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Abstract The aim of this work is to determine what free
energy functionals are expressible as quadratic forms of
the state functional I which is discussed in earlier
papers. The single integral form is shown to include
the functional v, proposed a few years ago, and also a
further category of functionals which are easily
described but more complicated to construct. These
latter examples exist only for certain types of materials.
The double integral case is examined in detail, against
the background of a new systematic approach developed
recently for double integral quadratic forms in terms of
strain history, which was used to uncover new free
energy functionals. However, while, in principle, the
same method should apply to free energies which can be
given by quadratic forms in terms of I, it emerges that
this requirement is very restrictive; indeed, only the
minimum free energy can be expressed in such a manner.
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1 Introduction

Free energy functionals that are expressible as
quadratic forms of the state functional I' are explored

J. M. Golden (IX)

School of Mathematical Sciences, Dublin Institute of
Technology, Kevin Street, Dublin 8, Ireland

e-mail: murrough.golden@dit.ie

in the present work. The quantity I’ is discussed in [1,
6, 7] and elsewhere. Such free energies have applica-
tions in proving results concerning the integro-partial
differential equations describing materials with mem-
ory. They may also be useful for physical modeling of
such materials. However, these applications generally
require that the free energy functionals involved have
compact, explicit analytic representation.

The single integral form is shown to include the
functional ¥/, proposed some years ago [1, 6]. There
is also however a further category of functionals of this
kind for materials with non-singleton minimal states.
These functionals are easily described but more
difficult to construct, since basic inequalities relating to
thermodynamics must be explicitly imposed; they are
therefore not so useful for practical applications.

The double integral quadratic form is examined in
detail. In this context, a recent paper [10] deals with
determining new free energies that are quadratic func-
tionals of the history of strain, using a novel approach.
This new method is based on a result showing that if a
suitable kernel for the rate of dissipation is known, the
associated free energy kernel can be determined by a
straightforward formula, yielding a non-negative qua-
dratic form. It allows us to determine previously
unknown free energy functionals by hypothesizing rates
of dissipation that are non-negative, and applying the
formula. In particular, new free energy functionals
related to the minimum free energy are constructed.

In principle, the methods developed in [10] apply to
quadratic forms in terms of I, and should lead to new
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free energies which can be expressed as such quadratic
forms. It emerges however that this is a very restrictive
property; indeed, only the minimum free energy is
expressible as such a functional.

Regarding the notational convention for referring to
equations, we adopt the following rule. A group of
relations with a single equation number (***) will be
individually labeled by counting “=" signs or “<”,
“>7 “<” and “>”. Thus, (***)s5 refers to the fifth
“=" sign, if all the relations are equalities. Relations
with “€” are ignored for this purpose.

2 Quadratic models for free energies

Asin [10], we discuss the scalar problem, denoting the
independent field variable by E(t), the strain function,
and the dependent variable by T(¢), the stress function.
However, it is fairly straightforward to generalize to
tensor fields (for example, [1, 5]) and to certain other
theories such as heat flow in rigid bodies or electro-
magnetic phenomena.

Certain basic formulae from [10] and earlier work
are repeated here for convenience. The current value
of the strain function is E(¢) while the strain history
and relative history are given by

E'(s)=E(t—ys), E.(s)=E'(s)—E(), seR".
(2.1)

It is assumed here that

lim E'(s) = lim E(u) =0, (2.2)

§—00 u——00

which simplifies certain formulae. The state of the
material, in the most basic sense, is specified by
(E',E(1)) or (E, E(1)). Another definition of state will
be introduced in Sect. 5.1.

Let T(¢) be the stress at time 7. Then the constitutive
relations with linear memory terms have the form

G(u)E' (u)du, G(u)=G(u)— G,

=T, (t)+ | G'(u)E!(u)du,
B () = B (1) =~ B () =~ L),
()=~ ), (23)

@ Springer

where T,(7) is the stress function for the equilibrium
limit, defined by the condition E'(s) =E(¢) Vs € R™,
and the quantity G(-):IR"—IR" is the relaxation
function of the material. We define

GW)= LG, Gu=Glx), Go=Gl0),
G(0) = Gy — Gs = Go. (2.4)

The assumption is made that
G,G € L'(R") NLA(R*). (2.5)

Remark 2.1 Various formulae presented here can be
expressed either in terms of quantities related to 5(14)
and E'(u) or G'(u) and E'(u) ([1, 10] and earlier
references). We shall generally use those related to
G(u) and E' (u).

Let us denote a particular free energy at time ¢ by
(1) = Y(E',E(t)), where i is understood to be a
functional of E' and a function of E(¢). The Graffi [11]
conditions obeyed by any free energy are given as
follows:

P1:
O GEEM) = = =T
aE—(t)l//( LE(1) = 6E—(t)l//(t) =T(1). (2.6)

P2: For any history E’
Y(E'E(1) = $(E(r)) or (1)= (1), (2.7)

where ¢(t) is the equilibrium value of the free energy
Y (1), defined as

$(E(1) = ¢(1) = Y(E' E(1),

2.8
where E'(s) = E(t) Vs € RT. 28)

Thus, equality in (2.7) is achieved for equilibrium
conditions.
P3: It is assumed that  is differentiable. For any
(E',E(t)) we have the first law

Y1) + D(1) = T(1)E(1), (2.9)
where D(f) >0 is the rate of dissipation of energy
associated with ().

This non-negativity requirement on D(¢) is an expres-
sion of the second law.
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Integrating (2.9) over (—oo, #] yields that

Y1) + D) = W(),

where

(2.10)

t t

W(t) = / T(u)E(u)du, D(t):/D(u)duZO.

—00 —00

(2.11)

We assume that these integrals are finite. The quantity
W(t) is the work function, while D(¢) is the total
dissipation resulting from the entire history of defor-
mation of the body.

The function 7,(¢) in (2.3) is given by

_ 991

T.(f) = BED) (2.12)
It follows that
(1) = T.(1)E(r). (2.13)

For a scalar theory with a linear memory constitu-
tive relation defining stress, the most general form of a
free energy is

1 oo o0

W (1) )+ = E'(s)G(s,u)E" (u)dsdu,
ol e

G(s,u) = G(s,u) — Gn. (2.14)

There is no loss of generality in taking

G(s,u) = G(u,s). (2.15)

The Graffi condition P2, given by (2.7), requires that the
kernel G must be such that the integral termin (2.14) is
non-negative. Various properties of é(s, u) are given

in [10] and earlier references. The relaxation function
G(u) introduced in (2.3) is related to G(s, u) by

G(u) = G(0,u) = G(u,0) Vu e R*. (2.16)
Note that, with the aid of (2.4), we have
G(0) = G(0,0) = Gy. (2.17)

The rate of dissipation can be deduced from (2.9) and
(2.3) to be

1 oo 0
E//Et (s, u)E' (u)dsdu, (2.18)
00

where

K(s,u) = Gi(s,u) + Ga(s, u). (2.19)

The subscripts 1, 2 indicate differentiation with respect
to the first and second arguments. The quantity G must
be such that the integral in (2.18) is non-positive, as
required by P3 of the Graffi conditions. The quantity K
can also be taken to be symmetric in its arguments, i.e.

K(s,u) = K(u,s). (2.20)

Seeking to express D(¢), given by (2.11),, as a general
quadratic functional form similar to those in (2.14) or
(2.18), we put

//E’ (s, u)E' (u)dsdu.
0

2.1 The work function

(2.21)

N\*—‘

This quantity, given by (2.11);, can be put in the form
([1, 10], p 153 and earlier references cited therein):

1 oo o0
W(t +§//E’ G(|s — u|)E' (u)duds.
00

(2.22)
We see that it has the form (2.14) where

G(s,u) = G(|s — ul). (2.23)
Remark 2.2 The quantity W(¢) can be regarded as a
free energy, but with zero total dissipation, which is
clear from (2.10). Because of the vanishing dissipa-
tion, it must be the maximum free energy associated
with the material or greater than this quantity, an

observation which follows from (2.10).

Thus, we have in general the requirement that
Y(r) <W().
It follows from (2.10) that Q(s, u) in (2.21) is given by

(2.24)

O(s,u) = (|s —ul) — (s u), (2.25)
so that
0(s,0) = Q(0,u) =0, Vs,u e R". (2.26)

Remark 2.3 Theintegral termin (2.14) and (2.21) are
in general positive-definite quadratic forms, in the
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sense that they vanish only if E’(u) =0, u e R",
while D(¢), given by (2.18), may be positive semi-
definite, so that it can vanish for non-zero histories.

3 Frequency domain quantities

Let Q be the complex w plane and
Q"' ={w € Q|Im(w) € R"},
Qb = {w € Q| Im(w) € R},

These define the upper half-plane including and
excluding the real axis, respectively. Similarly, Q~,

Q) are the lower half-planes including and excluding
the real axis, respectively.

Remark 3.1 Throughout this work, a subscript “+”
attached to any quantity defined on Q will imply that it
is analytic on Q~, with all its singularities in Q).
Similarly, a subscript “—” will indicate that it is
analytic on Q", with all its singularities in Q).

The notation for and properties of Fourier trans-
formed quantities is specified in [1, 10] and earlier
references. It is assumed that all frequency domain
quantities of interest are analytic on an open set
including the real axis. The functions and relations

G.(w) G(s)e ™ds = G.(w) — iG4(w),

G, () G'(s)e ™ds = G.(w) — iG(»)

=Gy +iwG,(0) (3.2)

will be required, where the quantities G.(), G.(®)
and G,(w), G.(w) are the cosine and sine transforms

of G(s), G'(s), respectively; the former quantities are
even functions of w while the latter are odd functions.

It follows from (2.5) that (~7+(w),G’+(a}) € L*(R).
The quantities G, () and G', (w) are analytic in Q™.

Because G is real, we have

G () = G.(~). (3.3)

This constraint means that the singularities are sym-
metric under reflection in the positive imaginary axis.

