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Abstract The aim of this work is to determine what free

energy functionals are expressible as quadratic forms of

the state functional It which is discussed in earlier

papers. The single integral form is shown to include

the functional wF proposed a few years ago, and also a

further category of functionals which are easily

described but more complicated to construct. These

latter examples exist only for certain types of materials.

The double integral case is examined in detail, against

the background of a new systematic approach developed

recently for double integral quadratic forms in terms of

strain history, which was used to uncover new free

energy functionals. However, while, in principle, the

same method should apply to free energies which can be

given by quadratic forms in terms of It, it emerges that

this requirement is very restrictive; indeed, only the

minimum free energy can be expressed in such a manner.

Keywords Thermodynamics �Memory effects �
Free energy functional �Minimal state functional �
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1 Introduction

Free energy functionals that are expressible as

quadratic forms of the state functional It are explored

in the present work. The quantity It is discussed in [1,

6, 7] and elsewhere. Such free energies have applica-

tions in proving results concerning the integro-partial

differential equations describing materials with mem-

ory. They may also be useful for physical modeling of

such materials. However, these applications generally

require that the free energy functionals involved have

compact, explicit analytic representation.

The single integral form is shown to include the

functional wF , proposed some years ago [1, 6]. There

is also however a further category of functionals of this

kind for materials with non-singleton minimal states.

These functionals are easily described but more

difficult to construct, since basic inequalities relating to

thermodynamics must be explicitly imposed; they are

therefore not so useful for practical applications.

The double integral quadratic form is examined in

detail. In this context, a recent paper [10] deals with

determining new free energies that are quadratic func-

tionals of the history of strain, using a novel approach.

This new method is based on a result showing that if a

suitable kernel for the rate of dissipation is known, the

associated free energy kernel can be determined by a

straightforward formula, yielding a non-negative qua-

dratic form. It allows us to determine previously

unknown free energy functionals by hypothesizing rates

of dissipation that are non-negative, and applying the

formula. In particular, new free energy functionals

related to the minimum free energy are constructed.

In principle, the methods developed in [10] apply to

quadratic forms in terms of It, and should lead to new
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free energies which can be expressed as such quadratic

forms. It emerges however that this is a very restrictive

property; indeed, only the minimum free energy is

expressible as such a functional.

Regarding the notational convention for referring to

equations, we adopt the following rule. A group of

relations with a single equation number (***) will be

individually labeled by counting ‘‘¼’’ signs or ‘‘\’’,

‘‘[’’, ‘‘B’’ and ‘‘C’’. Thus, (***)5 refers to the fifth

‘‘¼’’ sign, if all the relations are equalities. Relations

with ‘‘2’’ are ignored for this purpose.

2 Quadratic models for free energies

As in [10], we discuss the scalar problem, denoting the

independent field variable by EðtÞ, the strain function,

and the dependent variable by TðtÞ, the stress function.

However, it is fairly straightforward to generalize to

tensor fields (for example, [1, 5]) and to certain other

theories such as heat flow in rigid bodies or electro-

magnetic phenomena.

Certain basic formulae from [10] and earlier work

are repeated here for convenience. The current value

of the strain function is EðtÞ while the strain history

and relative history are given by

EtðsÞ ¼ Eðt � sÞ; Et
rðsÞ ¼ EtðsÞ � EðtÞ; s 2 IRþ:

ð2:1Þ

It is assumed here that

lim
s!1

EtðsÞ ¼ lim
u!�1

EðuÞ ¼ 0; ð2:2Þ

which simplifies certain formulae. The state of the

material, in the most basic sense, is specified by

ðEt;EðtÞÞ or ðEt
r;EðtÞÞ. Another definition of state will

be introduced in Sect. 5.1.

Let TðtÞ be the stress at time t. Then the constitutive

relations with linear memory terms have the form

TðtÞ¼ TeðtÞþ
Z1

0

eGðuÞ _EtðuÞdu; eGðuÞ¼GðuÞ�G1;

¼ TeðtÞþ
Z1

0

G0ðuÞEt
rðuÞdu;

_EtðuÞ¼ o

ot
EtðuÞ¼� o

ou
EtðuÞ¼� o

ou
Et

rðuÞ;

€EtðuÞ¼� o

ou
_EtðuÞ; ð2:3Þ

where TeðtÞ is the stress function for the equilibrium

limit, defined by the condition EtðsÞ¼EðtÞ 8s 2 IRþ,

and the quantity Gð�Þ : IRþ7!IRþ is the relaxation

function of the material. We define

G0ðuÞ ¼ d

du
GðuÞ; G1 ¼ Gð1Þ; G0 ¼ Gð0Þ;

eGð0Þ ¼ G0 � G1 ¼ eG0: ð2:4Þ

The assumption is made that

eG;G0 2 L1ðIRþÞ \ L2ðIRþÞ: ð2:5Þ

Remark 2.1 Various formulae presented here can be

expressed either in terms of quantities related to eGðuÞ
and _EtðuÞ or G0ðuÞ and Et

rðuÞ ([1, 10] and earlier

references). We shall generally use those related to

eGðuÞ and _EtðuÞ.

