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Abstract The stability and bifurcation behaviors for

a cantilever functionally graded materials rectangular

plate subjected to the transversal excitation in thermal

environment are studied by means of combination of

analytical and numerical methods. The resonant case

considered here is 1:1 internal resonances and 1/2

subharmonic resonance. Four types of degenerated

equilibrium points are studied in detail, which are

characterized by a double zero and two negative

eigenvalues, a double zero and a pair of pure

imaginary eigenvalues, a simple zero and a pair of

pure imaginary eigenvalues as well as two pairs of

pure imaginary eigenvalues in non-resonant case,

respectively. For each case, the stability regions of the

initial equilibrium solution and the critical bifurcation

curves are obtained, which may lead to static bifur-

cation and Hopf bifurcation. The numerical solutions

obtained by using fourth-order Runge-Kutta method

agree with the analytic predictions.

Keywords Cantilever functionally graded material

plate � Stability � Bifurcation � Normal form

1 Introduction

Functionally graded materials(FGMs) are extremely

excellent materials. They have received increasing

attention in both research community and industry due

to their excellent thermo mechanical properties. FGMs

have been widely used in thermal, structural, optical

and electronic materials. With the development of

advanced techniques, Functionally graded materials

may be fabricated into various structures including

beam, plate and shell [1].

Cantilever plates are commonly used in a large

number of structures such as solar panels, solar sails of

satellites and aircraft rotary wings and their nonlinear

dynamic analysis is of great importance in safety

design. Liew [2] utilized the Rayleigh-Ritz method to

study the vibration of symmetrically composite lam-

inated cantilever trapezoidal thin plates. Based on the

von Karman’s nonlinear geometry plate theory and

using the methods of multiple scales and finite

difference, Nejad and Nazari [3] investigated the

nonlinear vibrations of an isotropic cantilever plate

with viscoelastic laminate and analyzed the stability
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and chaotic behaviors. Young and Chen [4] employed

a finite element formulation and multiple scales

method to obtain the nonlinear response amplitudes

of a cantilever skew plate under aerodynamic pressure

and in-plane force. Ciancio and Rossit [5] discussed

the vibration behavior of a cantilever rectangular

anisotropic plate when a concentrated mass is rigidly

attached to its center point. Li [6] studied the behavior

of shear-wall type buildings through a cantilevered

beam analogy. Yu [7] utilized the method of super-

position to obtain an analytical solution for free and

forced vibrations of cantilever plates carrying point

masses. However, Studies on the bifurcation and

dynamic behavior of cantilever Functionally graded

material plates are quite limited in number. Hao et al.

[8] studied the complicated nonlinear dynamics of a

FGM cantilever rectangular plate subjected to the

transverse excitation in thermal environment. Zhang

[9] studied the nonlinear dynamic responses and

chaotic motions of a composite laminated cantilever

rectangular plate under the in-plane and moment

excitations. In recent years,the studies on the dynam-

ics of functionally graded material plates [10–12] are

also helpful to understand the nonlinear dynamics of

cantilever functionally graded materials rectangular

plates. Liew et al. [13, 14] investigated dynamic

behaviors of carbon nanotube-reinforced functionally

graded cylindrical panels under axial compression.

Yaghoobi et al. [15] presents an analytical investiga-

tion on the buckling analysis of symmetric sandwich

plates with functionally graded material face sheets

resting on an elastic foundation based on the first-order

shear deformation plate theory. Zhang et al. [16]

studied the chaotic vibrations of an orthotropic FGM

rectangular plate, in which the heat conduction and

temperature-dependent material properties were also

taken into account. Recently, the meshless methods

[17–19] has been used to analyze the stability of

functionally graded material plates. It is efficient to

determine the boundary conditions of bifurcations.

The objective of this paper is to investigate the local

dynamic behaviors of a functionally graded material

cantilever rectangular plate subjected to the transverse

excitation in thermal environment. The resonant case

considered here is 1:1 internal resonance and 1/2

subharmonic resonance. Both analytical and numeri-

cal approaches are employed to consider the bifurca-

tion and stability of this system. Four types of

degenerated equilibrium points are studied in detail,

which are characterized by a double zero and two

negative eigenvalues, a double zero and a pair of pure

imaginary eigenvalues, a simple zero and a pair of

pure imaginary eigenvalues as well as two pairs of

pure imaginary eigenvalues, respectively. The stabil-

ity regions of the initial equilibrium solution and the

critical bifurcation curves are obtained in terms of the

system parameters. All numerical results agree with

the analytic predictions.

This paper is organized as follows: in Sect. 2, the

averaged equations of transverse motion of the canti-

lever FGM plate are given and the stability conditions

of initial equilibrium solution are obtained explicitly.

Section 3 is devoted to the studies on the dynamical

behaviors of the system in the vicinity of the critical

points: a double zero and two negative eigenvalues; a

double zero and a pair of pure eigenvalues; a simple

zero and a pair of pure imaginary eigenvalues as well as

two pairs of pure imaginary eigenvalues. Finally, some

conclusions are drawn in Sect. 4.

2 Formulation of the problem

The paper focuses on the stability and bifurcation

behaviors of a cantilever functionally graded material

rectangular plate under a combined action of a

transverse excitation and temperature field. The model

is shown in Fig. 1.

The cantilever FGM rectangular plate ða� b� hÞ
is subjected to a temperature field and a transversal

excitation Fðx; yÞcosðXtÞ. The plate is defined in the

Cartesian coordinate Oxyz where ðx; yÞ are the coor-

dinates of a point in the mid-plane ðz ¼ 0Þ of the plate

and z is perpendicular to the mid-plane and points

downwards. Let ðu; v;wÞ and ðu0; v0;w0Þ represent the

displacements of an arbitrary point and a point in the

Fig. 1 A cantilever functionally graded material plate and the

coordinate system
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mid-plane of the FGM rectangular plate in the x, y and

z directions.

The dimensionless governing differential equations

of transverse motion for the cantilever FGM rectan-

gular plate were derived in [8]

€w1þðg10 þ b11NTÞw1 þ l1 _w1 þ g11w1w2 þ g12w2
1

þ g13w2
2 þ g14w2w2

1 þ g15w1w2
2 þ g16w3

1

þ g17w3
2 þ ðg18 þ b12NTÞw2 ¼ f1cosðXtÞ; ð1aÞ

€w2þðg20 þ b21NTÞw2 þ l2 _w2 þ g21w1w2 þ g22w2
1

þ g23w2
2 þ g24w2w2

1 þ g25w1w2
2 þ g26w3

1

þ g27w3
2 þ ðg28 þ b22NTÞw1 ¼ f2cosðXtÞ; ð1bÞ

where w1 and w2 are amplitudes of normal modes, l1

and l2 are two combined parameters, including damp-

ing parameters, NT are the thermal stress resultant, f1

and f2 are the magnitudes of the forcing excitation,

respectively. All other constants are not listed herein

for brevity due to their lengthy expressions.