@ Springer

A similar relation applies to G', (w). Also, we have
o0

Gl (w) = / G (s)e”"ds = —G'(0) + iwG, (»).
0

(3.4)

A function of significant interest, particularly in the
context of the minimum and related free energies, is

H(0) = 0’ G (0) = —0G(0) = -G/ ()
~G(0)>0, weR, (3.5)

where the inequality is an expression of the second law
([11, p 159 and earlier references). The quantity H(w)
goes to zero quadratically at the origin since H(w)/w?
tends to a finite, non-zero quantity 56(0), as o tends to
zero. One can show that
Hyo = lim H(w) = =G'(0)>0. (3.6)
We assume for present purposes that G’(0) is non-zero
so that H, 1is a finite, positive number. Then
H(w) € R"" Vo € R, w # 0.

If G(s), s € R, is extended to the even function
G(|s]) on R, then dG(]s|)/ds is an odd function with
Fourier transform ([1], p 144)

Gr(w) = =2iGl(w) = %H((u) (3.7)

The non-negative quantity H(w) can always be
expressed as the product of two factors [§]

H(w) = Hy (0)H-(0), (3.8)

where H, () has no singularities or zeros in Q) and
is thus analytic in Q. Similarly, H_(w) is analytic in
Q" with no zeros in Q). We put [1, 8]

Hy(w) = He(—0) = Hz(0),
H(w) = |Hi(0)*, o eR. (3.9)

The factorization (3.8) is the one relevant to the
minimum free energy. For materials with only isolated
singularities, we shall require a much broader class of
factorizations, where the property that the zeros of
H.(w)arein Q) respectively need not be true. These
generate a range of free energies related to the
minimum free energy [1, 7, 9], as discussed briefly
in Sect. 4.
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The Fourier transform of E'(s), E.(s), given by
(2.1)fors € R, are defined for example in [1, 10] and
denoted by E' (), E, (w). These have the same
analyticity properties as G , (w). However, E'(s) does
not have the property (2.5), so that E (w) must be
defined with care. For a constant history, E(s) = E(t),
s € R", we have ([1], p 551)

E@)

o) =2, (3.10)
where the notation w™ (and w™) is defined in [1, 10]
and earlier work. Briefly, X =x+io, respectively,
where o — 07 after integrations are carried out. Thus,
we have

E(1)

E (o) =E' (o) T

(3.11)

Also ([1], p 145),

d . . .
ZE () = B, () = ~i0E!, (0) + E(1) = —i0oE,, (),
(3.12)

and
L () = —iok! E
G 0) = —iof (o) + E)
d : . E(r)
aEZH_(w) =E, (0) = —ioE, (0) — o
For large w,

E(t At
E' () ~ % E' ()~ % (3.14)

where A(t) is independent of w. Also, from (3.12),

E;(w)w’%7 (3.15)
for large w. Relation (3.12) is convenient for convert-
ing formulae from those in terms of E, (w) to
equivalent expressions in terms of E' (w) or vice
versa.

Applying Parseval’s formula to (2.3);, we obtain

T(1) = T,(t) + — / a(w)E;(a)) do. (3.16)

There is a non-uniqueness in this form allowing us to
write it as [1, 10]

() = T,(1) + - / Ha()(;))Eﬁr(w)dw. (3.17)

More detail is included on this argument in (5.38)—
(5.40) below.

We shall be using the Plemelj formulae on the real
axis ([1], p 542) several times in this work, in relation
to frequency dependent quantities. These are given as
follows. Let

ro- [ 19,

where f(u) is any Holder continuous function. For
z € Q) the function F(z) is analytic in Q)| while

1€ Q\R, (3.18)

for z € Q) it is analytic in Q). Let z=x+ix,
o > 0 where o approaches zero. Then, we write (3.18)
as (recall Remark 3.1)

e ¢}

F-(x) = ﬁ u EM)?*

—00

du = %f(x)

1
L p / @
2mi u—Xx

—00

(3.19)

where the symbol “P” indicates a principal value
integral. Similarly,

S
I
=

o) = [ D= -y

1 (u)
—P du. 3.20
+27Ii u—x " ( )

—00

4 The minimum and related free energies

It is shown in [7, 9] that, for materials with only
isolated singularities, the quantity H(w) is a rational
function and has many factorizations other than (3.8),
denoted by

H(w) = H (0)H (a)),_

H(0) = H.(-0) = H(0), (4.1)

where f is an identification label distinguishing a
particular factorization. These are obtained by
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exchanging the zeros of H,(w) and H_(w), leaving
the singularities unchanged.

Each factorization yields a (usually) different free
energy of the form

lpf(t)zqs(mr% / ypfi(w)|2dw, (4.2)

where, recalling (3.12),

Piw) =it i () = # ()EL, (0)
=pl'(0) — Pl (o), (4.3)
pﬂ = 2m }O %dw’.

The quantity p is analytic on Q* while p/! is analytic
on Q [1]. Note that (4.3) involves the use of the
Plemelj formulae, as given by (3.19) and (3.20). The
total dissipation is given by

(1) = 5- /M () do (4.4)
Defining B
A p—— /OC HO) 1 (w)do

= lim [ (@), (45)

we can write the associated rate of dissipation in the
form

Dy(t) = |Ky(t \ (4.6)

These formulae apply in particular to the case
where no exchange of zeros takes place, which is
denoted by f = 1. In this case, the formulae in fact
apply to all materials, not just those characterized by
isolated singularities.

We can write lpf(t) in the form [1, 8-10]

V(1) = <Z>(t)+

e

DH (0)H (0,)E' ()
o (of — )

dwidw,.

(4.7)

@ Springer

The notation in the denominator [1, 10] indicates that
if, for example, the w; integration is carried out first,
then col+ — w, becomes w; — w,. Also, the total
dissipation (see (4.4)) can be shown, by similar
manipulations, to have the form

@f(l

dwlda)g,

)
/°° /°°E_ o)) H (1) H (02)E", ()
w1 (0] — o)

(4.8)
while Dy (1), given by (4.6), can be expressed as

dw]dwz.

47

1 /OC F (,01 Hf u)l)Hf (COQ)Et ((,02)
w13
—00

(4.9)

The factorization f = 1, given by (3.8), yields the
minimum free energy ,,(7). Each exchange of zeros,
starting from these factors, yields a free energy which
is greater than or equal to the previous quantity. The
maximum free energy, denoted by ,,(t), is obtained
by interchanging all the zeros, which produces a
factorization labeled f = N. The quantity ,,(¢) is
less than the work function [1, 10].

The most general free energy and rate of dissipation
arising from these factorizations is given by

0= I(e), D)= JDy(t)
=1 =1

ZN: =1
=1

A particular case of this linear form is the physical free
energy, proposed in [9].

Jy>0. (4.10)

4.1 Discrete spectrum materials

Consider a material with relaxation function of the
form

(5) =) Gie ™,
pas

where n is a positive integer. The inverse decay times
o; €IRT™, i=1,2,...,n and the coefficients G; are
assumed to be positive. We arrange that

(4.11)
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o <op <o3.... These are discrete spectrum materials
which will be used in later discussions.
From (3.2); 5, we have

n n
Gi‘ G _ % G;
= o + 1w

)
W) =w ,
= alg+w2

so that (~}+(w) consists of a sum of simple pole terms
on the positive imaginary axis. From (2.3); and (4.11),
we have that

6+(w) =

(4.12)

() + > GE' (—in) (4.13)
i=1
Relations (3.5) and (4.12), give
=Hy >0,
Hw) = 0§ A0 — h - 32 20
Hoo = Z OC[G,'.
i=1
(4.14)
This quantity can be expressed in the form [8]
2 2
+w
—H., H{ i } (4.15)
oc + w?
where the 77 are the zeros of f(z) = H(w), z = —o?,
and obey the relations
n=0, od<pi<o3<yi.... (4.16)
Observe that
2i .
G =— lim (o +iw)H(w)
ocl. w——i0o;
2i . .
= —— lim (0 — io;)H(w). (4.17)
o w—io;

To obtain the minimum free energy for discrete
spectrum materials, one chooses the factorization of
(4.15) given by

H+(“)) = hoo ﬁ{z)): ;Z(i}’ hos = [HOC]I/27
&) =F(o)

Equations (4.18) can be written as [1, 2]

s

H () = hao (4.18)

J#Fi
(4.19)
For discrete spectrum materials, the interchange of
zeros referred to after (4.1) means switching a given y;
to —y; in both H, (®) and H_ (). Let us introduce an
n-dimensional vector with components e{ J =
1,2,...,n where each ¢ can take values +1. We

w—l—ipf
xH{erial}'

define p{ = e{ 7i» and write
(4.20)

) o

The case where all the zeros are interchanged [1, 6, 7,
9] is labeled f =N. The resulting factors are given
by

w41y N
HY(0) =heo LS HY(
Yo =neIT{ 52}

wH{wm,}

(4.21)
5 The functional /’

5.1 Minimal states

As noted after (2.2), a viscoelastic state is defined in
general by the history and current value of strain
(E',E(t)). The concept of a minimal state, defined in
[7] and based on the work of Noll [13] (see also for
example [1, 3-5, 12]), can be expressed as follows:
two viscoelastic states (EY,Ei(t)), (E5, Ex(t)) are
equivalent or in the same equivalence class or minimal
state if

E(t) = E>(1), / G/ (s + 1) [EL(s) — Eb(s)] ds
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The abbreviated notation I”(t) will be used henceforth.
Note the property

rlinolo I'(z) = 0. (5.2)
It follows from (2.3); and (5.1) that
I'(0) = T(t) — T.(2). (5.3)

A functional of (E', E(t)) which yields the same value
for all members of the same minimal state is referred
to as a FMS or functional of the minimal state, or a
minimal state variable. The quantity I’(t) is a FMS, in
fact, the defining example of a FMS.

Remark 5.1 A distinction between materials [1] is
that for certain relaxation functions, namely those
with only isolated singularities (in the frequency
domain), the minimal states are non-singleton,
while if some branch cuts are present in the
relaxation function, the material has only singleton
minimal states. For relaxation functions with only
isolated singularities, there is a maximum free
energy that is less than the work function W(z) and
also a range of related intermediate free energies, as
noted in Sect. 4.

On the other hand, if branch cuts are present, the
maximum free energy is W(¢) and there are no
intermediate free energies of type ,(t).