Let us denote a particular free energy at time t by

wðtÞ ¼ ~wðEt;EðtÞÞ, where ~w is understood to be a

functional of Et and a function of EðtÞ. The Graffi [11]

conditions obeyed by any free energy are given as

follows:

P1:

o

oEðtÞ
~wðEt;EðtÞÞ ¼ o

oEðtÞwðtÞ ¼ TðtÞ: ð2:6Þ

P2: For any history Et

~wðEt;EðtÞÞ� ~/ðEðtÞÞ or wðtÞ�/ðtÞ; ð2:7Þ

where /ðtÞ is the equilibrium value of the free energy

wðtÞ, defined as

~/ðEðtÞÞ ¼ /ðtÞ ¼ ~wðEt;EðtÞÞ;
where EtðsÞ ¼ EðtÞ 8s 2 IRþ:

ð2:8Þ

Thus, equality in (2.7) is achieved for equilibrium

conditions.

P3: It is assumed that w is differentiable. For any

ðEt;EðtÞÞ we have the first law

_wðtÞ þ DðtÞ ¼ TðtÞ _EðtÞ; ð2:9Þ

where DðtÞ� 0 is the rate of dissipation of energy

associated with wðtÞ:
This non-negativity requirement on DðtÞ is an expres-

sion of the second law.
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Integrating (2.9) over ð�1; t� yields that

wðtÞ þDðtÞ ¼ WðtÞ; ð2:10Þ

where

WðtÞ ¼
Z t

�1

TðuÞ _EðuÞdu; DðtÞ ¼
Z t

�1

DðuÞdu� 0:

ð2:11Þ

We assume that these integrals are finite. The quantity

WðtÞ is the work function, while DðtÞ is the total

dissipation resulting from the entire history of defor-

mation of the body.

The function TeðtÞ in (2.3) is given by

TeðtÞ ¼
o/ðtÞ
oEðtÞ : ð2:12Þ

It follows that

_/ðtÞ ¼ TeðtÞ _EðtÞ: ð2:13Þ

For a scalar theory with a linear memory constitu-

tive relation defining stress, the most general form of a

free energy is

wðtÞ ¼ /ðtÞ þ 1

2

Z1

0

Z1

0

_EtðsÞeGðs; uÞ _EtðuÞdsdu;

eGðs; uÞ ¼ Gðs; uÞ � G1: ð2:14Þ

There is no loss of generality in taking

eGðs; uÞ ¼ eGðu; sÞ: ð2:15Þ

The Graffi condition P2, given by (2.7), requires that the

kernel eG must be such that the integral term in (2.14) is

non-negative. Various properties of eGðs; uÞ are given

in [10] and earlier references. The relaxation function

GðuÞ introduced in (2.3) is related to Gðs; uÞ by

GðuÞ ¼ Gð0; uÞ ¼ Gðu; 0Þ 8u 2 IRþ: ð2:16Þ

Note that, with the aid of (2.4), we have

Gð0Þ ¼ Gð0; 0Þ ¼ G0: ð2:17Þ

The rate of dissipation can be deduced from (2.9) and

(2.3) to be

DðtÞ ¼ � 1

2

Z1

0

Z1

0

_EtðsÞKðs; uÞ _EtðuÞdsdu; ð2:18Þ

where

Kðs; uÞ ¼ G1ðs; uÞ þ G2ðs; uÞ: ð2:19Þ

The subscripts 1, 2 indicate differentiation with respect

to the first and second arguments. The quantity G must

be such that the integral in (2.18) is non-positive, as

required by P3 of the Graffi conditions. The quantity K

can also be taken to be symmetric in its arguments, i.e.

Kðs; uÞ ¼ Kðu; sÞ: ð2:20Þ

Seeking to express DðtÞ, given by (2.11)2, as a general

quadratic functional form similar to those in (2.14) or

(2.18), we put

DðtÞ ¼ 1

2

Z1

0

Z1

0

_EtðsÞQðs; uÞ _EtðuÞdsdu: ð2:21Þ

2.1 The work function

This quantity, given by (2.11)1, can be put in the form

([1, 10], p 153 and earlier references cited therein):

WðtÞ ¼ /ðtÞ þ 1

2

Z1

0

Z1

0

_EtðsÞeGð s� uj jÞ _EtðuÞduds:

ð2:22Þ

We see that it has the form (2.14) where

eGðs; uÞ ¼ eGð s� uj jÞ: ð2:23Þ

Remark 2.2 The quantity WðtÞ can be regarded as a

free energy, but with zero total dissipation, which is

clear from (2.10). Because of the vanishing dissipa-

tion, it must be the maximum free energy associated

with the material or greater than this quantity, an

observation which follows from (2.10).

Thus, we have in general the requirement that

wðtÞ�WðtÞ: ð2:24Þ

It follows from (2.10) that Qðs; uÞ in (2.21) is given by

Qðs; uÞ ¼ eGð s� uj jÞ � eGðs; uÞ; ð2:25Þ

so that

Qðs; 0Þ ¼ Qð0; uÞ ¼ 0; 8s; u 2 IRþ: ð2:26Þ

Remark 2.3 The integral term in (2.14) and (2.21) are

in general positive-definite quadratic forms, in the
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sense that they vanish only if _EtðuÞ ¼ 0, u 2 IRþ,

while DðtÞ, given by (2.18), may be positive semi-

definite, so that it can vanish for non-zero histories.