This paper considers the case of 1:1 internal

resonance and 1/2 subharmonic resonance for the

cantilever FGM rectangular plate. In such a case we

have the resonant relation

x2
1 ¼

X
2
þ �2r1; x2

2 ¼
X
2
þ �2r2; ð2Þ

where � is a small perturbation parameter, x1 ¼
g10 þ b11NT and x2 ¼ g20 þ b21NT are the first order

and second order linear frequencies, r1 and r2 are two

detuning parameters.

Introducing the scale transformations and the

temporal rescaling, the approximate solutions w1ðtÞ
and w2ðtÞ of (1) were sought in the form of a power

series of small perturbation parameter[8]

w1ðtÞ ¼ �dw0ðs; �Þ þ �w1ðs; �Þe�iX
2
t þ �2w2ðs; �Þe�iXt

þ �3w3ðs; �Þe�i3X
2 t þ �2w2ðs; �Þe�i2Xt þ cc;

ð3aÞ

w2ðtÞ ¼ �d/0ðs; �Þ þ �/1ðs; �Þe�iX
2
t þ �2/2ðs; �Þe�iXt

þ �3/3ðs; �Þe�i3X
2 t þ �2/2ðs; �Þe�i2Xt þ cc:

ð3bÞ

Using the asymptotic perturbation method, the

differential equation for the evolution of the complex

amplitudes w1 and /1 were obtained in [8]

_w1¼
1

2
l1�r1i

� �
w1�
ðg18þb12NTÞ

X
/1iþ2f1g11

3X3
/�1i

þ4g13f2

3X3
/�1iþ 2f2g11

3X3
þ4f1g12

3X3

� �
w�1i

�8g13g22

3X3
w2

1/
�
1�

g15

X
w�1/

2
1i�2g15

X
/1/

�
1w1i

þ 12g2
11

3X3
�4g11g23

3X3
þ24g13g21

3X3
�8g12g13

3X3

� �
w�1/

2
1i

þ 20g11g12

3X3
þ4g11g21

X3
�8g13g22

3X3
�g14

X

� �
/�1w

2
1i

þ 40g2
12

3X3
þ20g11g22

3X3
�3g16

X

� �
w�1w

2
1i

þ 20g11g13

3X3
þ40g13g23

3X3
�3g17

X

� �
/�1/

2
1i

þ 48g13g22

3X3
þ40g11g12

3X3
þ8g11g21

3X3
�2g14

X

� �
w�1w1/1i

þ 8g2
11

3X3
þ24g11g23

3X3
þ48g12g13

3X3
þ16g13g21

3X3

� �
/1/

�
1w1i;

ð4aÞ

_/1¼ �1

2
l2�r2i

� �
/1�
ðg28þb22NTÞ

X
w1iþ2f1g21

3X3
/�1i

þ4g23f2

3X3
/�1iþ 2f2g21

3X3
þ4g22f1

3X3

� �
w�1i

�8g23g22

3X3
w2

1/
�
1i�2g24

X
w�1w1/1i

þ 4g21g11

X3
�8g22g13

3X3
þ20g23g21

3X3
�g25

X

� �
w�1/

2
1i

þ 4g2
21

X3
þ4g12g21

3X3
þ8g11g22

3X3
�g24

X

� �
/�1w

2
1i

þ 40g22g12

3X3
þ20g21g22

3X3
�3g26

X

� �
w�1w

2
1i

þ 20g21g13

3X3
þ40g2

23

3X3
�3g27

X

� �
/�1/

2
1i

þ 16g23g22

X3
þ8g21g22

X3
þ16g11g22

3X3

� �
w�1w1/1i

þ 40g21g23

3X3
þ8g11g21

3X3
þ16g22g13

X3
�2g25

X

� �
/1/

�
1w1i:

ð4bÞ

In order to transform (4) into the Cartesian form, let

w1 ¼ x1 þ ix2; /1 ¼ x3 þ ix4: ð5Þ

Substituting (5) into (4), the averaged equations in the

Cartesian form were obtained as follows [8]
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_x1¼�
1

2
l1 x1þðr1þaÞx2þðc1þk1Þx4þNf1; ð6aÞ

_x2¼ð�r1þaÞx1�
1

2
l1x2þðc1� k1Þx3þNf2; ð6bÞ

_x3 ¼ðc2þ k2Þx2�
1

2
l2x3þðr2þbÞx4þNf3; ð6cÞ

_x4¼ðc2� k2Þx1þð�r2þbÞx3�
1

2
l2 x4þNf4; ð6dÞ

where a ¼ a01f1 þ a02f2, b ¼ b01f1 þ b02f2, c1 ¼
a02f1þ a03f2, c2 ¼ b03f1 þ b01f2, k1 ¼ a04; k2 ¼ b04.

The nonlinear functions Nfiði ¼ 1; 2; 3; 4Þ and all

coefficients are presented in ‘‘Appendix’’.

The Jacobian matrix of (6) evaluated at the initial

equilibrium solution ðx1; x2; x3; x4Þ ¼ ð0; 0; 0; 0Þ is as

follows

J ¼

�1

2
l1 r1þ a 0 c1þ k1

�r1þ a � 1

2
l1 c1� k1 0

0 c2þ k2 � 1

2
l2 r2þ b

c2� k2 0 � r2þ b � 1

2
l2

2
6666666664

3
7777777775

ð7Þ

The characteristic polynomial is

f ðkÞ ¼ k4 þ b1k
3 þ b2k

2 þ b3kþ b4; ð8Þ

where

b1 ¼ l1þ l2;

b2 ¼
1

4
l2

2þ l1l2þ r2
1� a2þ 1

4
l2

1þ r2
2� b2

� 2c1c2þ 2k1k2;

b3 ¼ r2
2l1þ

1

4
l2

2l1þ r2
1l2� a2l2þ

1

4
l2

1l2

� c1c2l1� c1c2l2þ k1k2l1þ k1k2l2;

b4 ¼ r2
1r

2
2� r2

2a
2þ 1

4
r2

2l
2
1þ

1

4
l2

2r
2
1�

1

4
l2

2a
2� 1

4
l2

1b
2

� 2c1c2abþ 2c2k1r2aþ 2c2k1r1bþ 2c1k2r1b

� 2k1k2r1r2þ 2c1k2r2a� 2k1k2ab� 1

2
c1c2l1l2

þ 1

2
k1k2l1l2þ a2b2� 2c1c2r1r2� r2

1b
2þ c2

1c
2
2

� k2
1c

2
2� k2

2c
2
1þ k2

1k2
2 þ

1

16
l2

1l
2
2:

By the Routh-Hurwitz criterion, the equilibrium

solution ðx1;x2; x3;x4Þ ¼ ð0;0;0;0Þ is stable, if the

following conditions are satisfied

b1[0;b1b2�b3[0;b4[0; b3ðb1b2�b3Þ�b2
1b4[0:

ð9Þ

Conditions (9) implies that all the eigenvalues of the

Jacobian matrix (7) have negative real parts. When

conditions (9) are not satisfied, the initial equilibrium

solution is unstable, and bifurcations may occur. In the

next section, the detailed analysis will be given when

condition (9) are violated.