Remark 5.2 There will be some later contexts where
we confine the discussion to materials with only
isolated singularities, for reasons connected with the
properties noted in Remark 5.1. Treating the general
case of such materials is algebraically complicated [1,
9], because any given singularity or zero may be of
higher order. We simplify the treatment, while main-
taining the essential content, by separating higher order
poles or zeros into simple poles or zeros. A further
simplification will be made, which also retains most
essential properties,’ by taking all the singularities and
zeros on the imaginary axis. This means, in effect, that
the material is a discrete spectrum material, as defined
in Sect. 4.1.

' There is a noteworthy difference between the general case
where singularities may be off the imaginary axis and discrete
spectrum materials, namely that in the latter case, the relaxation
function decays monotonically, while in the former case, the
possibility exists of oscillatory decay.
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Thus, we will use discrete spectrum materials as
simple but realistic proxies for more general materials
with only isolated singularities.

The quantities p” (w), defined by (4.3), are FMSs; in
particular, p’ (@) corresponding to the minimum free
energy for general materials ([1], p 253). The func-
tionals p’z(w) do not have this property, by virtue of
(4.3),.

Let us characterize minimal states for discrete
spectrum materials in the following simple manner.
Consider two states (E', E1(r)) and (E}, E»(t)) obey-
ing conditions (5.1), so that they are equivalent. We
define the difference between these states as
(EY, E4(t)) where

El\(s) = E|(s) — E5(s) Vs€R',
Eq(t) = Ei(t) — Ex(1).

The conditions (5.1) holds for all 7 > 0 if and only if

(5.4)

Ed(l‘) =0, /e—zisEfi(s)ds = Eld+(_iai) =0,
0
i=12,..,n

Remark 5.3 Therefore, for a given discrete spectrum
material, the property that two histories are equivalent,
or in the same minimal state, is determined by (5.5),
and by the values of those histories in the frequency
domain, at @ = —io;, i = 1,2, ...,n. This is a special
case of the general requirement given in [1], p 359.

Thus, if a quantity depends on the strain history only
through the values E' (—io;) or E. (—io;) or (see
(3.12)) Eﬁr(—ioc,-), fori =1,2,...,n, this quantity is a
FMS.

For discrete spectrum materials,

I'(t) =Y GiE', (—ia;)e ™", (5.6)
i=1

which is an example of the property described in
Remark 5.3. The property that p/ (w) is a FMS can be
perceived for discrete spectrum materials by complet-
ing the contour in (4.3)4 on Q).

We now present a more general characterization of
minimal states, which leads to results consistent with
(5.5). The condition that minimal states are non-
singleton is that the integral equation
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/G’s—i—rEd s)ds =0, teR", (5.7)
0

for EY(s) = E{(s) — Ei(s) in (5.1), has non-zero
solutions. The other requirement (5.1); will be

enforced below by (5.17). Putting E/;(s) =0, s € R~
and T = —u, we can write (5.7) as ([1], p 341)

o0

3 o
/ Gl s)Ey(s)ds = 0,

—00

ucR™. (5.8)

This is a Wiener—Hopf equation, which can be solved
by a standard technique. We put

{ 10(7u)7

where J(u) is a quantity to be determined. Taking the
Fourier transform of both sides, we obtain, with the aid
of the convolution theorem and (3.7),

uc R

[o
[ 26— sDEL s = e

(5.9)

2i

EH((“)EfH(w) =J, (). (5.10)

Using (4.1) and (4.3), we can write (5.10) in the form
2i i i
~{H. (@ |pi-(©) =Pl (@)} = 1 (),

where the subscript d implies that E!;, is used in (4.3).
The value of the superscript f will be assigned below.

(5.11)

Because p/ (w) is a FMS, we have
P () =0. (5.12)
It then follows from (5.11) that

¢ o Jy (o)

) = 5.13

d+( ) 21 Hf ( ) ( )
Using (5.13) in (5.10), we obtain
H(w)E}, (0) = —H' (0)ply, (), (5.14)
or

¢

t i (@)

E; (0) = — H (o) (5.15)

This quantity must be analytic on Q, so that all the
zeros of Hi () must have been interchanged. This is
the case where f = N and the resulting factors are
those given by (4.21), which yield the maximum free
energy V,,(t), introduced after (4.9).

Thus, if we can find a quantity E, () which
satisfies (5.12), it satisfies (5.14) and (5.15) by virtue
of (4.3);, applied to this history difference. Rela-
tion (5.14) is equivalent to (5.10), with J(w)
determined by (5.13). Therefore, a solution to (5.9)
or (5.8) is provided by any choice of E/,(s) where the
corresponding EJ, (w) satisfies (5.12). Now, from

(4.3)4,
HN /)
I
PY( =3 / o —w* ——————%do' =0. (5.16)

If there are non-isolated singularities in the mate-
rial, we know (remark 5.1) that the only solution is
the trivial one, E, (w) = 0. Thus, we can focus on
the case of a material with only isolated singulari-
ties. The simplifying assumptions of Remark 5.2 will
be adopted so that we are dealing with dis-

crete spectrum materials. Then, Hi(w) are given by
(4.20).

The simplifying assumption will now be made that
E};, (w) is a rational function. More generally, it could
also have branch cuts in Q)

At large @, we must have

1

E, ()~ pet (5.17)

by virtue of (3.14) and (5.1);. If the zeros of EJ;, (w)
cancel the poles in HY(w), given by (4.21), then, by

taking the contour around QH, we see that (5.16) is
obeyed. Thus, non-trivial solutions to (5.8) or (5.10)
are given by

Eo(t) 14| o+ iv 1
El[lur((,{)) - ) H — ."{ . 3
() lXO j=1 ) l)(] () l%n—‘—l

(5.18)

where the constants y;, i =0,1,...,n+ 1 indicate
the positions of singularities on the imaginary
axis in Q). These are arbitrary positive quantities.
The factor Ey(), which determines the time depen-
dence of Ej (w), is also arbitrary. Note that
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(5.18) obeys the constraints (5.5). We can write it in
the form

l - nl g
Ey. (o) = —iEo(1) ;w “ o
PR {m+g}, L

Xi_Xojzl Xi = X ) Xi = Xnt1
J#i

i=1,2,...,n,

n
Lo+ % 1
=1 (X0 = %) X0 — Xn+1

1 L ;
A = [[{ L=, (5.19)
Xn+l - XO j=1 Xn+1 - Xj
where, to satisfy (5.17), we must have
n+1
ZAi =0 (5.20)
i=0

Taking the inverse transform of (5.19);, we obtain
that

n+1
E'(s) = Ey(t Aje™ %S
)= 50y 51
:Efl(xj,j:O,l,...,nJrl;s).

A given history E/(s) belongs to the minimal state

with members
E'(y,j=0,1,..,n+1;5) = E\ (s

(/cjjt | ) =Ei(s) (5.22)
+Ed(%jv./:0a1a"'7n+1;s)7

where the parameters y; may take any positive value.
If (5.7) is true for G given by (4.11), we must have

n+1
A
> =0, i=12..n
j=0 %+ %

(5.23)

which is simply a statement that E,, (), given by
(5.19)4, vanishes at w equal to each —iw;.

If Ey(¢) in (5.18) were replaced by Ey(w, t), where
lim,, . Eo(w, t) is a non-zero finite constant, and the
singularities of this quantity consists of branch cuts in
Q)| then the resulting E!; (w) would be equally
satisfactory, except that the simple relation (5.21)
would not hold.
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5.2 Free energies that are FMSs, as quadratic
forms of histories for discrete spectrum
materials

We now briefly describe a general form of free
energies that are FMSs for discrete spectrum materials
([1] and references therein). Let us define a vector e in
R" with components

ei(t) = E(t) — wE', (—i;) = LB (—ioy)

T dtT+
=E' (—ioy) = —o4E! (i), i=1,2,...,n,

(5.24)
where (3.12) has been used’. As we see from (5.5), the
quantities E', (—io;) are real. Consider the function

() = ¢(r) +leTCe =¢(t) + le - Ce, (5.25)

2 2
where ¢(¢) is the equilibrium free energy and C is a
symmetric, positive definite matrix with components
Cy, i,j=1,2,...,n. Itis clear that y(r) has property
P2 of a free energy, given by (2.7). For a stationary
history E'(s) = E(t), s € R", we have, from (3.10),
that E' (—io;) = E(t)/oy, so that e;(t) =0, i=1,
2,...,n. Relations (2.6) and (4.13) yield the condition

iCij:Gi, i=1,2,...,n (5.26)
=1

From (3.13); or (5.24), we have

éi(t) = E(t) — ozei(t), i=1,2,...,n, (5.27)
so that, using (5.26), we obtain

V(1) + D(1) = TWE), 528)

D(t) = %eTFe, Ty = (o + ) Cyj,

where I';; are the elements of the matrix I". Condition
P3 (see (2.9)) requires that I' must be at least positive
semidefinite.

5.3 Properties of I’ in the frequency domain
Let us revert now to discussing general materials but

returning periodically to the discrete spectrum case as
an illustrative example. Some results presented here

2 Note that analytic continuation into Q~ is straightforward
since E', is analytic in this half-plane.
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are the same as or equivalent to certain formulae given Parseval’s formula, applied to (5.1)s, gives
previously in [1, 6]. Let s
1 = R .
d* I'(t)=— / Gi(w)E' (w)e ™ dw, t>0.
Bo=Lr, k=12, s209) 075 | GO
dr —00
so that (5.38)
00 We have
1) = [ &+ W w, .
1 = . .
0 () =5 / (G () + 26 (0)]E' (0)e ™ do,
oo Y
1 _ 11 ot -
Iy(x) = / G (¢ + w)E (u)du. (5.30) 539
0
for arbitrary complex values of /, since the added term
Also, . . . .
gives zero. This can be seen by integrating over a
Q I(s) = G'(s) E(t) + L(s), contour around Q') noting tbat the exponential goes
ot to zero as Imw — —oo and using (3.15). Let us choose
6 _ .
- ( ) = Gu< )E ( ) +It( ). (5.31) A = 1. Then, recalling (3.5),, we find that
Just as in (5.2), we have 1 T H .
( ) ) — ((;)) )e—l(l)‘[da)
lim (1) =0, k=1,2,3,.... (5.32) T @
The qua.ntity I'(s), s € R, will be required. This can be _ 1 H(CZU) E(w)ei‘“’du), (5.40)
defined in a number of ways. We choose the following n w

formula. Let

/G + u|)E' (u)du, s € R. (5.33)
0
Then
1) = | S Glls + u)E (e
0 (5.34)
21 = S GUDE®D + 1(s), seR.
Note that
‘lllm It()—07 k:152a37"" (535)

We now seek to express I’ in terms of frequency
domain quantities. Let us put

Gu)=0, E'®u)=0 uecR . (5.36)
Then
50 50
/ G(u+1)e ™ du = / G(v)e " dv "
—00 0
= G, (o). (5.37)

for 7> 0, where the reality of I' has been used. This
relation generalizes (3.17). It follows that

Z/It(‘[)eiiwrd‘f
0

—_— | OEY) Gy (5.41)

We must choose ™ so that the integration over the
exponential converges. From (5.1)s, it follows that
I' (w) is a FMS. Similarly, the derivatives of I'(s),
given by (5.29), for s € R" are also FMSs, in
particular I{_ (w) and I}, ().