3 Frequency domain quantities

Let X be the complex x plane and

Xþ ¼ fx 2 X j ImðxÞ 2 IRþg;
XðþÞ ¼ fx 2 X j ImðxÞ 2 IRþþg:

These define the upper half-plane including and

excluding the real axis, respectively. Similarly, X�,

Xð�Þ are the lower half-planes including and excluding

the real axis, respectively.

Remark 3.1 Throughout this work, a subscript ‘‘þ’’

attached to any quantity defined on X will imply that it

is analytic on X�, with all its singularities in XðþÞ.
Similarly, a subscript ‘‘�’’ will indicate that it is

analytic on Xþ, with all its singularities in Xð�Þ.

The notation for and properties of Fourier trans-

formed quantities is specified in [1, 10] and earlier

references. It is assumed that all frequency domain

quantities of interest are analytic on an open set

including the real axis. The functions and relations

eGþðxÞ ¼
Z1

0

eGðsÞe�ixsds ¼ eGcðxÞ � ieGsðxÞ;

G0þðxÞ ¼
Z1

0

G0ðsÞe�ixsds ¼ G0cðxÞ � iG0sðxÞ

¼ �eG0 þ ixeGþðxÞ ð3:2Þ

will be required, where the quantities eGcðxÞ, G0cðxÞ
and eGsðxÞ, G0sðxÞ are the cosine and sine transforms

of eGðsÞ, G0ðsÞ, respectively; the former quantities are

even functions of x while the latter are odd functions.

It follows from (2.5) that eGþðxÞ;G0þðxÞ 2 L2ðIRÞ.
The quantities eGþðxÞ and G0þðxÞ are analytic in X�.

Because eG is real, we have

eGþðxÞ ¼ eGþð�xÞ: ð3:3Þ

This constraint means that the singularities are sym-

metric under reflection in the positive imaginary axis.

A similar relation applies to G0þðxÞ. Also, we have

G00þðxÞ ¼
Z1

0

G00ðsÞe�ixsds ¼ �G0ð0Þ þ ixG0þðxÞ:

ð3:4Þ

A function of significant interest, particularly in the

context of the minimum and related free energies, is

HðxÞ ¼ x2 eGcðxÞ ¼ �xG0sðxÞ ¼ �G00cðxÞ
� G0ð0Þ� 0; x 2 IR; ð3:5Þ

where the inequality is an expression of the second law

([1], p 159 and earlier references). The quantity HðxÞ
goes to zero quadratically at the origin since HðxÞ=x2

tends to a finite, non-zero quantity eGcð0Þ, as x tends to

zero. One can show that

H1 ¼ lim
x!1

HðxÞ ¼ �G0ð0Þ� 0: ð3:6Þ

We assume for present purposes that G0ð0Þ is non-zero

so that H1 is a finite, positive number. Then

HðxÞ 2 IRþþ 8x 2 IR; x 6¼ 0.

If GðsÞ, s 2 IRþ, is extended to the even function

Gð sj jÞ on IR, then dGð sj jÞ=ds is an odd function with

Fourier transform ([1], p 144)

G0FðxÞ ¼ �2iG0sðxÞ ¼
2i

x
HðxÞ: ð3:7Þ

The non-negative quantity HðxÞ can always be

expressed as the product of two factors [8]

HðxÞ ¼ HþðxÞH�ðxÞ; ð3:8Þ

where HþðxÞ has no singularities or zeros in Xð�Þ and

is thus analytic in X�. Similarly, H�ðxÞ is analytic in

Xþ with no zeros in XðþÞ. We put [1, 8]

H�ðxÞ ¼ H�ð�xÞ ¼ H�ðxÞ;
HðxÞ ¼ H�ðxÞj j2; x 2 IR: ð3:9Þ

The factorization (3.8) is the one relevant to the

minimum free energy. For materials with only isolated

singularities, we shall require a much broader class of

factorizations, where the property that the zeros of

H�ðxÞ are in Xð�Þ respectively need not be true. These

generate a range of free energies related to the

minimum free energy [1, 7, 9], as discussed briefly

in Sect. 4.
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The Fourier transform of EtðsÞ, Et
rðsÞ, given by

(2.1) for s 2 IRþ, are defined for example in [1, 10] and

denoted by Et
þðxÞ, Et

rþðxÞ. These have the same

analyticity properties as eGþðxÞ. However, Et
rðsÞ does

not have the property (2.5), so that Et
rþðxÞ must be

defined with care. For a constant history, EtðsÞ ¼ EðtÞ,
s 2 IRþ, we have ([1], p 551)

Et
þðxÞ ¼

EðtÞ
ix�

; ð3:10Þ

where the notation x� (and xþ) is defined in [1, 10]

and earlier work. Briefly, x� ¼ x� ia, respectively,

where a! 0þ after integrations are carried out. Thus,

we have

Et
rþðxÞ ¼ Et

þðxÞ �
EðtÞ
ix�

: ð3:11Þ

Also ([1], p 145),

d

dt
Et
þðxÞ¼ _Et

þðxÞ¼�ixEt
þðxÞþEðtÞ¼�ixEt

rþðxÞ;