3 Stability and bifurcation behaviors

In this section, the stability and bifurcation analysis on

the parameters l1 and l2 will be investigated, which

can be divided into four parts.

3.1 Double zero and two negative eigenvalues

Taking parameters as follows:

l1 ¼ 2; l2 ¼ 2; r1 ¼ 1; r2 ¼ 1; a ¼ 0; b ¼ 0; c1 ¼
1; c2 ¼ 2; k1 ¼ k2 ¼ 0; a05 ¼ a06 ¼ a07 ¼ a08 ¼ a09

¼ a10 ¼ a11 ¼ a12 ¼ a13 ¼ a14 ¼ 1; b05 ¼ b06 ¼ b07

¼ b08¼ b09¼ b10¼ b11¼ b12¼ b13¼ b14¼ 1, which

implies that b1¼ b2¼ 4, b3¼ b4¼ 0, then the Jacobian

matrix (7) has the eigenvalues k1;2¼ 0;k3;4¼�2.

Let us consider l1 and l2 as the perturbation

parameters. Using the parameter transformation

l1 ¼ 2þ n1; l2 ¼ 2þ n2, and the state variable

transformation

x1

x2

x3

x4

2
66664

3
77775 ¼

1

2

1

2
� 1

2

1

2

� 1

2

1

2
� 1

2
� 1

2

0 1 0 1

1 0 1 0

2
66666664

3
77777775

z1

z2

z3

z4

2
66664

3
77775; ð10Þ

one may transform (6) into a new system as follows

_z1 ¼�
1

4
ðn1 þ n2Þz1 �

1

4
ðn1 � n2Þz2 þ

1

4
ðn1 � n2Þz3

� 1

4
ðn1 � n2Þz4 þ Ng1; ð11aÞ

_z2 ¼
1

4
ðn1 � n2Þz1 �

1

4
ðn1 þ n2Þz2 þ

1

4
ðn1 � n2Þz3

þ 1

4
ðn1 � n2Þz4 þ Ng2; ð11bÞ
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_z3 ¼� 2z3 þ
1

4
ðn1 � n2Þz1 þ

1

4
ðn1 � n2Þz2

� 1

4
ðn1 þ n2Þz3 þ

1

4
ðn1 � n2Þz4 þ Ng3;

ð11cÞ

_z4 ¼� 2z4 �
1

4
ðn1 � n2Þz1 þ

1

4
ðn1 � n2Þz2

� 1

4
ðn1 � n2Þz3 �

1

4
ðn1 þ n2Þz4 þ Ng4;

ð11dÞ

where the nonlinear functions Ngiði ¼ 1; . . .; 4Þ are

exhibited in the ‘‘Appendix’’.

The Jacobian matrix of (11) evaluated at the initial

equilibrium solution ðz1; z2; z3; z4Þ ¼ ð0; 0; 0; 0Þ at

critical point n1c ¼ n2c ¼ 0 is the following canonical

form

Jðzi¼0Þ ¼

0 0 0 0

0 0 0 0

0 0 � 2 0

0 0 0 � 2

2
6664

3
7775

The local dynamic behaviors of system (11) are

characterized by the critical variables z1 and z2.

Further more, the bifurcation solutions for the non-

critical variables z3 and z4 may be determined from

system (11) up to leading orders terms as

z3 ¼
1

8
ðn1 � n2Þz1 þ

1

8
ðn1 � n2Þz2 �

5

16
z3

1 �
13

16
z3

2

� 11

16
z2

2z1 �
11

16
z2

1z2; ð12aÞ

z4 ¼�
1

8
ðn1 � n2Þz1 þ

1

8
ðn1 � n2Þz2 þ

9

16
z3

1 þ
31

16
z3

2

þ 23

16
z2

2z1 þ
25

16
z2

1z2: ð12bÞ

In order to study the bifurcation and stable prop-

erties of system (11) in the vicinity of the critical point,

one only need to analyze the following two-dimen-

sional system

_z1 ¼ �
1

4
ðn1þ n2Þ þ

1

16
ðn1� n2Þ2

� �
z1�

1

4
ðn1� n2Þz2

þ 1

8
z3

1�
5

8
z3

2�
3

8
z2

1z2�
1

8
z2

2z1; ð13aÞ

_z2 ¼
1

4
ðn1� n2Þz1þ �

1

4
ðn1þ n2Þ þ

1

16
ðn1� n2Þ2

� �
z2

� 3

8
z3

1�
23

8
z3

2�
17

8
z2

1z2�
13

8
z2

2z1: ð13bÞ

To find the stability conditions of the initial equilib-

rium solution ðz1; z2Þ ¼ ð0;0Þ, one may evaluate the

Jacobian matrix of (13) at ðz1; z2Þ ¼ ð0;0Þ and obtain

Jðzi¼0Þ ¼
a11 a12

a21 a21

� �
ð14Þ

where

a11 ¼ �
1

4
ðn1 þ n2Þ þ

1

16
ðn1 � n2Þ2;

a12 ¼ �
1

4
ðn1 � n2Þ;

a21 ¼
1

4
ðn1 � n2Þ;

a22 ¼ �
1

4
ðn1 þ n2Þ þ

1

16
ðn1 � n2Þ2:

The characteristic polynomial is

f ðkÞ ¼ k2 þ 1

2
ðn1 þ n2Þ �

1

8
ðn1 � n2Þ2

� �
k

þ � 1

4
ðn1 þ n2Þ þ

1

16
ðn1 � n2Þ2

� �2

þ 1

16
ðn1 � n2Þ2:

ð15Þ

The stability conditions for the initial equilibrium

solution ðz1; z2Þ ¼ ð0; 0Þ are

1

2
ðn1 þ n2Þ �

1

8
ðn1 � n2Þ2 [ 0; ð16Þ

and

� 1

4
ðn1 þ n2Þ þ

1

16
ðn1 � n2Þ2

� �2

þ 1

16
ðn1 � n2Þ2 [ 0:

ð17Þ

It is easy to see that � 1
4
ðn1 þ n2Þ þ 1

16
ðn1 � n2Þ2

h i2

þ
1

16
ðn1 � n2Þ2 [ 0 unless ðn1; n2Þ ¼ ð0; 0Þ , so if

1
2
ðn1 þ n2Þ � 1

8
ðn1 � n2Þ2 [ 0, the initial equilibrium

solution is stable. Then a critical bifurcation curve is

obtained

L1 :
1

2
ðn1 þ n2Þ �

1

8
ðn1 � n2Þ2 ¼ 0: ð18Þ

From (15), we can obtain the eigenvalues of the

Jacobian matrix (14) at the initial equilibrium solution

ðz1; z2; z3; z4Þ ¼ ð0; 0; 0; 0Þ as follows
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k1;2 ¼ �
1

4
ðn1 þ n2Þ þ

1

16
ðn1 � n2Þ2 �

1

4
ðn1 � n2Þi:

Let

a ¼ Reðk1;2Þ ¼ �
1

4
ðn1 þ n2Þ þ

1

16
ðn1 � n2Þ2;

b ¼ Imðk1;2Þ ¼
1

4
ðn1 � n2Þ;

it is easy to see that a ¼ 0; b [ 0, and da
dn1
6¼ 0, when

ðn1; n2Þ 2 L1 and ðn1; n2Þ 6¼ 0 or ð3
2
;� 1

2
Þ. By Hopf

bifurcation theorem, along L1, Hopf bifurcation may

occur. The bifurcation diagram is shown as Fig. 2. We

can observe that the critical curves L1 separate n1 � n2

plane into two kinds of areas (I and II). The initial

equilibrium solution ðx1; x2; x3; x4Þ ¼ ð0; 0; 0; 0Þ is

stable while ðn1; n2Þ belongs to area I( the stable

region for E.S. — the initial equilibrium solution).

When ðn1; n2Þ crosses L1 and goes into area II, the

initial equilibrium solution becomes unstable.

Here the numerical results have been obtained by

fourth-order Runge-Kutta method performed on the

basis of the differential equation (6). Choosing

parameter values of n1 and n2 from the region II (the

blank area), any numerical solution starting from an

arbitrary initial pointððx1; x2; x3; x4Þ 6¼ ð0; 0; 0; 0ÞÞ
diverges to infinity, initiating that the initial

equilibrium solution is unstable, as predicted by the

analytic study. When the parameter value is chosen

from the region I (the shadow area), such as,

ðn1; n2Þ ¼ ð0:2; 0:2Þ, a numerical solution starting

from an initial point ðx1; x2; x3; x4Þ ¼ ð0:01; 0; 0; 0:02Þ
is obtained, which converges to the origin, implying

that the initial equilibrium solution is stable. This is

shown in Fig. 3, where the phase trajectories are

projected onto the x1 � x2 and x3 � x4 plane. It should

be noted that since the study is focused on the local

dynamic behaviors of the cantilever FGM plate in the

vicinity of a critical point, so the parameter ðn1; n2Þ
should be chosen near the critical point ðn1; n2Þ ¼
ð0; 0Þ.

When ðn1; n2Þ ¼ ð0:2;�0:1664Þ 2 L1, the trajec-

tory starting from an initial point ðx1; x2; x3; x4Þ ¼
ð�0:001; 0:001; 0:002; 0Þ yields a stable limit cycle

shown in Fig. 4.

3.2 Double zero and a pair of pure imaginary

eigenvalues

Choosing the following parameter values: l1 ¼
0; l2 ¼ 0; r1 ¼ 1

2
; r2 ¼ 3

4
; a ¼ 1

2
; b ¼ 3

4
; c1 ¼ 0; c2 ¼

1; k1 ¼ 1; k2 ¼ 1
2
; a05 ¼ a06 ¼ a07 ¼ a08 ¼ a09 ¼

a10 ¼ a11 ¼ a12 ¼ a13 ¼ a14 ¼ 1; b05 ¼ b06 ¼ b07 ¼
b08 ¼ b09 ¼ b10 ¼ b11 ¼ b12 ¼ b13 ¼ b14 ¼ 1, which

implies that b2 ¼ 1, b1 ¼ b3 ¼ b4 ¼ 0, then the Jaco-

bian matrix (7) has the eigenvalues k1;2 ¼ 0;

k3;4 ¼ �i.

Choosing l1 and l2 as perturbation parameters, and

using the parameter transformation l1 ¼ n1; l2 ¼ n2.

The characteristic polynomial (8) of the Jacobian

matrix (7) becomes

~f ðkÞ ¼ k4 þ ~b1k
3 þ ~b2k

2 þ ~b3kþ ~b4; ð19Þ

where

~b1 ¼ n1 þ n2;

~b2 ¼
1

4
n2

1 þ
1

4
n2

2 þ n1n2 þ 1;

~b3 ¼
1

4
n1n

2
2 þ

1

4
n2n

2
1 þ

1

2
n1 þ

1

2
n2;

~b4 ¼
1

16
n2

2n
2
1 þ

1

4
n1n2:

The stability conditions for the initial equilibrium

solution ðx1; x2; x3; x4Þ ¼ ð0; 0; 0; 0Þ are
Fig. 2 Transition curves for the case of a double zero and two

negative eigenvalues
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D1 ¼ ~b1 [0; i:e: n1þ n2 [0;

D2 ¼ ~b1
~b2� ~b3 [0;

i:e: ðn1þ n2Þðn2
1þ n2

2þ 3n1n2þ 2Þ[0;

D3 ¼ ~b3ð~b1
~b2� ~b3Þ� ~b2

1
~b4;

i:e: ðn1þ n2Þ2ðn2
2þ n1n2þ 2Þðn2

1þ n1n2þ 2Þ[0:

From the three inequalities above, one may get the

following three transition curves

L2 : n1 þ n2 ¼ 0; ð20Þ

L3 : n2
1 þ n2

2 þ 3n1n2 þ 2 ¼ 0; ð21Þ

L4 : ðn2
2 þ n1n2 þ 2Þðn2

1 þ n1n2 þ 2Þ ¼ 0: ð22Þ

Then, the transition curves are shown as Fig.5.

When n1 þ n2 [ 0, n2
1 þ n2

2 þ 3n1n2 þ 2 [ 0, and

ðn2
2 þ n1n2 þ 2Þðn2

1 þ n1n2 þ 2Þ[ 0 are all satisfied,

the initial equilibrium solution is stable. By the Fig. 5,

we can observe that the critical curves L2, L3, L4

separate n1 � n2 plane into two kinds of areas (I and

II). When ðn1; n2Þ belongs to region I, the initial

equilibrium solution is stable, and when ðn1; n2Þ
belongs to region II, the initial equilibrium solution

of the system is unstable.