For the discrete spectrum case, it follows from (5.6)
that

" GiE', (—io;)
" . iy i
w) = 1122;4@ o

By virtue of remark 5.3, equation (5.42) implies that
I' () is a FMS, which confirms for such materials the
general property stated after (5.41).

(5.42)
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Similarly, let I’ be defined by (5.39) for T <0. In this

case, we cannot close the contour in Q) because the
exponential diverges on this half-plane. It follows that
I'(t) depends on A for t <0. Let us take A = 1 so that it
is given by (5.40) for t<0. This is equivalent to the
choice given by (5.33), as may be seen by transforming
the integration variable in (5.33) from u to —u and using
(3.7) together with the convolution theorem. Also,

0
I' (w) = / I'(t)e " dr
1
in

(0]

_ / HWHED) 4oy (5.43)
(@) (0 = ")
and
Ip(w) =1 (o) + I' (o)
_ / zf(f)e*iwfdfzzH(f’)E(w), (5.44)

by virtue of the Plemelj formulae (3.19) and (3.20). It
follows from (5.44) that I” is not a FMS. Also, one can
deduce from (3.13); and (5.44) that

H(o)

I(0) = ol (o) + 2—5=E(t). (5.45)
w

We see, using (3.6) and (3.15), that
(o)~ o™, (5.46)
at large o.

Note that (5.44) allows us to write (3.17) in the form

1 o0
T(t) = T.(1) +% / I(w)dw
= T.(0) +5 / I ()do (5.47)

For the discrete spectrum case, we have from (4.14)y,
(5.42) and (5.44) that

I (@) = Ij() 1\ (0)
iy G 0] G )

i=1 i=1

(5.48)
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which is analytic on Q). Returning to general
materials, we see from (5.40), that

1 /°° H(0) 7
i) e B

()= [ HOE(©)

el(/J‘[dw7

e"dw, 1>0.

(5.49)
Thus
H El /
I, () / da)/,
t 1 ® H(w , (5.50)
IZi =+— / (,l) — CU:F dCU )
Lp(0) = iolp(0),  Lp(o) = -0’ (o).
We have

Lp(0) = “2H(0)E! (0) = L, (0) + I;_(w),

(5.51)

by virtue of (5.44) and the Plemelj formulae (3.19) and
(3.20). The quantities /', , I{, and I}, are analytic in Q™
while I, I{_ and I;_ are analytic in Q". For the
complex conjugate of these quantities, the opposite is
true.

In the case of discrete spectrum materials, we have,

from (5.6),

— Z OCiG,'EtJF(—lOC )e

ZazGE’ —io;)e %", (5.52)
and
N~ %Gi
I (o) = l;w — iociEt(_ml)7
(o) = 1S 4G 5.53
By(0) =3 B (i (5.53)
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The corresponding quantities I{_(w) and I5_(w) can
be given in the same way as (5.48).

5.4 Frequency domain representation of the work
function

The frequency domain version of (2.22) is [1, 10]

+(a))]za'co

W) =0+ | Y
¢<+%IH I(o)[do (5.54)

[e'¢) t 2
=M0+§j¢%%%ﬂu

by virtue of (5.44) and (5.50)4.

6 Single integral quadratic forms in terms of I
derivatives

Consider the functional
wn:¢m+—/mequ, (6.1)
0

in terms of I;(t), defined by (5.30);. This quantity is
assumed to be a free energy. We now explore the
constraints on L(t) imposed by this requirement.

The relation (2.9) must hold. Using (2.13), (5.31),
and (5.32), we deduce that

1
—SLOOF -3 [ L@n@PdE  (62)
provided that the condition

/G%ﬂ@ﬂ@MZTM—Em (6.3)
0

holds. With the help of (2.3), (5.3) and (5.30),, this can
be written as

Jmﬁnw+umwm
[ Jreome

which must be true for arbitrary histories. Let us write
the resulting condition as an integral equation of the
form

/G’rJru
0

f(0) =G (1)L(r) + L. (6.5)

+1)G (1 + u)E' (u)drdu = 0,

(6.4)

7)dt =0 Yu € RT,

An alternative pathway to (6.5) is to express (6.1) in
the form (2.14) with

G(s,u) = / G (t + 5)L(7)G (t + u)dr, (6.6)
0

and to impose the constraint (2.16), written in terms of
a(u) Condition (6.5) has the same form as (5.7),
leading to

2 H()f () = 14 (@), (67)

where J, () is an unknown function, analytic in Q(~)
This corresponds to (5.10).

If the material has only isolated singularities, taken
here to be the discrete spectrum type, in accordance
with remark 5.2, we see that there are many non-trivial
solutions of (6.5) given by a form similar to (5.18).
However, in this case, there is no reason for f(0) to be
zero, so that, at large w,

10). (6.8)

fi(w)~ i

which differs from (5.17). Thus, we put

f+(a)):—wif0. H{Zi—mj}, fo=£(0),

— %o iz

(6.9)

where the constants y;, i=0,1,...,n are arbi-
trary positive quantities. Also, fy may be chosen
arbitrarily.
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Remark 6.1 The observations before (5.17) and at
the end of subsection 5.1 on more general choices of
E4. (w) do not apply to f (). This is because for f(7),
given by (6.5),, a material with only isolated singu-
larities cannot have branch cuts in the Fourier
transform of the quantities G'(t) and L(t). Thus,
(6.9) is the most general form of f, (w) for discrete
spectrum materials.

Note that if we choose y; = 7;,i =1,2,...,n then

lfohoo

SN CEYATAT

(6.10)
where HY (w) is given by (4.21) and yj, is an arbitrary
non-negative quantity.

The quantity f(z) is the inverse transform of f (®).
It follows from (6.5), that

Lo
G(t) G(r)’

We deduce from (2.9) and (6.2) that the rate of
dissipation is given by

e R,

L(r) = (6.11)

D0 = LOWOF + 5 [ LI (0 dx
0

(6.12)

In order that y/(¢) — ¢(¢) and D(¢) be non-negative, we
must have

L(s)>0, L'(s)>0, VseR". (6.13)

Note that, from (4.11), the relaxation function of the
material obeys the constraints

G'(s) <0, G'(s)>0, VseR". (6.14)

The quantity L(t), given by (6.11), obeys (6.13) if

7 G"(s)
FO—1-Gs)’

If the free energies of the form (6.1) are to exist, based
on (6.5); with f(s) non-zero, we must show that the set
of functions f(+), obeying the conditions (6.15), is not
empty. We can write (6.9) in the form

fls)<1, Vs € R™.

(6.15)
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n

folo) = =if 3> 520,

i=0

_utopr Jatyl

Bl_Xi_X().H {Xi_lj}’ i=1,2,...,n,
j=1
J#i

n
_ Tyt _
Bojl:I,{Xo}fj}’ ZZ:%Bl*L

(6.16)

where the last relation follows from (6.8). Taking the
inverse Fourier transform of (6.16);, we obtain that

f(s)=f> Be ™, seR".

i=0

(6.17)

It may be confirmed from (6.16) that a relation similar
to (5.23) holds. The coefficients B; alternate in sign, so
that f(s) and f’(s) may take both positive and negative
values. However, by taking |fo| to be sufficiently small,
we can ensure that (6.15); holds, as may be seen by the
following argument. Let

f(s) :fO[Tl (5) - Tz(S)]7
Ti(s) =Y p - oBie™™, Ta(s)=—3 5 _oBie %"

(6.18)
Both T (s) and T,(s) are positive quantities, decaying

monotonically to zero at large s. Let fo > 0 (fp <0).
Then, if we choose

1 1
foﬁm <lf0|§m)a

condition (6.15); holds. We choose fj so that f(s) <1,
s € Rt by choosing the inequalities in (6.19) to be
strict. It follows that

(6.19)

M, = minl|fp[T1(s) — Tr(s)] — 1] > 0. (6.20)
seR*
Now, from (4.11), we have
G"(s)
- b] Vs € R 6.21
G,(S)e[a,] s € RT, (6.21)

where a, b are positive quantities, obeying a <b. Let
fo > 0. We put

F1(8) = fo[=T5(s) + Tu(s)],
T5(s) = 3 op ~ o Binie 7 20,  Tu(s) = — > p o Bixe ™ > 0.

(6.22)
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Then (6.15); is satisfied if | 0o i (‘c)]z
_ _ ! 1

f()[T3(S) — T4(S)] > _a (6 23) lpF(t) - ¢(t) 2/ G,(‘C) dTa (632)
olT1(s) — Ta(s)] = 1 ’ ' 0
or and
FIT3(5) = Ta(s)) > — alfo T3 (5) — To(s)] — 11 L ABOP 1 [d 1 T

(6.24) P ="3"610) - 20/ [df G’(T)} ol
This will be true if o O N 1/00 oo I(7) 2dT
fo[Tj;(S) — T4(S)] > —aM,. (625) ) G/(O) 2 G,(‘E)
0

where M, is defined by (6.20). Let (6.33)
M; = ?Ig]g} [T5(s) — Ta(s)]. (6.26) These quantities are non-negative and Y(t) is a valid

If M, > 0, then (6.24) holds. If M, <0, we choose

M
f0<a—l

, 6.27
|M3| (627)

to ensure that (6.15), holds. If f; <0, we define

M, = min|T. - T .
2 = min[Ty(s) — T5(s)] (6.28)
and (6.27) is replaced by
M,
<a—-. 6.29
ol <a gt (629)

For materials where n = 1, all free energies which are
FMSs reduce to the same form [2]. It can be shown
easily that for L(t) given by (6.31) below, the
functional defined in (6.1) has this form, so that the
extra quadratic form involving f(t) cannot contribute.
We see that (6.17) is given by

f(s) = fo[Boe™™* + Bie "],

_ Yot _ it
Bo = 21— %o’ Tk
Bo=1—-B;, By >1,

(6.30)

for n = 1. Using (5.52),, it is straightforward to show
that the resulting contribution to (6.1) indeed vanishes.

