0.02,0) converges to the region, implying
that the initial equilibrium solution is stable. The phase
trajectories are projected onto the x; — x, and x3 — x4
sub-spaces as shown in Fig. 12.

4 Conclusions

In this work, the stability and dynamical behaviors of a
cantilever functionally graded material rectangular
plate subjected to the transversal excitation in thermal
environment are studied in the case of 1:1 internal
resonances and 1/2 subharmonic resonance. Four
types of degenerated equilibrium point are investi-
gated in detail. The stable conditions, stable regions
and critical bifurcation curves for the steady state
solutions are presented explicitly in terms of the
system parameters. Numerical computations have
been performed and shown for each of the bifurcation
cases. All numerical solutions agree with the analyt-
ical predictions, at least qualitatively.

5 Appendix

The coefficients of (6) are

ao1=4gi 6102=2gJ 6loz=4gJ

32 37 T 39V

g8+ fioN” 3816 20g11822  40gi,
o e S Yo O
006:&_56g13g22_20g11g12 4g11821

Q 3¢ 3’ 37
a07:2gJ 16813822 40g11812 811821

Q 30 3’ 3 7
a08:28i_16813821_88_%1 8811823 | 16811813

Q (o8 3 30 3

3g16 20gngn  40gh
Te T 300 30
aw:@_‘mglsgzz_mgngzl_20g11g12

Q 30 3 3
a =58 8gi3ga  4g7 56812813 28811823

Q 30 300 3@ 37
ap, 3815 _40g138m 2083, 4081813 20811823

Q o8 3’ 3¢ 3
ars _ 3817 2013811 40813823

Q 3¢ 3 7
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)

_ 3817 40813823 20811813

R REYS 305
T

bo Z%,bozz%,bm:%,bm:gizg +£22N )
bos _ 3826 2082182 4081282

Q 3Q° 38 7
bog =52 8g11g2 485, 568282 281281

Q  30° 30 30 308 7
bm:@ 16823822 8g3,  8g11ga1 1681182

Q 3Q° Q@ 3 Q7
bos :@_ 40g23821 16813822 _ 8g11821

Q @ 3Q° 308 7

Q 30 307
_ 384 4082382 40g11822 20821812 2083,

R
_ 85 20g23ga | 4guigu 4082813
R
biy = 3825 20823821 20g11821 40822813
Q @ 3Q° 300 7
bis = 387 20g13821  40g3,
Q 30 30
by — 3g27  20g13821  40g3,
=5 "y

Q 3 3

The nonlinear functions Nf;(i = 1,2,3,4) in (6) are

Nfi = aosx%xz + Cl06x%x4 + ag7x1X2X3 + ApgX1X3X4
+ aogx% + a10x§x4 + a11x2x§ + Cllz)CQxi
+ a13x§X4 + a14xi,

Nfy = —apsx; — a1oX]xs — dgsX1%3 — dorX1X2X4
— @1pX1X5 — a11X1X] — doeXoX3 — AogXaX3Xy
— a13x3X; — aan,

Nfs = bosx1xa + bosXixa + borxi1x2x3 + bosXx1x3x4
+ booxs + b1oX3x4 + b112223 + b12xax)
+ b13x5%4 + b1axy,

Nfy = —bosx; — bioxix3 — bosx1x3 — borx1X2%4
— biax1X5 — byix1X5 — bogxaxs — bogXaXsxy
- b13x3xi — b14x§.

The nonlinear functions Ng;(i = 1,2,3,4) in (11)
are
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1 3 1 9
Ng| = —1212214 - ZZIZ3Z4 — ZZ12223 +ZZQZ3Z4
3 7 5 9 7
- gz%a 8z%14 Szﬁzl 3 Z§Z4 +§Z§Z3
7, 11 , 23 , 1, 11,
—§z312 3 z;m 3 <2422 —gzzm +5 3 Z4Z3
7, 7, 54 135 1 2 5 2
+§le3+§2321_§22 8 4+8 1+8 3
11 5 19
Ng, = —— —— - —
82 1 212224 4Z1Z3Z4 4Z1Z223 + n 222324
17 , 21 , 17 , 61 , 19 ,
- §z122 - §z1a — §Z4Z1 - §ZZZ4 +—= 3 2222
21 25 , 65 , 13, 23 ,
8 Z3Z2 8 Z3Z4 8 Z4Z2 8 Z221 + 8 Z4Z'§
T, T, 23 5 3153 35 9,
+ 81123 + 8Z';Zl 3 -2 §z4 8Z1 +§z3,
Ng3 = —1212224 - 2212324 — 1212223 +ZZZZ3Z4
11, 7 7 23 5
- §Z1ZZ 82%24 7§Z42121 - gzgm +§z§m
7, 3, 19 , 11,
_§Z3Z2 _§Z3Z4 8 Z4Z2 8 2221 +8Z4Z3
7 7 13 5 5 1
—gz%a —gzézl 2 —z- 82;’; 8z§’ Szi,
19 5 7 11
Ngs = 7112224 +4—121Z3Z4 +111Z2Z3 - ZZ223Z4
25, 21 , 19 , 65 , 2
+5 3 N +—+ 3 DU+ — 3 a1+ 3 524 — 3 <58
21 , 17 61 , 23 , 13 ,
+— 3 B+ 3 Z3Z4+ 3 Z4Z2 +—= 3 521 — 3 Z4Z3
7, T, 315 235 9,5 33
+§ZLZ3 +§Z3Zl + 8 Z2+ 8 4+821 82';