Similar to the case in the Sect. 3.1, different

parameters are chosen to confirm the analytical results

obtained in this section. When the parameter is chosen

as ðn1; n2Þ ¼ ð0:4; 0:4Þ, which is located in the region

I, numerical results show that a trajectory starting from

ðx1; x2; x3; x4Þ ¼ ð0:1;�0:1; 0:2;�0:2Þ converges to

the origin, implying that the initial equilibrium

solution is stable. The phase trajectories are projected

(a) (b)

Fig. 3 Trajectory

projection starting from

ðx1; x2; x3; x4Þ ¼
ð0:01; 0; 0; 0:02Þ converges

to the E.S. when

ðn1; n2Þ ¼ ð0:2; 0:2Þ, a the

phase portrait on plane

ðx1; x2Þ; b the phase portrait

on plane ðx3; x4Þ

(a) (b)

Fig. 4 Trajectory

projection starting from

ðx1; x2; x3; x4Þ ¼
ð�0:001; 0:001; 0:002; 0Þ
when ðn1; n2Þ ¼
ð0:2;�0:1664Þ, a the phase

portrait on plane ðx1; x2Þ;
b the phase portrait on plane

ðx3; x4Þ
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onto the x1 � x2 and x3 � x4 sub-spaces as shown in

Fig. 6.

3.3 A simple zero and a pair of pure imaginary

eigenvalues

Choosing the following parameter values: l1 ¼ 2; l2 ¼
0;r1 ¼ 0;r2 ¼ 1;a¼ 1;b¼ 0; c1 ¼ k1 ¼ 1; c2 ¼ k2 ¼
0; a05 ¼ a06 ¼ a07 ¼ a08 ¼ a09 ¼ a10 ¼ a11 ¼ a12 ¼
a13 ¼ a14 ¼ 1; b05 ¼ b06 ¼ b07 ¼ b08 ¼ b09 ¼ b10 ¼
b11 ¼ b12 ¼ b13 ¼ b14 ¼ 1, which implies that b2 ¼ 1;

b1 ¼ b3 ¼ 2;b4 ¼ 0, and the Jacobian matrix (7) has

the eigenvalues k1 ¼ 0; k2;3 ¼�i;k4 ¼�2.

Using the parameter transformation l1 ¼ 2þ n1;

l2 ¼ n2, and the subsequent state variable

transformation

x1

x2

x3

x4

2
6664

3
7775 ¼

1
6

5

2

5
� 1

1
4

5
� 2

5
1

0 1 0 0

0 0 1 0

2
6666664

3
7777775

z1

z2

z3

z4

2
6664

3
7775 ð23Þ

into (6) yields

_z1 ¼�
1

2
n1z1 þ

1

2
ð�n1 þ n2Þz3 þ Nh1; ð24aÞ

_z2 ¼z3 �
1

2
n2z2 þ Nh2; ð24bÞ

_z3 ¼� z2 �
1

2
n2z3 þ Nh3; ð24cÞ

_z4 ¼� 2z4 þ
1

10
ðn1 � n2Þz2 þ

1

5
ðn1 � n2Þz3

� 1

2
n1z4 þ Nh4;

ð24dÞ

where the nonlinear functions Nhiði ¼ 1; . . .; 4Þ are

exhibited in the ‘‘Appendix’’.

The Jacobian matrix of (24) evaluated at the initial

equilibrium solution ðz1; z2; z3; z4Þ ¼ ð0; 0; 0; 0Þ at

critical point n1c ¼ n2c ¼ 0 is the following canonical

form

(a) (b)

Fig. 6 Trajectory

projection starting from

ðx1; x2; x3; x4Þ ¼
ð0:1;�0:1; 0:2;�0:2Þ
converges to the E.S. when

ðn1; n2Þ ¼ ð0:4; 0:4Þ, a the

phase portrait on plane

ðx1; x2Þ; b the phase portrait

on plane ðx3; x4Þ

Fig. 5 Transition curves for the case of double zero and a pair of

pure imaginary eigenvalues
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Jðzi¼0Þ ¼

0 0 0 0

0 0 1 0

0 � 1 0 0

0 0 0 � 2

2
6664

3
7775: ð25Þ

The dynamical behaviors of this system in the vicinity

of the critical point is determined by the critical

variables z1; z2; z3. Referred to paper [20], introducing

a nearly identity non-linear transform zi ¼ yi þ giðyjÞ
(which are omitted, since they are not significant in the

following analysis) and a cylindrical coordinate

transform

z1 ¼ y; z2 ¼ r cosh; z3 ¼ r sinh; z4 ¼ z4; ð26Þ

yields the normal form of (24) in the cylindrical co-

ordinate system as follows

_y ¼ y � 1

2
n1 �

57

10
r2 � 2y2

� �
; ð27aÞ

_r ¼ r � 1

2
n2 þ

87

100
r2 þ 12

5
y2

� �
; ð27bÞ

and

_h ¼ 1þ 177

50
r2 þ 24

5
y2: ð28Þ

The steady state solutions and their stability conditions

can be found from Eq. (27), while Eq. (28) determines

the frequency of possible periodic solutions. Letting

_y ¼ 0, _r ¼ 0 in Eq. (27) leads to the following steady

state solutions:

The initial equilibrium solution (E.S.)

y ¼ r ¼ 0: ð29Þ

The static bifurcation solution (S.B.)

y2 ¼ � n1

4
;

r ¼ 0:

8><
>: ð30Þ

The Hopf bifurcation solution (H.B.)

y ¼ 0;

r2 ¼ 50

87
n2:

8><
>: ð31Þ

The secondary Hopf bifurcation or the second static

bifurcation solution (2nd H.B. or 2nd S.B.)

y2 ¼ 29

398

1

2
n1 þ

95

29
n2

� �
;

r2 ¼ � 100

597

3

5
n1 þ

1

2
n2

� �
:

8>>><
>>>:

ð32Þ

Here, the notation 2nd H.B. denotes a dynamic

bifurcation from the S.B. solution (i.e., from a non-

zero equilibrium to a periodic solution), while the

notation 2nd S.B. represents a static bifurcation from

the H.B. solution (i.e., a periodic solution having a static

shift). These two bifurcation solutions actually belong

to the same family of limit cycles described by Eq. (32).

The stability conditions can be determined from the

Jacobian matrix of Eq. (27), given by

J¼
�1

2
n1�

57

10
r2�6y2 �57

5
yr

24

5
yr �1

2
n2þ

261

100
r2þ12

5
y2

2
64

3
75: ð33Þ

Evaluating the Jacobian matrix (33) on the E.S. (29)

shows that if the conditions

n1 [ 0 and n2 [ 0 ð34Þ

are satisfied, then the E.S. is stable. The region defined

by equation (34) in the parameter space is shown in

Fig. 7. Two critical lines which define the stability

boundaries of the E.S. can be obtained from conditions

(34), one of them is

Fig. 7 Transition curves for the case of a simple zero and a pair

of pure imaginary eigenvalues

Meccanica (2015) 50:1403–1418 1411

123



L5 : n1 ¼ 0 ðn2 [ 0Þ; ð35Þ

from which non-trivial equilibrium solutions (S.B.)

described by Eq. (30) bifurcate from the initial equilib-

rium solution (29). The other critical line is defined by

L6 : n2 ¼ 0 ðn1 [ 0Þ; ð36Þ

along which the H.B. solution (31) may occur.