If the material has branch cut singularities, then
f(z) =0, 7 € RT is the only solution of (6.5), so that

L(7) = T € R", (6.31)

G’
and the only possibility for a free energy given by a
single integral quadratic form is the quantity Vg,
introduced in [6]. This functional and the associated
rate of dissipation have the forms

free energy if conditions (6.14) hold, not only for
materials with branch point singularities, but for all
materials. It is a relatively simple functional, conve-
nient for applications.

For materials with only isolated singularities, a more
general choice of L(s), given by (6.11), also produces
valid free energy functionals, provided that the
inequalities (6.15) are enforced. This can be done by
ensuring that f; obeys (6.19) and (6.27) or (6.29), for
any given choices of the quantities y;,, i =0,1,...,n.
The necessity to enforce such conditions renders these
choices less convenient for practical applications.

7 Double integral quadratic forms in terms of I
derivatives: time domain representations

We now discuss double integral quadratic forms for
free energies and rates of dissipation. The time domain
formulation is explored in this section, while the
corresponding frequency domain relations are pre-
sented in the next.

Consider the form

U(t) = ¢(2) —|—%/ /Ié(s)L(s,u)Iﬁ(u)dsdu, (7.1)
0 0

There is no loss of generality in putting
L(s,u) = L(u,s). (7.2)
The assumptions

L(-,-) € L'(R" x R") NL*(R" x RY),
lim L(s,u) = lim L(u,s) =0

§—00 §—00

(7.3)
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will be adopted. It is understood that L(s,u) vanishes
for negative values of s and u. We have from (2.13)
and (5.31), that

+%//1§(S)L(s,u)1’( Ydsdu
0 0
Jr%/ /I;(S)L(s,u)lf( Ydsdu
0 0
(7.4)
It is assumed that
L(0,u) = L(s,0) = 0. (7.5)

This property greatly simplifies the next step of the
argument, making possible an analogy with the history
based formalism presented in [10].

The two integrals in brackets in (7.4) can be shown
to be equal by interchanging integration variables.
Applying partial integrations and using (5.32), we
obtain

W(1) = E(r) [Te(t)—l—//G"(s)L(s u)ly(u)dsdu
0 0

—%//I (8)[L1 (s, u) + Lo (s, u) |15 (u)dsdu.

(7.6)

It is assumed in general that

/@0 /OO G (5)L(s, )1 (u)dsclu = 7 &) (5)ds,
0 0 0

(7.7)

for arbitrary choices of histories. Using (5.30),, this
leads to the condition

/G” (s,u)G" (u + v)dsdu = G(v). (7.8)
0
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This can also be derived in an alternative manner. We
observe from (2.14), (5.30), and (7.1) that

//G” (s+s1)L(sy,u1)G" (uy +u)ds du; .
0 0

(7.9)

This relation corresponds to (6.6). Applying (2.16)
gives (7.8). Let

[o¢]
m(u):/G"(s)L(s,l,t)ds7

0

(7.10)

noting that m(0) = 0, by virtue of (7.5). Then, with the
aid of a partial integration, (7.8) can be expressed as

o0

/ G (s+u)f(u)du =0, Vs € R",

f)=1-—m'u)=1- / G"(s)La(s, u)ds (7.11)
0

=1 -i—/G’(s)le(s7 u)ds,

0

which corresponds to (6.5). Note that Remark 6.1 also
applies here. Referring to (2.3); and (2.9), equation
(7.6) can be written as

Y1) + D(r) = T(1)E(1),
1 oo o0
- Ly (s)R(s, u)l}(u)dsdu, (7.12)
w0 [

R(s,u) = Li(s,u) + Ly(s,u) = R(u, s).

The kernels L(s,u) and R(s,u) must be such as to
render the integral terms in (7.1) and (7.12), non-
negative.

The work function cannot be expressed in terms of
I5(s), s >0, but can be given in terms of this quantity
for s € R. This follows from the frequency represen-
tation (5.54). We write

oo

3 [ 16305~ uistu)asa,

—00

W(r) = ¢(1) +

(7.13)

where the kernel J(|u|) is related to the inverse
transform of the kernel in (5.54)3. Convergence issues
in this context must be handled carefully.
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It follows from (2.10) that the total dissipation must
also depend on I5(s), s € R. We write

(7.14)

where, to satisfy (2.10), we must have

J(Js —ul), s<0 or u<0,
—L(s,u) +J(]s—ul), s>0 and u>0.
(7.15)

Vi(s,u) = {

Note that V(s,u) is continuous at s = 0 and u = 0.
Also,

Vi(s,u) + Va(s,u) ==Ly (s,u) — Ly (s,u) = —R(s,u).

(7.16)

Differentiating (7.14) with respect to time and using
(5.34),, we obtain

D) = D(1), (7.17)
where D(t) is given by (7.12), provided that
[ ] Sotviswswsa=o. @

This condition must hold for arbitrary histories, which
yields

oo o0

2
/ / G(|s|)V(s,u) =— g G(|u + v|)dsdu = 0.
0s? ou?
vERT. (7.19)
We see that Q(s, u) in (2.21) is given by
O(s,u) / / Py G(|ls + s1))V(s1,u1)
—00 —00
G(|uy + u|)dsiduy, (7.20)

ou?

so that (7.19) is equivalent to (2.26).

Relationships (7.13)—(7.20) are incomplete without
specifying the forms of the kernels more precisely.
This is difficult in the time domain. The natural
framework for a deeper treatment of such issues is the
frequency domain, as is clear from (5.54), and will be
further demonstrated in Sect. 8.

7.1 Free energy kernel in terms of the dissipation
kernel

Results were obtained in [10] which allowed the
kernel of the quadratic form (2.14) to be determined in
terms of the kernel of (2.18). A corresponding theory
was also given in terms of frequency domain quanti-
ties, which proved more useful for applications. We
now adapt this method to apply to functionals that are
quadratic in I'. It will emerge that the new technique
does not lead to new free energies. However, it is
useful in the context of dealing with the minimum free
energy.

Letus treat (7.12)5 as a first order partial differential
equation for L(s,u), s,u € RY, where R(s,u), s,u €
R" is presumed to be known. We introduce new
variables,

x=s4+u>0, y=s—u, (7.21)
in terms of which (7.12); becomes
EL()c )—lR(x ), Ln(x,y) = L(s,u)
ax n 7y - 2 n 7y ) n 7y - ) 9
R (x,y) = R(s,u), (7.22)
with general solution
1 / /
Li(x,y) = Lu(xo,y) +5 [ Ru(x',y)dx (7.23)

Xo

where x is an arbitrary non-negative real quantity. It
follows from (7.2) and (7.12)4 that

Ly(x,y) = Ln(x, —y) = La(x, |y]),
Ry(x,y) = Ru(x, =y) = Ru(x,[¥])- (7.24)
Observe that, by virtue of (7.5),
Ly(u,u) = Ly(u,—u) = L,(u, [u]) =0, ue€R".
(7.25)
Putting
X=54+u>0, y=5—u=s5—u, (7.26)
we have
S =Wy, W =30 -y,
(7.27)

R(@,y) = R(3 (¢ + 3.4 =),

so that (7.23) and (7.25) give
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X

1
L(s,u) = L,(x,y) = 3 / R, (X, y)dx
Iyl

min(s,u)
E/

which, as expected, obeys (7.5). Relation (7.1) gives

o435 [ [ 16
) 218
0 0

min(s,u)

/ R(s—v,u—
0
///I; R(s—v,u—v)I(u)dvdsdu,
00 0

(7.29)

R(s —v,u —v)dy, (7.28)

v)dvlh (u)dsdu

+

| =

since R(s—v,u—v)=0 for v> min(s,u). Let us
assume that we have chosen R(-,-) so that D(¢), given
by (7.12),, is non-negative for any choice of I}. For
v>0 and arbitrary choices of I}, we have

[

N’N“

R(s — v,u — v)I}(u)dsdu

Ly(sy + v)R(s1,ur )15 (uy + v)dsiduy

f(Sl )R(S] , Uy )f(u1 )dsldul Z O,

0\8 0\8
9\8 c\g

(7.30)

where f(s1) = I5(s; + v) and is therefore arbitrary. It
follows that the integral in (7.29), is also non-
negative. Therefore, L(-,-), given by (7.28), has the
property that the integral term in (7.1) is non-negative.
Thus, the basic strategy developed in [10] is valid here
also. The idea is to assign R(:,-) so that the rate of
dissipation is non-negative. Then, the associated free
energy, i.e. that with kernel given by (7.28), also has
the required positivity property. It will emerge how-
ever that the strategy developed in [10] is not useful in
the present case, except in the context of the minimum
free energy.
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We note the similarity between the expression
(7.28) and the kernel of the expression for the total
dissipation in [10].