ð3:12Þ

and

d

dt
_Et
þðxÞ ¼ �ix _Et

þðxÞ þ _EðtÞ;

d

dt
Et

rþðxÞ ¼ _Et
rþðxÞ ¼ �ixEt

rþðxÞ �
_EðtÞ
ix�

:

For large x,

Et
þðxÞ	

EðtÞ
ix

; Et
rþðxÞ	

AðtÞ
x2

; ð3:14Þ

where AðtÞ is independent of x. Also, from (3.12),

_Et
þðxÞ	

AðtÞ
ix

; ð3:15Þ

for large x. Relation (3.12) is convenient for convert-

ing formulae from those in terms of Et
rþðxÞ to

equivalent expressions in terms of _Et
þðxÞ or vice

versa.

Applying Parseval’s formula to (2.3)1, we obtain

TðtÞ ¼ TeðtÞ þ
1

2p

Z1

�1

eGþðxÞ _Et
þðxÞ dx: ð3:16Þ

There is a non-uniqueness in this form allowing us to

write it as [1, 10]

TðtÞ ¼ TeðtÞ þ
1

p

Z1

�1

HðxÞ
x2

_Et
þðxÞdx: ð3:17Þ

More detail is included on this argument in (5.38)–

(5.40) below.

We shall be using the Plemelj formulae on the real

axis ([1], p 542) several times in this work, in relation

to frequency dependent quantities. These are given as

follows. Let

FðzÞ ¼ 1

2pi

Z1

�1

f ðuÞ
u� z

du; z 2 XnIR; ð3:18Þ

where f ðuÞ is any Hölder continuous function. For

z 2 XðþÞ, the function FðzÞ is analytic in XðþÞ, while

for z 2 Xð�Þ, it is analytic in Xð�Þ. Let z ¼ xþ ia,

a[ 0 where a approaches zero. Then, we write (3.18)

as (recall Remark 3.1)

F�ðxÞ ¼
1

2pi

Z1

�1

f ðuÞ
u� xþ

du ¼ 1

2
f ðxÞ

þ 1

2pi
P

Z1

�1

f ðuÞ
u� x

du; ð3:19Þ

where the symbol ‘‘P’’ indicates a principal value

integral. Similarly,

FþðxÞ ¼
1

2pi

Z1

�1

f ðuÞ
u� x�

du ¼ � 1

2
f ðxÞ

þ 1

2pi
P

Z1

�1

f ðuÞ
u� x

du: ð3:20Þ

4 The minimum and related free energies

It is shown in [7, 9] that, for materials with only

isolated singularities, the quantity HðxÞ is a rational

function and has many factorizations other than (3.8),

denoted by

HðxÞ ¼ H
f
þðxÞHf

�ðxÞ;

H
f
�ðxÞ ¼ Hf

�ð�xÞ ¼ H
f
�ðxÞ; ð4:1Þ

where f is an identification label distinguishing a

particular factorization. These are obtained by
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exchanging the zeros of HþðxÞ and H�ðxÞ, leaving

the singularities unchanged.

Each factorization yields a (usually) different free

energy of the form

wf ðtÞ ¼ /ðtÞ þ 1

2p

Z1

�1

pft
�ðxÞ

�� ��2 dx; ð4:2Þ

where, recalling (3.12),

PftðxÞ ¼ i
Hf
�ðxÞ
x _Et

þðxÞ ¼ Hf
�ðxÞEt

rþðxÞ
¼ pft

�ðxÞ � p
ft
þðxÞ;

p
ft
�ðxÞ ¼ 1

2pi

R1
�1

Pftðx0Þ
x0 � x�

dx0:

ð4:3Þ

The quantity pft
� is analytic on Xþ while p

ft
þ is analytic

on X� [1]. Note that (4.3) involves the use of the

Plemelj formulae, as given by (3.19) and (3.20). The

total dissipation is given by

Df ðtÞ ¼
1

2p

Z1

�1

p
ft
þðxÞ

���
���2 dx: ð4:4Þ

Defining

Kf ðtÞ ¼ �
1

2pi

Z1

�1

Hf
�ðxÞ
x

_Et
þðxÞdx

¼ lim
x!1
½�ixpft

�ðxÞ�; ð4:5Þ

we can write the associated rate of dissipation in the

form

Df ðtÞ ¼ Kf ðtÞ
�� ��2: ð4:6Þ

These formulae apply in particular to the case

where no exchange of zeros takes place, which is

denoted by f ¼ 1. In this case, the formulae in fact

apply to all materials, not just those characterized by

isolated singularities.