To find the stability condition of the S.B. solution

(30), evaluate the Jacobian (33) on the S.B. solution

(30) to obtain

JS:B: ¼
n1 0

0 � 3

5
n1 �

1

2
n2

2
4

3
5; ð37Þ

which implies that the S.B. solution is stable if

n1\0 and
3

5
n1 þ

1

2
n2 [ 0: ð38Þ

The stability boundaries defined by conditions (38)

include the critical line L5 and another critical line

L7 :
3

5
n1 þ

1

2
n2 ¼ 0ðn1\0Þ: ð39Þ

Thus, the S.B. solution (30) is stable in the region

bounded by the critical lines L5 and L7(see Fig.7).

Next, the stability of the H.B. solution (31) is found

by evaluating the Jacobian (33) on Eq. (31) to yield

JH:B: ¼
� 1

2
n1 �

95

29
n2 0

0 n2

2
4

3
5; ð40Þ

which, in turn, shows when

1

2
n1 þ

95

29
n2 [ 0 and n2\0; ð41Þ

the H.B. solution is stable, and the frequency of the

periodic solution (31) is given by

x1 ¼ 1þ 59

19
n2: ð42Þ

The second inequality of Eq. (41) is not satisfied since

the H.B. solution emerges when n2 [ 0, so the H.B.

solution is unstable. Therefore the limit cycles

expressed by Eq. (32) cannot bifurcate from the H.B.

solution along

L8 :
1

2
n1 þ

95

29
n2 ¼ 0ðn2\0Þ: ð43Þ

and only bifurcate from the S.B. solution along L7.

When the parameter values are varied such that the

critical boundary L7 is intersected, the S.B. solution

becomes unstable and bifurcates into a family of limit

cycles (the 2nd H.B.solution). The solution of the

family is given by Eq. (32). The frequency of the

family of limit cycles is given by

x2 ¼ 1� 36

199
n1 þ

169

199
n2: ð44Þ

To investigate the stability of this family of limit cycles,

evaluate the Jacobian matrix (33) on Eq. (32) to obtain

J2ndH:B: ¼
�4y2 � 57

5
yr

24

5
yr

87

50
r2

2
64

3
75: ð45Þ

Then the stability conditions are found from the trace

and determinant of the Jacobian as

Tr ¼ � 1

198005
ð63481n1 þ 217905n2Þ\0; ð46Þ

Det ¼ 1194

25
y2r2: ð47Þ

It is easy to see that the condition (47) is automatically

satisfied as long as the H.B. (II) solution exists. There-

fore there exists stable H.B.(II) solution when 1
2
n1þ

95
29

n2 [ 0, 3
5
n1 þ 1

2
n2\0 and 63481n1þ217905n2[ 0.

The transition curves which define the stability

boundaries of the H.B.(II) solution are L7 and

L9 : 63481n1 þ 217905n2 ¼ 0
3

5
n1 þ

1

2
n2\0

� �
:

ð48Þ

From previous analysis, we get the only possible

sequence of bifurcations as follows: first, the static

bifurcation solution (30) bifurcates from the initial

equilibrium solution (29) along the transition curve L5,

then, as the parameters cross the transition curve L7,

the static bifurcation solution loses its stability and

bifurcates into a family of limit cycle. Finally, the

H.B.(II) solution loses its stability and bifurcates into a

two-dimensional torus along the transition curve L9.

The bifurcation critical lines and bifurcation solutions

are shown in Fig.7.

Now choosing different parameter values from the

different regions in Fig. 7 to confirm the previous
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analytical results. When the parameter values are

chosen as ðn1; n2Þ ¼ ð0:1; 0:2Þ, which is located in the

region bounded by the critical lines L5 and L6,

numerical results show that the trajectory starting

from a point near the origin converges to the origin

asymptotically. An example is shown in Fig. 8, in

which the initial condition is ðx1; x2; x3; x4Þ ¼
ð�0:1; 0; 0:02; 0:2Þ.

When the parameter values are chosen as

ðn1; n2Þ ¼ ð�0:02; 0:06Þ, which is located in the

region bounded by the critical lines L5 and L7,

numerical results show that the trajectory starting

from a point near the origin converges to the static

bifurcation solutions. An example is shown in Fig. 9,

in which the initial condition is ðx1; x2; x3; x4Þ ¼
ð�0:2;�0:03; 0;�0:02Þ. It is interesting to note that

the trajectory first converges to the dark area and then

moves to the non-trivial equilibrium point.

When the parameter values are chosen as

ðn1; n2Þ ¼ ð0:02;�0:0031Þ, which is located in the

region bounded by the critical lines L7 and L9, the

trajectory starting from an initial point ðx1; x2; x3;

x4Þ ¼ ð�0:1; 0; 0:02; 0:2Þ yields a stable limit cycles

shown in Fig. 10.

3.4 Two pairs of pure imaginary eigenvalues

Choosing the following parameter values: l1 ¼ 0;

l2 ¼ 0; r1 ¼ �1; r2 ¼ �2; a ¼ 0; b ¼ 0; c1 ¼ �1;

k1 ¼ 0; c2 ¼ 0; k2 ¼ 0; a05 ¼ a06 ¼ a07 ¼ a08 ¼
a09 ¼ a10 ¼ a11 ¼ a12 ¼ a13 ¼ a14 ¼ 1; b05 ¼ b06 ¼
b07 ¼ b08 ¼ b09 ¼ b10 ¼ b11 ¼ b12 ¼ b13 ¼ b14 ¼ 1,

which implies that b1 ¼ b3 ¼ 0; b2 ¼ 3; b4 ¼ 1, and

the Jacobian matrix (7) has the eigenvalues k1;2 ¼
�
ffiffi
5
p
�1

2
i; k3;4 ¼ �

ffiffi
5
p
þ1

2
i.