8 Double integral quadratic forms in terms of /I’
derivatives: frequency domain representations

The initial results presented here are analogous to
those in [10]. We define

L 0)1,(1)2 //

0

—lwls+iw2udsdu

(=]

,(0)2,(1)1),

+
oo o0

R+,(0)1,0)2 //R s, Lt ﬂwlﬁrzwoudsdu
0 0

(8.1)

where L is introduced in (7.1), R is defined by (7.12)3
and V by (7.15). The functions L;_(w;,w;) and
R._ (w1, ) are analytic in the lower half of the w,
complex plane and in the upper half of the w, plane.
The quantity Vg(w;,w,) may have singularities
anywhere in the w; and w; complex planes. Inverting
Fourier transforms in (8.1) yields that

1 r _
u)zﬁ/ /L+_(w1,wz)e’“’””wz“da)ldwz,

s

1 0o 00 ' .
u):ﬁ/ /R+,(a)1,wz)e’”‘s’”””da}ldwz,

T

—00 —0OQ
1 I r im)s—imyu
V(s,u):F Vi(wr,w7)e" ™" dwdw,.
s

(8.2)
Note that, for complex values of the frequencies,
L, (—or,—m)

L+_(CO],(UQ) = :L+_((U_2,(JJ_[)7

(8.3)
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with analogous relations for R, _(w;,®;) and Loy (o)
——  as wy; — 00,
Vi(wy, ;). We define —iw;
R+* (CUl, 0‘)2) ~ L_(CU )
L()(S) :L1(07s> ZIQ(S,O), ()1+T12 as w; — o0,
R(s,0) = R(0,s) = R(s) = Lo(s), (8.10)

LO+ / LO —iw.vds’ (84)
0

/ R 71(JS‘dS _ L0+( )

0

Relations (7.5) and (7.12); have been used in deriving
these connections. We have

Jim ioLy (o) = Lo(0) = R(0,0). (8.5)
Equations (7.5), (7.12); and (8.1) give

i(wl - w2)L+— (CO] ) (Uz) =Ri- (CO] ) ('UZ), (86)

which yields

Ry (601, w2)
7+)’

Li(o,0) = i(w] —
1 2

(8.7)
on using the notation of (4.8). This choice, rather than
that in (4.7), is dictated by the analytic properties of
L, (w1, w,). We refer to the analogous formula for
the kernel of the total dissipation in [10].

Also

i(w) — ) Ve(wr, ) = —Ry_ (w1, w2), (8.8)

by virtue of (7.16). This gives an equation for
Vr(wy, ;) similar to (8.7) for L._(wi, ;). The
question which arises is whether the quantity in the
denominator is w; — w5, as in (8.7), or w| — w;.
These are the only two possibilities. What they mean
respectively is specified after (4.7). Now, the first
choice would yield a quadratic form for the total
dissipation equal to the negative of the integral term in
the expression for the free energy (see (8.19) below).
This would yield a meaningless result, so we take

~Ri_(w1,m)

Vel 02) = i(of —wy)

(8.9)
Another derivation of this result is given below; see
(8.21).

Relation (8.1); and the asymptotic behaviour of
Fourier transforms [1, 10] yield that

where Ly, (w) is defined in (8.4). It follows from (8.7)
that

Lol y 0, o,
w3
L+,(w17(/02) ~ L—(CU )
_Lf as w; — 0.
w1

(8.11)

The asymptotic behaviour of Vg(w;,®) is similar to
(8.11), by virtue of (8.9). The condition corresponding
to (7.5) is

/ L (w1,w)dw

—00

. (8.12)
= / L, (w,m)dw;, =0 Vo € R,

which follows from Cauchy’s theorem and (8.11).

It is shown in [10] that the free energy, the rate of
dissipation and total dissipation, in terms of histories,
are given by

00 =60+ gz [ [ BB (o)

E' (w2)dwidw,,

P p—— ]C 7 B, (1)K, (01, 02)E, (02)dondon,

E'(00)0+— (01, ) E' (w)dodo,

i /°° /C”_;(wl)zg (@1 o) (@)
~ 8n o] — o5 D
(8.13)

where G, _ (w1, ;). Ki_ (w1, ;) and Q,_ (w1, m,)
are the Fourier transforms of G (s, u) in (2.14), K (s, u)
in (2.18), (2.19) and Q(s,u) in (2.21). These are
Fourier transforms as defined in (8.1).

We can write the frequency domain version of
(7.12), in the form
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| 00 00 decay to zero at large w;, w, but are otherwise
D(t) = &7 / / E(wl)R 1+ (w1,m,) arbitrary. This is. an expression of the nor.l-uniql%enes's
e of the kernels in the frequency domain, which is
p dooud explored in [10], and which indeed apply to
24 (@2)dedesy R, (wi,m) and L, (w1, ®,) in the present context.
1 < < Using such non-uniqueness leads however to kernels
=32 / / L (o1)Re— (w1, w2) that do not have the analytic properties possessed by
% oo Ri_and L, _.
By analogy with (8.14) and (8.15), the frequency
t
Dop(2)donden domain version of (7.1) takes the forms
1/90/%1_’()221%() LT
=— w1)oTo5R (w1, w, —
872 S FlO1) 010y R (W w(t):q’)(t)—l—@/ / Iy (o)L (w1, ;)
. —00  —00
I dodw,.
F(wz) W I£+(602)d601d602
(8.14) o -
. 1 J—
where I, I}; and I} are defined in (5.50), 4 and (5.44) =¢t) + o / / Lp(o1)Ly— (w1, 02)
respectively. The second form of (8.14) relies on e
5.51) and the fact that
( )an e e a IEF(wz)dCOld(Ug
/m (1, 02)15_(2)d LT
R, _(w1,wy)l,_(w7)dw, I
I ; —90)+ g [ [ Tonsieit, (o)

= /Iéi(wl)R+_(wl,w2)dw1:O, (8.15)

—00

which are consequences of (8.10) and Cauchy’s
theorem. Using (5.44);, we can write (8.14)3 as

D0 =5 [ [ Efontoo:

R+, (61)17 (A)z)Eﬂr (CL)Q)dG)ldwz

o) (8.16)
zﬁ / / E' (o)) H (o)) H(2)

Ry _ (w2, 1)E! (w)dwidwms,

on interchanging integration variables. Comparing
with (8.13),, we deduce that
— 4H(w1)H(w2)R - (02, 01) = K (w1, m2)
+ kot (01, m2) + ki (@1, 2),
(8.17)

where ko, (w1, ®;) has singularities on the w, com-
plex plane only in Q) and k;_(wy, w,) has singular-

ities on the w; plane only in Q). They must also
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I}(a)z)da)ldcuz.

(8.18)

Note the all free energies and dissipations of the form
(8.13) are expressible as quadratic forms in I%.(w), by
virtue of (5.44). However, in general, the analytic
properties of the resulting kernels will not be given as
in (8.14) and (8.18), so that the special forms (8.14),
and (8.18); do not hold. It follows from (8.7) and
(8.18) that

)= ¢(t) — —
v é(1) =
[ [ Bo(o)Re (01,00, (w2)
dwd
/ / wp —oF o
— () - -
B 8712
r OoI’_a) R _(w1, ) (w
/ / Sr(@1) +7( I +2) 5 ( 2)dwldw2_
Wy — W,
(8.19)

By virtue of the result proved in subsection 7.1, if R _
is such that D(t), given by (8.14), is non-negative, then
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V(1) — ¢(1), given by (8.19), is also non-negative. Let
us use (3.19) with respect to the integral in (8.19), over
] to obtain

t f—P
=6~ o

< ¢ 7t t

/ / Lp(w)Ri— (o1, m0)lp(02) dowdw,

W] — Wy
- l
+ 3 Lp(0)Ri— (0w, 0) - (w)dw.
(8.20)

The frequency domain version of (7.14), combined

with (8.9), yields
(1) __i
- 8n?

/OC /OOE(M)&(whwz)léF(m)

+ —
Wy —w,

dwdw,

—00 —0

oo X

' B ()R L
:ép/ / ar(01) +w(w16;6202) 2(92) 4 1)
—

—00 —O0

[o¢]

1 _
tar [ @R (o) @)do.

(8.21)

Alternatively, we can obtain this result by substituting
for K. (wy,w,) in (8.13), from (8.17), noting that
kot (w1,07) and ki (w1,m,) do not contribute. This
expression cannot be reduced to a quadratic form in

I, (o).
Relations (8.20), (8.21) and (5.54)3 give (2.10) or
1
V() + D) = $l1) + .-

/ L (0)Ry (0, 0) 5 (0)do = W(t), (8.22)
provided we put
1
Ry =—— .
(0, w) 0P H(w) (8.23)

which is similar to a relation for K, _ (w, w), derived in
[10]. Indeed, it can be seen from (8.17) that the two

conditions are consistent if and only if ki (@, ®)
+ki—(w,w) = 0. Furthermore, if R;_(w;,w;) is
replaced by an equivalent kernel, using the non-
uniqueness arguments referred to after (8.17), then
(8.23) is typically no longer valid.

From (5.45), (8.14), 3 and (5.50)4, we obtain

/ /E(wl)R+7(w1’wz)lﬁp(wz)dwlda’zv

(8.24)
if
i / / H{on)Ry— (o, 09)Bp(@) | -
8 of — oy 1
+_ / / Z (JJ1 R+ wl,wz)H(wZ)dwldwz -0
8n? —w, ’
(8.25)

The two terms on the left are complex conjugates of
each other, and can be shown to be individually real, so
that we can express this condition as

. 00 0

L/ / H (,{)1 R+ wl,a)z)léF(a)z)dw dwr —0

8n? ol —w; 1
—00 —00

(8.26)

Let us apply (3.20) to the integral over w; in (8.26).
This gives, with the aid of (8.23) and (5.50)4,

dwld(,l)g
W — w2

i, /°° 7 H(@)R— (01, 02)13(02)

(8.27)
It follows from (8.19),, (5.45) and (2.13) that
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1 N
:_ﬁ/ / ép w1 R+ 601,(112)

Iép(wz)dwldwz + E([) |:Te(f) + —

21?
roT H R._ I
/ / (w1)R Ewlawf) 2F(w2)dwldw2:|7
Wy — Wy

(8.28)

where the reality of the last integral has been invoked.
Since (2.9) or (7.12); must be satisfied, we require that

i

T r H(a)l)RJr,(wl,wz)I’F(wz)
272 _/ _/ o] — : dandw,
= [ t)o = [1() - T.(0)EG)

(8.29)
by virtue of (5.47). Now, using (3.19), we find that

oo

3

H R I
— / / CU] +— Ewl,af) 2F(w2)dw1d(l)2
2n W — @,
P / / H(w))Ry— wl,a)z)léF(wz)dw]dwz
—
1 t
— | H(w)Ri_(w,0)l(w)dw
21
:%P/ /H(w])R+—(wlawZ)IéF(wZ)dwldwz
27 W) — w3
+ ! /OC I (w)dw
4n F '
(8.30)

Using (8.27), we see that (8.29) is satisfied.

Of the relations (8.23), (8.25) and (8.29), any two
implies the third.

We can show directly that (8.29) is the frequency
domain equivalent of (7.7). Using (8.2); and (5.47),
we can write (7.7) as
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1 P
W/ / IJ/F(UI Ly 601,(02)

o]

2 | tw)do.