The nonlinear functions Nh;(i = 1,2,3,4) in (24) are

[ .8 108
1= 5212224 5212324 5

T, 99, .
50 Z2Z'§ 5023Z2 2Z1Z3

5
15 252 33,
) z%zZ 5% Z%Zl ~ 5 Z3Z] 2242‘21

5, 51 29
+ 5524 —§z4Z2 -2z T 5 - Sozg,
41

Nhy = — — — -
2 5 212224 5Z1Z3Z4 +25 212233 25 227324

393 2o+ 186 , 4 6 , n 9

125 213 125Z3Z2 51123 25Z3Z4
2, 33, 207, 33,
51423 + 5 ZIZZ + 25 Zzzl +25 Z3Z]

71 , 1
+2%7 + 0 5 2 — 5 —z2 + 25724 + 22,
428

s 2 a2
1252 T 25 T Fa

212223 + ?222324
2 1
- Z§Z4 — 5 242123

_|_

24 8 69
Nhy =—z210024 +-212324 — —— 2012283 + == 2032

5 5 25 25
462, 309, 9, ,
125Z2Z’§ 1252322 5Z1Z3 25Z’;Z4 52423
A, 297, 33, L, 121
5 2122 — 25 Az {271 — 25Z3Z1 2421 25 2p34
26 , , o 847 4 46
_2 222, —2 27
5 Z4Z2+ 2134 1 — 125 125 3+ 24y
i 84 48 693 3n
4 = 251122Z4 ZSZIZ3Z4 125212223 125222314
5337, 3339, 99, 17,
1250 2% T 1250 93% T 50719 Tp5 %
57, 477 2 1647, 198,
5048 T 5 " 25 2 T 5
12, +438 s Bl,
5 2421 12522Z4 50 Z4ZZ 5Z]Z4
12, 8907, 711 5 6,
5 4= 12502 7 12503 5%

The nonlinear functions NJ;(i = 1,2,3,4) in (50) are

21V/5 7 V5 6Vs ,

NJ,=—— — = ——
1 10 2133324 2Z122Z3 5 2233324 5 2322
14/5 5
- —Z§Z4 +=273+ 2121% ——7n 277
5 2 5
44/5 V5 3V5
_e2 2 2 2
62324+ IR - —LHut—+ 1o %
3 E 9\f 9 2 2145 4

B TR AT
3v'5 5
NI =V5212024 +%_2223Z4 —5u +2v/5232
21V5 ,

15 ,
+3\/-Z4Z1+ RS

2 Zl +3\/—12Z1 +

35
+ 7\/§Z%Z3 + 5Z§Zl - SZiZl —1 5242@3_

2
95, 21V5 , 45
—+sz?+7\[z§ S a+7V55z,

215 V5

6vS5 ,
o 217233 +TZ1Z3Z4 Tl +TZ3Z4

Vi WA, 45, 145,

T3 AT M T Ty BRTTaR

6V5

{134 —
5 1

95

22 2‘31

2
2371

NJ3;=—

+

1
21%14 —67i22+227124 — 22524

21V5 . 9
+7fzg V5 2,
10 2770

+
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3V5 5
NJy = T, A V3222 — Sunu - 3\/§Z§Z3

—2V522213V/5222s — TV52%21 — TV5232
C21V5,

35
2173 — 152321 — 52523 + 52323 — =213

2 2
205, 95, 15, 45
__455_15£+_£__5,
2 2 25772

Acknowledgments This work is supported by the National
Natural Science Foundation of China (11172125), and the
National Research Foundation for the Doctoral Program of
Higher Education of China (20133218110025).