Using the parameter transformation l1 ¼ n1; l2 ¼
n2, and the state variable transformation

x1

x2

x3

x4

2
6664

3
7775¼

0
3þ

ffiffiffi
5
p

2
0

3�
ffiffiffi
5
p

2

3þ
ffiffiffi
5
p

2
0

3�
ffiffiffi
5
p

2
0

0 � 1 0 � 1

1 0 1 0

2
66666664

3
77777775

z1

z2

z3

z4

2
6664

3
7775

ð49Þ

one can get

_z1 ¼
ffiffiffi
5
p
� 1

2
z2 þ � 1

4
� 3

ffiffiffi
5
p

20

 !
n1

"

þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n2

#
z1 þ

1

4
� 3

ffiffiffi
5
p

20

 !
n1

"

þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n2

#
z3 þ NJ1; ð50aÞ

_z2 ¼
1�

ffiffiffi
5
p

2
z1 þ � 1

4
� 3

ffiffiffi
5
p

20

 !
n2

"

þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n2

#
z2 þ

1

4
� 3

ffiffiffi
5
p

20

 !
n1

"

þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n2

#
z4 þ NJ2; ð50bÞ

(a) (b)

Fig. 8 Trajectory

projection starting from

ðx1; x2; x3; x4Þ ¼
ð�0:1; 0; 0:02; 0:2Þ
converges to the E.S. when

ðn1; n2Þ ¼ ð0:1; 0:2Þ, a the

phase portrait on plane

ðx1; x2Þ; b the phase portrait

on plane ðx3; x4Þ
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_z3 ¼
�1�

ffiffiffi
5
p

2
z4 þ

1

4
þ 3

ffiffiffi
5
p

20

 !
n1

"

þ � 1

4
� 3

ffiffiffi
5
p

20

 !
n2

#
z1 þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n1

"

þ � 1

4
� 3

ffiffiffi
5
p

20

 !
n2

#
z3 þ NJ3; ð50cÞ

_z4¼
1þ

ffiffiffi
5
p

2
z3þ

1

4
þ3

ffiffiffi
5
p

20

 !
n1þ �1

4
�3

ffiffiffi
5
p

20

 !
n2

" #
z2

þ �1

4
þ3

ffiffiffi
5
p

20

 !
n1þ �1

4
�3

ffiffiffi
5
p

20

 !
n2

" #
z4þNJ4;

ð50dÞ

where the nonlinear functions NJiði ¼ 1; . . .; 4Þ are

exhibited in the ‘‘Appendix’’.

With the aid of normal form theory and the method

of computer algebra, we get the normal form of (50) in

polar coordinate system as follows

_r1 ¼ r1 � 1

4
� 3

ffiffiffi
5
p

20

 !
n1 þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n2

" #
;

ð51aÞ

_r2 ¼ r2 � 1

4
þ 3

ffiffiffi
5
p

20

 !
n1 þ � 1

4
� 3

ffiffiffi
5
p

20

 !
n2

" #
;

ð51bÞ

and

_h1 ¼
ffiffiffi
5
p

2
� 1

2
� 1

20
ð85þ 51

ffiffiffi
5
p
Þr2

1

h

þð�120þ 72
ffiffiffi
5
p
Þr2

2

i
; ð52aÞ

(a) (b)

Fig. 9 Trajectory

projection starting from

ðx1; x2; x3; x4Þ ¼
ð�0:2;�0:03; 0;�0:02Þ
converges to the B.S. when

ðn1; n2Þ ¼ ð�0:02; 0:06Þ,
a the phase portrait on plane

ðx1; x2Þ; b the phase portrait

on plane ðx3; x4Þ

(a) (b)

Fig. 10 Trajectory

projection starting from

ðx1; x2; x3; x4Þ ¼
ð�0:1; 0; 0:02; 0:2Þ
converges to the 2nd H.B.

when ðn1; n2Þ ¼
ð0:02;�0:0031Þ, a the phase

portrait on plane ðx1; x2Þ;
b the phase portrait on plane

ðx3; x4Þ
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_h2¼
ffiffiffi
5
p

2
þ1

2
þ 1

20

� ð120þ72
ffiffiffi
5
p
Þr2

1þð�85þ51
ffiffiffi
5
p
Þr2

2

h i
:

ð52bÞ

On the base of (51), by setting _r1¼ _r2¼ 0, the steady

state solutions are obtained. In this case, it is easy to

show that (51) has one solution ðr1;r2Þ¼ ð0;0Þ. The

Jacobian matrix of (51) at the initial equilibrium

solution is as follows

J ¼
c11 0

0 c22

� �
ð53Þ

where

c11 ¼ � 1

4
� 3

ffiffiffi
5
p

20

 !
n1 þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n2;

c22 ¼ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n1 þ � 1

4
� 3

ffiffiffi
5
p

20

 !
n2:

The stability conditions for the initial equilibrium

solution are � 1
4
� 3

ffiffi
5
p

20

� �
n1 þ � 1

4
þ 3

ffiffi
5
p

20

� �
n2\0 and

� 1
4
þ 3

ffiffi
5
p

20

� �
n1 þ � 1

4
� 3

ffiffi
5
p

20

� �
n2\0, or the initial

equilibrium solution is unstable. So the transition

curves which define the stable boundaries of the initial

equilibrium solution are

L10 : � 1

4
� 3

ffiffiffi
5
p

20

 !
n1 þ � 1

4
þ 3

ffiffiffi
5
p

20

 !
n2 ¼ 0;

ð54Þ

and

L11 : � 1

4
þ 3

ffiffiffi
5
p

20

 !
n1 þ � 1

4
� 3

ffiffiffi
5
p

20

 !
n2 ¼ 0:

ð55Þ

The transition curves are illustrated in Fig. 11.

The numerical computation is performed on the

base of the original differential equations (6). When

the parameter is chosen as ðn1; n2Þ ¼ ð0:2; 0:2Þ, which

is located in the region bounded by the critical lines

L10 and L11, numerical results show that the trajec-

tory starting from initial point ðx1; x2; x3; x4Þ ¼
Fig. 11 Transition curves for the case of two pairs of pure

imaginary eigenvalues

(a) (b)

Fig. 12 Trajectory

projection starting from

ðx1; x2; x3; x4Þ ¼
ð0:06; 0;�0:02; 0Þ
converges to the E.S. when

ðn1; n2Þ ¼ ð0:2; 0:2Þ, a the

phase portrait on plane

ðx1; x2Þ; b the phase portrait

on plane ðx3; x4Þ
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ð0:06; 0;�0:02; 0Þ converges to the region, implying

that the initial equilibrium solution is stable. The phase

trajectories are projected onto the x1 � x2 and x3 � x4

sub-spaces as shown in Fig. 12.

4 Conclusions

In this work, the stability and dynamical behaviors of a

cantilever functionally graded material rectangular

plate subjected to the transversal excitation in thermal

environment are studied in the case of 1:1 internal

resonances and 1/2 subharmonic resonance. Four

types of degenerated equilibrium point are investi-

gated in detail. The stable conditions, stable regions

and critical bifurcation curves for the steady state

solutions are presented explicitly in terms of the

system parameters. Numerical computations have

been performed and shown for each of the bifurcation

cases. All numerical solutions agree with the analyt-

ical predictions, at least qualitatively.