—00

With the help of (8.11), (8.12) and the property

I£+(602)d(,{)1d602 = (831)

/ G’ (o1)Ly— (01, 02)dw; =0, (8.32)

which follows by closing the integral on Q) we
conclude from (3.5) that G’ (w;) can be replaced by
—2H(w;). Also, we can replace I}, by Ij;, as
concluded in relation to (8.18). Thus, the left-hand
side of (8.31) becomes

o0

1 o0
_2_712/ /H(wl)L+—(w17602)I§F(w2)da)ldw2

—00

. o0 o0 H R )
i (01)R— (1,0,
=53 / / Ly (@2)dwido,,

o) —a)2

(8.33)

where (8.7) has been invoked. Therefore, (8.31) is
equivalent to (8.29).

Similarly, we can show, using (8.9), that (8.26) is
the frequency domain equivalent of (7.18).

We can write (8.29) in the form

oy H(w1)Ly— (w1, m2)w5
1 o
I (w2)dwdw, =5 / I.(w)dw, (8.34)
T
-0

with the aid of (5.50),4.

Let us now explore possible solutions of (8.34),
leading to new free energies. This equation must be
true for an arbitrary history, so that, on using (5.44),
we obtain the relations

o

%/H(wl)LJF,(wl,w)H(w)dwl: " +S_(w),

—00
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where S_(w) is an arbitrary function that is analytic in
Q" and goes to zero at infinity, since, by Cauchy’s theorem,

/ S_()E" ()dw> = 0. (8.36)

Recall that (7.8) has the same relationship with (7.7)
that (8.35) has with (8.34).

The frequency version of (7.11) has the same form
as (8.35) and indeed (6.7). Comparing these latter two
equations, we see that

[o.¢]

— w 1
fi(w) = p / H(w)Li_ (w1, w)dw; — oF
Lo [ R0, 1
7 w; — ot io"
1
5(@) = 375 (0)
(8.37)

Relations (8.37);, and (8.23) are constraints on
L; (w;,w) and R;_(w;,w), which derive from
(7.11) or ultimately (2.16).

The quantity f, (w) is given by (6.9) for discrete
spectrum materials, and is zero if the material has
branch points.

Alternatively, we can argue that (8.26) must be true

for arbitrary history E(a}), so that, instead of (8.35),
we have

1 [ H(o)R, (o1, 0)H(o)

— - doy =85_(w),
in 0 —
(8.38)
and (8.37), is replaced by
H )R
(@R (01,0) 4, (3.39)

w] — W

Using (8.23), (3.19) and (3.20), we see that (8.39) is
equivalent to (8.37),.

9 Quadratic forms for ,(¢) in terms of /'

Consider the quadratic forms (4.7) and (4.9). These
can be replaced by quadratic forms in terms of 5, (®),

using (5.51);. The question discussed in this section is:
can they be expressed as quadratic forms in 75 (w),
which would provide examples of (8.14); and (8.19),
or, in the time domain, (7.1) and (7.12),. It emerges in
Sect. 9.1 that only the minimum free energy ¥,,(¢)
corresponding to f = 1 can be expressed in such a
manner. This property of y,,(¢) is discussed in detail in
Sect. 9.2.

This is consistent with the fact that v, (¢) is a FMS.
However, it is also true that all the y(r) are FMSs. It
will be shown how this property holds even though the
Y (t) for f > 1 are not expressible as quadratic func-
tionals of 5 () or in the time domain, I5(s), s > 0.

9.1 Quadratic forms for ()

We will base our discussion on (4.2) and (4.3).
Referring to (4.3) and (5.51), we put

_iH(o) () = l 1

B +

)

1 IEF((D)]

Ziw‘H’; (w)
(9.1)

There is no singularity at @ = 0 because of the factor
w? in I, (w), given by (5.50)4. The superscript on o~
is chosen for convenience. The last form of P is the
product of two functions both in L?(RR). For f = 1, the
first factor has all its singularities in Q(+), by virtue of
the property that the zeros of Hi are in Q). However,
for other values of f, the zeros of Hfr can be in Q)
Q). Using (5.51),, we obtain

1 -
P0) = e SE B @] 92)

The quantity p% () in (4.2) and (4.3) will now be
considered in more detail. Let us write

: A () + A (o) 9.3
——=A(w _(w), .
2iw™ H, (o) N ©:3)
where, as indicated by the notation, A4 (w) has all its
singularities in Q) respectively. For discrete spec-
trum materials, /', () is given by (4.20) and

1 | [N, Vi
AT Srrns
folm © = if} i=1,2,...n (9.4)

w—>zp H]; ((U) '
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Thus, 2iwA (o) is equal to the sum of terms with

pl = +4y; and 2iwA_(w) consists of terms where

.0/,‘- = Vi

If f = 1, then A_(w) will vanish, while for f = N
(yielding the maximum free energy referred to after
(4.9); see alsoremark 7.1 of [10] and [1], p 343) A ()

is zero. For all values of f, p't () will be given by (4.3)
with
PA() = A ()T, () + A ()T (o)
AL (@) (o) + A () (o).
(9.5)
The relation for p¥") () can be simplified to give
1

(1) _
p=i(w) = 2ni
7 (@)l (o) + AN () + A () (@) |
/ + @
w — o
1 f AL (@) (@) +A (B ()
= do'.
2mi o — ot
(9.6)

The first form follows by observing that if we evaluate
the term with A , (o')I}_(') by closing the contour on
Q) then, by Cauchy’s theorem, the result is zero.

Consider the second form. For the case of the
minimum free energy, only the first term of the
integrand is non-zero and it follows immediately that
,, (1) can be expressed as a quadratic form in I}, (),
as noted above.

We now seek to show that p%) (@) (and therefore
Yy (t)) is a FMS even if f > 1, for which the second
term in the denominator of (9.6), is non-zero. The
argument will be presented for discrete spectrum
materials (Remark 5.2) but is in fact more general.

The first term in (9.6), contributes a sum of simple
poles at the points —ioy, [ = 1,2,...,n by virtue of
(5.53), in an expression involving E', (w) evaluated
only at @ = —ioy. This can be seen by closing the
contour on Q7. In the second term, the singularities
of A_(') are cancelled by I (') because of the
factor H(®') in this quantity, defined by (5.51). This
can be shown by using (9.4) to evaluate A_(®), and by
taking the product of H:ft(w), given by (4.20). The
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cancellation would not be manifest if I, were

expressed in terms of E Closing on o) again, we
find that the only contributing singularities are those at
—io; in H(w), in spite of the fact that E is not a FMS.
One again obtains an expression where the only
dependence on E' (w) is through E' (—ig;),
j=1,2,...,n, as required by Remark 5.3.

However, the point we wish to emphasize here is
that p for f # 1orf # N is linear in both E and E,
so that Y, is quadratic in these quantities, as we see
from (4.2).

One could also have approached the above argu-
ment from another point of view, by expressing (4.7)
as a quadratic functional in I}, using (5.51). With the
aid of arguments similar to those after (9.6), one again
obtains a quadratic functional of 75, and I5,. This
approach is developed explicitly for the minimum free
energy in Sect. 9.2.

These quadratic functionals can be expressed also
in terms of time domain quantities, as shown for the
minimum free energy in Sect. 9.2.

For f = N, giving the maximum free energy, the
quadratic form depends only on 75,..

Thus, for all linear combinations of the (t)

involving terms with f > 1, we need to include E,
and the property of being a FMS is dependent on a
special cancellation, which is a specific property of the
kernel associated with those given by (4.10), where at
least one Ay for f > 1 is non-zero. This will not
necessarily hold for a quadratic form in 5, and I}
with a general kernel.

9.2 The minimum free energy as an explicit
functional of I

It has already been shown in subsection 9.1 that the
minimum free energy can be expressed as a quadratic
form in 15, (w) or I5(1), € R*. Derivations of the
explicit form of this functional were given in [1, 6].
We give a different derivation of this result here. Also,
we show that the conditions (8.23) and (8.29) are
obeyed.

Consider firstly the frequency domain representa-
tion. Recalling (5.51), we can write (4.7)—(4.9) (for
f =1, corresponding to the minimum free energy) in
the form (after exchanging w; and w;)
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()= ¢(0) ¢ L
" N 8w 47_[2 / / I£+ wl m+ whwl)
B ()R (01,00l 0) 1 (on)dondon
o] — oy o0 2
oo —oo L / L, (o) Jo (9.10)
o0 4n? 20t H_(w)
1 — S
872 / / IzF((Ul)Rm+—(w1»(U2) ~ 2
T 50 —o0 1 Lp(o)
3| | Tontar
12 (COz)dO)]dCOQ, —00
Dun(1) L Observe that (8.23) is true for (9.7)4.
" 87’ Consider now the time domain representations. We
o0 00 . seek to express D,,(t) and y,,(¢) as quadratic func-
/ / IZF(COI)R’"*;(G)I’(_*)Z)IZF(wz)dwldwz’ tionals of I'(s), s € R". Let us define the quantity
e @1 T M(s) by
Ryi— (w1, ) = : . M(s) 1 / ;ei“’sdw seR
’ 207 Hy (01) oy H-(w,) 2n ) 2w Hi(w) ’ '
(9.7) -

The quantity R, (w;, ;) is analytic with respect to
w; in Q' and with respect to @, in Q. We now
replace I, in these two relations by the right-hand side
of (5.51),. It follows from Cauchy’s theorem, by

closing the contour on Q<+), that

o0
/ Ry (01, 0)15_(02) dwy = 0.

o — (9.3)
Similarly, I (;) may be dropped from (9.7); on
integration over @ and we obtain

i
)=o) — —
Inlt) = B0) ~
/ / E(wl)Rm+:(wl’?2)I§+(w2)dw1dw2
Wy — Wy
1
= ¢(t) + )
/ /K(wl)Lm—(wl,w2)1§+(w2)dw1dw27
Rm+7 (0)1 3 (UZ)
Lm 7(601;(1)2) = - I >
i i(o] — )
(9.9)

which is the explicit quadratic form implied by (9.6)
for f = 1. A similar argument yields that

(9.11)

This is a real quantity which vanishes for s € R™ .
The integrand has a quadratic singularity near the
origin, due to the explicit pole term and the factor w in
H, (w) which is taken, for consistency, to be . This
gives a finite contribution.