We can write wf ðtÞ in the form [1, 8–10]

wf ðtÞ ¼ /ðtÞ þ i

4p2

Z1

�1

Z1

�1

_Et
þðx1ÞHf

þðx1ÞHf
�ðx2Þ _Et

þðx2Þ
x1x2ðxþ1 � x�2 Þ

dx1dx2:

ð4:7Þ

The notation in the denominator [1, 10] indicates that

if, for example, the x1 integration is carried out first,

then xþ1 � x�2 becomes x1 � x�2 . Also, the total

dissipation (see (4.4)) can be shown, by similar

manipulations, to have the form

Df ðtÞ ¼ �
i

4p2

Z1

�1

Z1

�1

_Et
þðx1ÞHf

þðx1ÞHf
�ðx2Þ _Et

þðx2Þ
x1x2ðx�1 � xþ2 Þ

dx1dx2;

ð4:8Þ

while Df ðtÞ, given by (4.6), can be expressed as

Df ðtÞ ¼
1

4p2

Z1

�1

_Et
þðx1ÞHf

þðx1ÞHf
�ðx2Þ _Et

þðx2Þ
x1x2

dx1dx2:

ð4:9Þ

The factorization f ¼ 1, given by (3.8), yields the

minimum free energy wmðtÞ. Each exchange of zeros,

starting from these factors, yields a free energy which

is greater than or equal to the previous quantity. The

maximum free energy, denoted by wMðtÞ, is obtained

by interchanging all the zeros, which produces a

factorization labeled f ¼ N. The quantity wMðtÞ is

less than the work function [1, 10].

The most general free energy and rate of dissipation

arising from these factorizations is given by

wðtÞ ¼
XN

f¼1

kf wf ðtÞ; DðtÞ ¼
XN

f¼1

kf Df ðtÞ;

XN

f¼1

kf ¼ 1; kf � 0: ð4:10Þ

A particular case of this linear form is the physical free

energy, proposed in [9].

4.1 Discrete spectrum materials

Consider a material with relaxation function of the

form

eGðsÞ ¼X
n

i¼1

Gie
�ais; ð4:11Þ

where n is a positive integer. The inverse decay times

ai 2 IRþþ, i ¼ 1; 2; . . .; n and the coefficients Gi are

assumed to be positive. We arrange that
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a1\a2\a3. . .. These are discrete spectrum materials

which will be used in later discussions.

From (3.2)1;2, we have

eGþðxÞ ¼X
n

i¼1

Gi

ai þ ix
; eGcðxÞ ¼

Xn

i¼1

aiGi

a2
i þ x2

;

eGsðxÞ ¼ x
Xn

i¼1

Gi

a2
i þ x2

; ð4:12Þ

so that eGþðxÞ consists of a sum of simple pole terms

on the positive imaginary axis. From (2.3)1 and (4.11),

we have that

TðtÞ ¼ TeðtÞ þ
Xn

i¼1

Gi
_Et
þð�iaiÞ: ð4:13Þ

Relations (3.5) and (4.12)2 give

HðxÞ ¼ x2
Pn
i¼1

aiGi

a2
i þ x2 ¼ H1 �

Pn
i¼1

a3
i Gi

a2
i þ x2 � 0;

H1 ¼
Pn
i¼1

aiGi:

ð4:14Þ

This quantity can be expressed in the form [8]

HðxÞ ¼ H1
Yn

i¼1

c2
i þ x2

a2
i þ x2

� �
; ð4:15Þ

where the c2
i are the zeros of f ðzÞ ¼ HðxÞ, z ¼ �x2,

and obey the relations

c1 ¼ 0; a2
1\c2

2\a2
2\c2

3. . .: ð4:16Þ

Observe that

Gi ¼
2i

a2
i

lim
x!�iai

ðxþ iaiÞHðxÞ

¼ � 2i

a2
i

lim
x!iai

ðx� iaiÞHðxÞ: ð4:17Þ

To obtain the minimum free energy for discrete

spectrum materials, one chooses the factorization of

(4.15) given by

HþðxÞ ¼ h1
Qn
i¼1

x� ici
x� iai

n o
; h1 ¼ H1½ �1=2;

H�ðxÞ ¼ h1
Qn
i¼1

xþ ici
xþ iai

n o
¼ HþðxÞ: ð4:18Þ

Equations (4.18) can be written as [1, 2]

H�ðxÞ ¼ h1 1þ i
Pn
i¼1

Ui
xþ iai

� �
¼ �h1x

Pn
i¼1

Ui

aiðxþ iaiÞ ;

Ui ¼ ðci � aiÞ
Qn

j ¼ 1

j 6¼ i

cj � ai

aj � ai

n o
;

Pn
i¼1

Ui
ai
¼ �1:

ð4:19Þ

For discrete spectrum materials, the interchange of

zeros referred to after (4.1) means switching a given ci

to �ci in both HþðxÞ and H�ðxÞ. Let us introduce an

n-dimensional vector with components �f
i ; i ¼

1; 2; . . .; n where each �f
i can take values �1. We

define qf
i ¼ �

f
i ci, and write

H
f
þðxÞ¼ h1

Yn

i¼1

x� iqf
i

x� iai

( )
; Hf

�ðxÞ¼ h1
Yn

i¼1

xþ iqf
i

xþ iai

( )
:

ð4:20Þ

The case where all the zeros are interchanged [1, 6, 7,

9] is labeled f ¼N. The resulting factors are given

by

HN
þðxÞ¼ h1

Yn

i¼1

xþ ici

x� iai

� �
; HN

�ðxÞ¼ h1
Yn

i¼1

x� ici

xþ iai

� �
:

ð4:21Þ

5 The functional It

5.1 Minimal states

As noted after (2.2), a viscoelastic state is defined in

general by the history and current value of strain

ðEt;EðtÞÞ. The concept of a minimal state, defined in

[7] and based on the work of Noll [13] (see also for

example [1, 3–5, 12]), can be expressed as follows:

two viscoelastic states ðEt
1;E1ðtÞÞ, ðEt

2;E2ðtÞÞ are

equivalent or in the same equivalence class or minimal

state if

E1ðtÞ¼E2ðtÞ;
Z1

0

G0ðsþ sÞ Et
1ðsÞ�Et

2ðsÞ
� �

ds

¼ Itðs;Et
1Þ� Itðs;Et

2Þ¼ 0 8s�0;

Itðs;EtÞ¼
Z1

0

G0ðsþ sÞEt
rðsÞds¼

Z1

0

eGðsþ sÞ _EtðsÞds

¼ ItðsÞ: ð5:1Þ
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The abbreviated notation ItðsÞwill be used henceforth.

Note the property

lim
s!1

ItðsÞ ¼ 0: ð5:2Þ

It follows from (2.3)1 and (5.1) that

Itð0Þ ¼ TðtÞ � TeðtÞ: ð5:3Þ

A functional of ðEt;EðtÞÞ which yields the same value

for all members of the same minimal state is referred

to as a FMS or functional of the minimal state, or a

minimal state variable. The quantity ItðsÞ is a FMS, in

fact, the defining example of a FMS.

Remark 5.1 A distinction between materials [1] is

that for certain relaxation functions, namely those

with only isolated singularities (in the frequency

domain), the minimal states are non-singleton,

while if some branch cuts are present in the

relaxation function, the material has only singleton

minimal states. For relaxation functions with only

isolated singularities, there is a maximum free

energy that is less than the work function WðtÞ and

also a range of related intermediate free energies, as

noted in Sect. 4.

On the other hand, if branch cuts are present, the

maximum free energy is WðtÞ and there are no

intermediate free energies of type wf ðtÞ.

Remark 5.2 There will be some later contexts where

we confine the discussion to materials with only

isolated singularities, for reasons connected with the

properties noted in Remark 5.1. Treating the general

case of such materials is algebraically complicated [1,

9], because any given singularity or zero may be of

higher order. We simplify the treatment, while main-

taining the essential content, by separating higher order

poles or zeros into simple poles or zeros. A further

simplification will be made, which also retains most

essential properties,1 by taking all the singularities and

zeros on the imaginary axis. This means, in effect, that

the material is a discrete spectrum material, as defined

in Sect. 4.1.

Thus, we will use discrete spectrum materials as

simple but realistic proxies for more general materials

with only isolated singularities.

The quantities pft
�ðxÞ, defined by (4.3), are FMSs; in

particular, pt
�ðxÞ corresponding to the minimum free

energy for general materials ([1], p 253). The func-

tionals p
ft
þðxÞ do not have this property, by virtue of

(4.3)2.

Let us characterize minimal states for discrete

spectrum materials in the following simple manner.

Consider two states ðEt
1;E1ðtÞÞ and ðEt

2;E2ðtÞÞ obey-

ing conditions (5.1), so that they are equivalent. We

define the difference between these states as

ðEt
d;EdðtÞÞ where

Et
dðsÞ ¼ Et

1ðsÞ � Et
2ðsÞ 8s 2 Rþ;

EdðtÞ ¼ E1ðtÞ � E2ðtÞ:
ð5:4Þ

The conditions (5.1) holds for all s� 0 if and only if

EdðtÞ ¼ 0;

Z1

0

e�aisEt
dðsÞds ¼ Et

dþð�iaiÞ ¼ 0;

i ¼ 1; 2; . . .; n:

Remark 5.3 Therefore, for a given discrete spectrum

material, the property that two histories are equivalent,

or in the same minimal state, is determined by (5.5)1

and by the values of those histories in the frequency

domain, at x ¼ �iai, i ¼ 1; 2; . . .; n. This is a special

case of the general requirement given in [1], p 359.

Thus, if a quantity depends on the strain history only

through the values Et
þð�iaiÞ or Et

rþð�iaiÞ or (see

(3.12)) _Et
þð�iaiÞ, for i ¼ 1; 2; . . .; n, this quantity is a

FMS.