References

1. Kiebacka B, Neubrand A, Riedel H (2003) Processing
techniques for functionally graded materials. Mater Sci Eng
A 362:81-106

2. Liew KM (1992) Vibration of symmetrically laminated
cantilever trapezoidal composite plates. Int J Mech Sci
34:299-308

3. Bakhtiari-Nejad F, Nazari M (2009) Nonlinear vibration
analysis of isotropic cantilever plate with viscoelastic lam-
inate. Nonlinear Dyn 56:325-356

4. Young TH, Chen FY (1995) Nonlinear vibration of a can-
tilever skew plate subjected to aerodynamic pressure and in-
plane force. J Sound Vib 182:427-440

5. Ciancio PM, Rossit CA, Laura PA (2007) Approximate
study of the free vibrations of a cantilever anisotropic plate
carrying a concentrated mass. J Sound Vib 302:621-628

6. Li QS (1999) Flexural free vibration of cantilevered struc-
tures of variable stiffness and mass. Struct Eng Mech
8:243-256

7. Yu SD (2009) Free and forced flexural vibration analysis of
cantilever plates with attached point mass. J Sound Vib
321:270-285

8. Hao YX, Zhang W, Yang J (2011) Nonlinear oscillation of a
cantilever FGM rectangular plate based on third-order plate
theory and asymptotic perturbation method. Compos Part B
42:402-413

9. Zhang W, Zhao MH, Guo XY (2013) Nonlinear responses
of a symmetric cross-ply composite laminated cantilever

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

rectangular plate under in-plane and moment excitations.
Compos Struct 100:554-565

Foroughi H, Azhari M (2014) Mechanical buckling and free
vibration of thick functionally graded plates resting on
elastic foundation using the higher order B-spline finite strip
method. Meccanica 49:981-993

Zhang W, Hao YX, Guo XY, Chen LH (2012) Complicated
nonlinear response of a simply supported FGM rectangular
plate under combined parametric and external excitations.
Meccanica 47:985-1014

Hao YX, Zhang W, Yang J, Li SY (2011) Nonlinear
dynamic response of a simply supported rectangular func-
tionally graded material plate under the time-dependent
thermalme chanical loads. J Mech Sci Technol 25:
1637-1646

Liew KM, Lei ZX, Yu JL, Zhang LW (2014) Postbukling of
carbon nanotube-reinforced functionally graded cylindrical
panels under axial compression using a meshless approach.
Comput Methods Appl Mech Eng 268:1-17

Zhang LW, Lei ZX, Liew KM, Yu JL (2014) Large
deflection geometrically nonlinear analysis of carbon
nanotube-reinforced functionally graded cylindrical panels.
Comput Methods Appl Mech Eng 273:1-18

Yaghoobi H, Yaghoobi P (2013) Buckling analisis of
sandwich plates with FGM face sheets resting on elastic
foundation with various boundary conditions:an analytical
approach. Meccanica 48:2019-2035

Zhang W, Yang J, Hao YX (2010) Chaotic vibrations of an
orthotropic FGM rectangular plate based on third-order
shear deformation theory. Nonlinear Dyn 59:619-660
Zhang LW, Lei ZX, Liew KM, Yu JL (2014) Static and
dynamic of carbon nanotube reinforced functionally graded
cylindrical panels. Compos Struct 111:205-212

Zhang LW, Zhu P, Liew KM (2014) Thermal buckling of
functionally graded plates using a local Kriging meshless
method. Compos Struct 108:472-492

. Zhu P, Zhang LW, Liew KM (2014) Geometrically non-

linear thermomechanical analysis of moderately thick
functionally graded plates using a local Petrov-Galerkin
approach with moving Kriging interpolation. Compos
Struct 107:298-314

Bi QS, Yu P (1999) Symbolic computation of normal forms
for semi-simple cases. ] Comput Appl Math 102:195-220



	Stability and bifurcation of a cantilever functionally graded material plate subjected to the transversal excitation
	Abstract
	Introduction
	Formulation of the problem
	Stability and bifurcation behaviors
	Double zero and two negative eigenvalues
	Double zero and a pair of pure imaginary eigenvalues
	A simple zero and a pair of pure imaginary eigenvalues
	Two pairs of pure imaginary eigenvalues

	Conclusions
	Appendix
	Acknowledgments
	References