Let us write the time domain version of (9.9); in the

form
//Ié (u,v)I,(v)dudv,
00

(9.12)

V(1) )+

N —

corresponding to (7.1), where L,,(u,v) is given by
(8.2); in terms of L, _ (w;, m,). The rate of dissipation
given by (9.10) becomes, in the time domain, (c.f.

(4.6))

Du(t) = [K@OP, K1) = / M) (w)du,  (9.13)
0
on using Parseval’s formula. Therefore
D, (t) = / M(u
0
_ / / L GOMGOMO) () dudv, — (9.14)
0 0
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so that

R(s,u) =2M(s)M(u).

It follows from (7.28) that

min(u,v)

L,(u,v)=2 M(u—z)M(v — 2)dz = L,,(v,u).

The following two results are of interest.

Proposition 9.1 We seek to show that (8.29); holds
for the minimum free energy. This implies that the
equivalent time domain version (7.7) is also true.

Proof Substitute R, (w1, ), given by (9.7)4, into
the left-hand side of (8.29). By integrating around
Q). we obtain

L/ﬂd _1H (o)
212 o1 (0 — o3) “r=Tg wy

—00

(9.17)

and (8.29); follows immediately, on noting the last
relation of (5.50). O

Proposition 9.2 The quantity f, () in (8.37) or
(8.39) vanishes in the case of the minimum free energy

Proof For (8.39), closing the w; contour over Q)
gives zero. For (8.37),, the two terms cancel. O

Thus, this property, which is true for all free
energies in materials with branch cut singularities,
holds also for materials with only isolated singularities
in the case of the minimum free energy.

Proposition 9.3 The minimum free energy is the
only free energy functional for which the rate of
dissipation is given by a simple product. This is in
effect the result that the factorization of H(w), given
by (3.8) and (3.9), where both zeros and singularities
of H. (w) are in Q* respectively, is unique up to a sign
([11, p 240).

Proof Let
Ri_(01,02) = ri(w)r- (o), (9.18)
under the condition
1
2
= .1

@ Springer

Equation (8.39) reduces to

o0 N
er w
/ D ( 1d1:_7_

(9.20)

since the zeros of r_(w) are in Q™). Using the Plemelj
formulae (3.19) and (3.20), we can write (cf. (4.3))

H(oy)r(o1) = p_(o1) -

00
HCO] r+ CL)]

pi(o1),

TV doy, (9.21)

w] — ot

and (9.20) is the requirement that p,(w) = F_(w).
Both sides vanish at infinity, so that both must be zero
everywhere, by Liouville’s theorem (for example, [1],
p 534). Thus, we have that

p—(w1)
H_((,Ul) '

H ()i (o)) = (9.22)
Multiplying across by a factor w;, we see that both
sides must be equal to a constant k, by Liouville’s
theorem, giving

k

PO = CH o)

(9.23)
It follows from (9.19) that |k|2: 1/2, and (9.23),
substituted into (9.18), yields (9.7)4. Thus, the mini-
mum free energy is the only possibility associated with
(9.18). The requirement that F_(w) vanishes implies
that, in agreement with proposition 9.2, we have

fi(w)=0. O

10 General form of free energies that are FMSs:
discrete spectrum materials

We now present quadratic forms in terms of the
minimal state functionals I for discrete spectrum
materials, just as (5.25) and (5.28) apply to
quadratic forms in terms of histories. Let us
consider the form (8.14); for I (w) given by
(5.53),. We obtain
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1
D() = 5w (HRw()
w(t) = (wi(£), wa(t), .., wa(2)), wi(t) = o2 Gie;(t),
1 o0 o0
i =73 / / (1)],602) dwldcog
4 (o —|— io;) (o — o))
=Ry (=i, i), i,j=1,2,...,n,

(10.1)
where ¢;(7) is defined by (5.24) and the last relation is

deduced by integrating over Q) on the o, plane and

Q™) on the w; plane. Relations (10.1) can also be
obtained from (7.12) and (5.52).
The free energy functional (7.1) has the form

W) = (1) + 5w (VLw()

1 o0 o0
=— / / (o, @) dwdw,
4r (o +loc,)(co2 — iaj)
R
:L—_.h.' = ! ’ .a.:1727"'7 ’
4 (—ioy, io) it i,J n
(10.2)

by virtue of (8.7). The quantities R and L are
symmetric. Using (5.27), we see that

Wi(t) = —ouwi(t) + zE(1),

10.3
i =0G;, i=12,..,n (103)
It follows that (2.9) holds, provided that
i(2) 2
Z Z o Lyor Gj| =0, (10.4)
=1

which is (7.7) for discrete spectrum materials. Let us
put

Lij
2

LU: 17]: 1’27...,71, (105)

o

27
%

in terms of the matrix 1. Relation (10.4) holds for all
histories, so that we must have

G =1, i=12,...n (10.6)
=1
Referring to (5.26), we see that if 1 = C~ !, then (10.6)

holds. The form (10.6) corresponds to the Laplace

transform of (7.11); for discrete spectrum materials, at
the points io;, where, from (6.9), we know that
filig) =0,i=1,2,...,n

We can also see that (8.37); gives

1
lCOZOCZGL+ —ioj, ) — e

(10.7)

o+ io; i

» Z GiR._(—ioj, ) 1
i=1

on using (4.14),, (8.12) and by closing the contour on
Q7). Putting o = io; yields (10.6).

The expressions (10.1) and (10.2) are not helpful in
characterizing quadratic forms in terms of I4(s), s €
R because they are, in effect, quadratic forms in the
ei(1); while the free energies i/, given by (4.7), and
discussed in Sect. 9, can also be expressed as such
quadratic forms, even though they depend on E(w) in
the frequency domain, or I5(s), s € IR, in the time
domain.

11 Proof that no new free energies can be
expressed in terms of I

The approach adopted in [10] was based on product
formulae in the time domain, and more particularly in
the frequency domain, for the kernel of the rate of
dissipation, which ensure that this quantity is non-
negative. They also ensure that the resulting free
energy has the correct non-negativity properties. In
principle, the same approach should apply in the
present context, as demonstrated in Sect. 7.1. How-
ever, as we will now show, there are no free energy
functionals expressible as quadratic forms in I’ other
than the minimum free energy. This is a generalization
of the conclusion of Sect. 9.1 that, of the family ,(7),
only ¥,,(#) has this property. It further indicates how
restrictive the requirement is that a free energy
functional be expressible in the form (7.1) or (8.18);.

Proposition 11.1 The only possible choice of

L, (wy,w,) obeying (837) is the kernel

Ly (w1, ), given by (9.9)s.

Proof We express L,_(w;,®,) in the form

L. (01,02) = Ly (01, m) + Li— (o1, ).
(11.1)
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The case of materials with only discrete spectrum
singularities (remark 5.2) will be considered first. The
quantity L, (w;, ;) is a solution of (8.37),, for
f+(w) = 0 (proposition 9.2), so that we have

fi(w) =U(w),
[o.¢]
W
Uw) =2 [ Ho)L(o0)do
w
= H(w)H_ (1)L (01, w)doy,
—00
Vo € R.
(11.2)
The quantity f; (w) is given by (6.9); it vanishes at
—ioy, i=1,2,...,n, and has singularities at iy;,
i=0,1,...,n, where the parameters y; are arbitrary

positive quantities. The kernel L;;_(w;,®) must
depend on the y;, since H(w;) is independent of them.
Let us seek forms of Ly, _(+,-) which are solutions of
(11.2),, for any choices of the y;.

The simplest way of ensuring that the zeros of U(w)
are consistent with the location of the zeros of f, () is
to assume that L;;_(w;,w) vanishes at each point
® = io;. Alternatively, if L;_(w;, w) is not zero at a
given point @ = ia, then it is still possible that U (iw;)
could vanish, for given values of y;, thus achieving
consistency with (11.2);. Thus, we take the quantity
Li;_(w;,®) to be zero at each point & = io; for most
values of the parameters y;, i = 1,2,...,n.

Let us consider a given set of values y;, j # k as
fixed parameters, and regard U(w) as a function of y;,
denoted by U(w,y;). Now, U(io;, x;) may have
discrete roots, in other words, may vanish at discrete
values of y,. However, this does not allow us to drop
the assumption that Ly, (w,io;) is zero at these
values of y,, since such an assumption would intro-
duce anomalous discontinuities in the function
Li._(wy,io;), regarded as a function of y;, because
it is zero for almost all choices of this parameter and
non-zero at certain isolated values.

It follows that L;, _ (w1, ) must be taken to vanish
at each point w =io;, i = 1,2,...,n. Relation (8.3)
then implies that it is zero at each point @, = —iv;,
i=1,2,...,n, and the singularities of H_(w), as
given by (4.18)3, are cancelled by Li;_ (w1, ®) in
(11.2)3. The remaining singularities of the integrand

@ Springer

are all in Q). Therefore, by closing the contour on

Q) and recalling (8.11), we find that the right-hand
side of (11.2) vanishes.

Thus, there are no kernels that are consistent with a
non-zero choice of f; (w). Any acceptable choice of
Li; (w1, ®) must obey the equation

[ HeoH (@)L (or,0)dor =0, Yo e R

(11.3)

The only way to ensure this condition for all  is to
assign to Ly, _ (w1, w) the property that it vanishes at
each point w; = —io;, and thereby cancels the singu-
larities in H_(w1). But these points are the singular-
ities of 15, (o;) in (8.18), so that the quadratic form

with kernel L;,_ (w1, ®) would give a zero contribu-
tion to the free energy, as can be seen by integrating w,

over a contour on Q7.

We conclude that f, (w) must be zero, even for
materials with only isolated singularities and
Li;—(w1,®) in (11.1) makes no contribution to the
free energy functional.

For materials with some branch cuts, the quantity
f+(w) vanishes, in any case, and we must have a
relation of the same form as (11.3). Then, there will be
some branch cuts in L (w;, ®) as a function of w;.

These must be in Q). There will also be branch cuts

in H_(w;) , which must be in Q). There is no
mechanism whereby these can neutralize or cancel
each other. The only remaining possibility is that
Ly, (w1, ®) vanishes. d
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