For discrete spectrum materials,

ItðsÞ ¼
Xn

i¼1

Gi
_Et
þð�iaiÞe�ais; ð5:6Þ

which is an example of the property described in

Remark 5.3. The property that pft
�ðxÞ is a FMS can be

perceived for discrete spectrum materials by complet-

ing the contour in (4.3)4 on Xð�Þ.
We now present a more general characterization of

minimal states, which leads to results consistent with

(5.5). The condition that minimal states are non-

singleton is that the integral equation

1 There is a noteworthy difference between the general case

where singularities may be off the imaginary axis and discrete

spectrum materials, namely that in the latter case, the relaxation

function decays monotonically, while in the former case, the

possibility exists of oscillatory decay.
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Z1

0

G0ðsþ sÞEt
dðsÞds ¼ 0; s 2 IRþ; ð5:7Þ

for Et
dðsÞ ¼ Et

1ðsÞ � Et
2ðsÞ in (5.1), has non-zero

solutions. The other requirement (5.1)1 will be

enforced below by (5.17). Putting Et
dðsÞ ¼ 0, s 2 IR�

and s ¼ �u, we can write (5.7) as ([1], p 341)

Z1

�1

o

ou
Gð u� sj jÞEt

dðsÞds ¼ 0; u 2 IR�: ð5:8Þ

This is a Wiener–Hopf equation, which can be solved

by a standard technique. We put

Z1

�1

o

ou
Gð u� sj jÞEt

dðsÞds ¼
JðuÞ; u 2 IRþþ

0; u 2 IR�

�
;

ð5:9Þ

where JðuÞ is a quantity to be determined. Taking the

Fourier transform of both sides, we obtain, with the aid

of the convolution theorem and (3.7),

2i

x
HðxÞEt

dþðxÞ ¼ JþðxÞ: ð5:10Þ

Using (4.1) and (4.3), we can write (5.10) in the form

2i

x
H

f
þðxÞ p

ft
d�ðxÞ � p

ft
dþðxÞ

h in o
¼ JþðxÞ; ð5:11Þ

where the subscript d implies that Et
dþ is used in (4.3).

The value of the superscript f will be assigned below.

Because pft
�ðxÞ is a FMS, we have

p
ft
d�ðxÞ ¼ 0: ð5:12Þ

It then follows from (5.11) that

p
ft
dþðxÞ ¼ �

x
2i

JþðxÞ
H

f
þðxÞ

: ð5:13Þ

Using (5.13) in (5.10), we obtain

HðxÞEt
dþðxÞ ¼ �H

f
þðxÞpft

dþðxÞ; ð5:14Þ

or

Et
dþðxÞ ¼ �

p
ft
dþðxÞ

Hf
�ðxÞ

: ð5:15Þ

This quantity must be analytic on X�, so that all the

zeros of H�ðxÞ must have been interchanged. This is

the case where f ¼ N and the resulting factors are

those given by (4.21), which yield the maximum free

energy wMðtÞ, introduced after (4.9).

Thus, if we can find a quantity Et
dþðxÞ which

satisfies (5.12), it satisfies (5.14) and (5.15) by virtue

of (4.3)3, applied to this history difference. Rela-

tion (5.14) is equivalent to (5.10), with JþðxÞ
determined by (5.13). Therefore, a solution to (5.9)

or (5.8) is provided by any choice of Et
dðsÞ where the

corresponding Et
dþðxÞ satisfies (5.12). Now, from

(4.3)4,

pNt
d�ðxÞ ¼

1

2pi

Z1

�1

HN
�ðx0ÞEt

dþðx0Þ
x0 � xþ

dx0 ¼ 0: ð5:16Þ

If there are non-isolated singularities in the mate-

rial, we know (remark 5.1) that the only solution is

the trivial one, Et
dþðxÞ ¼ 0. Thus, we can focus on

the case of a material with only isolated singulari-

ties. The simplifying assumptions of Remark 5.2 will

be adopted so that we are dealing with dis-

crete spectrum materials. Then, H
f
�ðxÞ are given by

(4.20).

The simplifying assumption will now be made that

Et
dþðxÞ is a rational function. More generally, it could

also have branch cuts in XðþÞ.
At large x, we must have

Et
dþðxÞ	

1

x2
; ð5:17Þ

by virtue of (3.14) and (5.1)1. If the zeros of Et
dþðxÞ

cancel the poles in HN
�ðxÞ, given by (4.21), then, by

taking the contour around Xð�Þ, we see that (5.16) is

obeyed. Thus, non-trivial solutions to (5.8) or (5.10)

are given by

Et
dþðxÞ ¼

E0ðtÞ
x� iv0

Yn

j¼1

xþ iaj

x� ivj

( )
1

x� ivnþ1

;

ð5:18Þ

where the constants vi, i ¼ 0; 1; . . .; nþ 1 indicate

the positions of singularities on the imaginary

axis in XðþÞ. These are arbitrary positive quantities.

The factor E0ðtÞ, which determines the time depen-

dence of Et
dþðxÞ, is also arbitrary. Note that
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(5.18) obeys the constraints (5.5). We can write it in

the form

Et
dþðxÞ ¼ �iE0ðtÞ

Xnþ1

i¼0

Ai

x� ivi

;

Ai ¼
vi þ ai

vi � v0

Yn

j ¼ 1

j 6¼ i

vi þ aj

vi � vj

( )
1

vi � vnþ1

;

i ¼ 1; 2; . . .; n;

A0 ¼
Yn

j¼1

v0 þ aj

v0 � vj

( )
1

v0 � vnþ1

;

Anþ1 ¼
1

vnþ1 � v0

Yn

j¼1

vnþ1 þ aj

vnþ1 � vj

( )
; ð5:19Þ

where, to satisfy (5.17), we must have

Xnþ1

i¼0

Ai ¼ 0: ð5:20Þ

Taking the inverse transform of (5.19)1, we obtain

that

Et
dðsÞ ¼ E0ðtÞ

Xnþ1

i¼0

Aie
�vis

¼ Et
dðvj; j ¼ 0; 1; . . .; nþ 1; sÞ:

ð5:21Þ

A given history Et
1ðsÞ belongs to the minimal state

with members

Etðvj; j ¼ 0; 1; . . .; nþ 1; sÞ ¼ Et
1ðsÞ

þ Et
dðvj; j ¼ 0; 1; . . .; nþ 1; sÞ;

ð5:22Þ

where the parameters vj may take any positive value.