5 Appendix

The coefficients of (6) are

a01 ¼
4g12

3X3
; a02 ¼

2g11

3X3
; a03 ¼

4g13

3X3
;

a04 ¼
g18þb12NT

X
; a05 ¼

3g16

X
� 20g11g22

X3
� 40g2

12

3X3
;

a06 ¼
g14

X
� 56g13g22

3X3
� 20g11g12

3X3
þ 4g11g21

3X3
;

a07 ¼
2g14

X
þ 16g13g22

3X3
� 40g11g12

3X3
� 8g11g21

3X3
;

a08 ¼
2g15

X
� 16g13g21

X3
� 8g2

11

3X3
þ 8g11g23

3X3
þ 16g11g13

3X3
;

a09 ¼
3g16

X
� 20g11g22

3X3
� 40g2

12

3X3
;

a10 ¼
3g14

X
� 40g13g22

3X3
� 20g11g21

3X3
� 20g11g12

3X3
;

a11 ¼
g15

X
þ 8g13g21

3X3
� 4g2

11

3X3
� 56g12g13

3X3
� 28g11g23

3X3
;

a12 ¼
3g15

X
� 40g13g21

X3
� 20g2

11

3X3
� 40g12g13

3X3
� 20g11g23

3X3
;

a13 ¼
3g17

X
� 20g13g11

3X3
� 40g13g23

3X3
;

a14¼
3g17

X
þ40g13g23

3X3
�20g11g13

3X3
;

b01¼
2g21

3X3
;b02¼

4g23

3X3
;b03¼

4g22

3X3
;b04¼

g28þb22NT

X
;

b05¼
3g26

X
�20g21g22

3X3
�40g12g22

3X3
;

b06¼
g24

X
þ8g11g22

3X3
þ4g2

21

3X3
�56g23g22

3X3
�28g12g21

3X3
;

b07¼
2g24

X
þ16g23g22

3X3
�8g2

21

X3
þ8g11g21

3X3
�16g11g22

X3
;

b08¼
2g25

X
�40g23g21

X3
þ16g13g22

3X3
�8g11g21

3X3
;

b09¼
3g26

X
�20g21g22

3X3
�40g2

12

3X3
;

b10¼
3g24

X
�40g23g22

3X3
�40g11g22

3X3
�20g21g12

3X3
�20g2

21

3X3
;

b11 ¼
g25

X
� 20g23g21

3X3
þ 4g11g21

3X3
� 40g22g13

3X3
;

b12 ¼
3g25

X
� 20g23g21

X3
� 20g11g21

3X3
� 40g22g13

3X3
;

b13 ¼
3g27

X
� 20g13g21

3X3
� 40g2

23

3X3
;

b14 ¼
3g27

X
� 20g13g21

3X3
� 40g2

23

3X3
:

The nonlinear functions Nfiði ¼ 1; 2; 3; 4Þ in (6) are

Nf1 ¼ a05x2
1x2 þ a06x2

1x4 þ a07x1x2x3 þ a08x1x3x4

þ a09x3
2 þ a10x2

2x4 þ a11x2x2
3 þ a12x2x2

4

þ a13x2
3x4 þ a14x3

4;

Nf2 ¼ �a05x3
1 � a10x2

1x3 � a05x1x2
2 � a07x1x2x4

� a12x1x2
3 � a11x1x2

4 � a06x2
2x3 � a08x2x3x4

� a13x3x2
4 � a14x3

3;

Nf3 ¼ b05x2
1x2 þ b06x2

1x4 þ b07x1x2x3 þ b08x1x3x4

þ b09x3
2 þ b10x2

2x4 þ b11x2x2
3 þ b12x2x2

4

þ b13x2
3x4 þ b14x3

4;

Nf4 ¼ �b05x3
1 � b10x2

1x3 � b05x1x2
2 � b07x1x2x4

� b12x1x2
3 � b11x1x2

4 � b06x2
2x3 � b08x2x3x4

� b13x3x2
4 � b14x3

3:

The nonlinear functions Ngiði ¼ 1; 2; 3; 4Þ in (11)

are
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Ng1 ¼�
1
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4
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4
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9

4
z2z3z4
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3;
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5
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8
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8
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8
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8
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þ 7

8
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7

8
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8
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2�
31

8
z3
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8
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8
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3;

Ng3 ¼�
9

4
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1

4
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4
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1

4
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8
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8
z2
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8
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4z1�
23

8
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8
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8
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8
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8
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8
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4z3

� 7

8
z2
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7

8
z2

3z1�
13

8
z3

2�
5

8
z3

4�
5

8
z3

1�
1

8
z3

3;

Ng4 ¼
19

4
z1z2z4þ

5

4
z1z3z4þ

7

4
z1z2z3�

11

4
z2z3z4

þ 25

8
z2

1z2þ
21

8
z2

1z4þ
19

8
z2

4z1þ
65

8
z2

2z4�
17

8
z2

2z3

þ 21

8
z2

3z2þ
17

8
z2
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61

8
z2
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23

8
z2

2z1�
13

8
z2

4z3

þ 7

8
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3:

The nonlinear functions Nhiði¼ 1;2;3;4Þ in (24) are

Nh1 ¼
4

5
z1z2z4 þ

8

5
z1z3z4 �

108

25
z1z2z3 þ

11

5
z2z3z4

� 171

50
z2

2z3 �
99

50
z2

3z2 �
3

2
z2

1z3 þ
2

5
z2

3z4 �
1

2
z2

4z3

� 15

2
z2

1z2 �
252

25
z2

2z1 �
33

25
z2

3z1 � 2z2
4z1

þ z2
2z4 �

5

2
z2

4z2 � 2z3
1 þ

51

10
z3

2 �
29

50
z3

3;

Nh2 ¼
16

5
z1z2z4 �

8

5
z1z3z4 þ

93

25
z1z2z3 �

41

25
z2z3z4

þ 393

125
z2

2z3 þ
186

125
z2

3z2 þ
6

5
z2

1z3 þ
9

25
z2

3z4

� 2

5
z2

4z3 þ
33

5
z2

1z2 þ
207
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z2

2z1 þ
33

25
z2

3z1

þ 2z2
4z1 þ
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25
z2

2z4 �
1

5
z2

4z2 þ 2z2
1z4 þ 2z3

1
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125
z3

2 þ
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4;

Nh3 ¼
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5
z1z2z4þ

8

5
z1z3z4�
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z1z2z3þ
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z2z3z4
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z2

2z3�
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z2

3z2�
9

5
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7

5
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5
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Nh4 ¼
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z1z3z4�
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4:

The nonlinear functions NJiði¼ 1;2;3;4Þ in (50) are
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5
p
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ffiffiffi
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p
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