If (5.7) is true for eG given by (4.11), we must have

Xnþ1

j¼0

Aj

vj þ ai

¼ 0; i ¼ 1; 2. . .; n; ð5:23Þ

which is simply a statement that Et
dþðxÞ, given by

(5.19)1, vanishes at x equal to each �iai.

If E0ðtÞ in (5.18) were replaced by E0ðx; tÞ, where

limx!1 E0ðx; tÞ is a non-zero finite constant, and the

singularities of this quantity consists of branch cuts in

XðþÞ, then the resulting Et
dþðxÞ would be equally

satisfactory, except that the simple relation (5.21)

would not hold.

5.2 Free energies that are FMSs, as quadratic

forms of histories for discrete spectrum

materials

We now briefly describe a general form of free

energies that are FMSs for discrete spectrum materials

([1] and references therein). Let us define a vector e in

IRn with components

eiðtÞ ¼ EðtÞ � aiE
t
þð�iaiÞ ¼ d

dt
Et
þð�iaiÞ

¼ _Et
þð�iaiÞ ¼ �aiE

t
rþð�iaiÞ; i ¼ 1; 2; . . .; n;

ð5:24Þ

where (3.12) has been used2. As we see from (5.5), the

quantities Et
þð�iaiÞ are real. Consider the function

wðtÞ ¼ /ðtÞ þ 1

2
e>Ce ¼ /ðtÞ þ 1

2
e � Ce; ð5:25Þ

where /ðtÞ is the equilibrium free energy and C is a

symmetric, positive definite matrix with components

Cij, i; j ¼ 1; 2; . . .; n. It is clear that wðtÞ has property

P2 of a free energy, given by (2.7). For a stationary

history EtðsÞ ¼ EðtÞ; s 2 IRþ, we have, from (3.10),

that Et
þð�iaiÞ ¼ EðtÞ=ai, so that eiðtÞ ¼ 0; i ¼ 1;

2; . . .; n. Relations (2.6) and (4.13) yield the condition

Xn

j¼1

Cij ¼ Gi; i ¼ 1; 2; . . .; n: ð5:26Þ

From (3.13)1 or (5.24), we have

_eiðtÞ ¼ _EðtÞ � aieiðtÞ; i ¼ 1; 2; . . .; n; ð5:27Þ

so that, using (5.26), we obtain

_wðtÞ þ DðtÞ ¼ TðtÞ _EðtÞ;
DðtÞ ¼ 1

2
e>Ce; Cij ¼ ðai þ ajÞCij;

ð5:28Þ

where Cij are the elements of the matrix C. Condition

P3 (see (2.9)) requires that C must be at least positive

semidefinite.

5.3 Properties of It in the frequency domain

Let us revert now to discussing general materials but

returning periodically to the discrete spectrum case as

an illustrative example. Some results presented here

2 Note that analytic continuation into X� is straightforward

since Et
þ is analytic in this half-plane.
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are the same as or equivalent to certain formulae given

previously in [1, 6]. Let

It
kðsÞ ¼

dk

dsk
ItðsÞ; k ¼ 1; 2; . . .; ð5:29Þ

so that

It
1ðsÞ ¼

Z1

0

G0ðsþ uÞ _EtðuÞdu;

It
2ðsÞ ¼

Z1

0

G00ðsþ uÞ _EtðuÞdu: ð5:30Þ

Also,

o

ot
It
1ðsÞ ¼ G0ðsÞ _EðtÞ þ It

2ðsÞ;

o

ot
It
2ðsÞ ¼ G00ðsÞ _EðtÞ þ It

3ðsÞ: ð5:31Þ

Just as in (5.2), we have

lim
s!1

It
kðsÞ ¼ 0; k ¼ 1; 2; 3; . . .: ð5:32Þ

The quantity ItðsÞ, s 2 IR, will be required. This can be

defined in a number of ways. We choose the following

formula. Let

ItðsÞ ¼
Z1

0

eGð sþ uj jÞ _EtðuÞdu; s 2 IR: ð5:33Þ

Then

It
2ðsÞ ¼

R1
0

o2

os2 Gð sþ uj jÞ _EtðuÞdu;

o
ot

It
2ðsÞ ¼ o2

os2 Gð sj jÞ _EðtÞ þ It
3ðsÞ; s 2 IR:

ð5:34Þ

Note that

lim
sj j!1

It
kðsÞ ¼ 0; k ¼ 1; 2; 3; . . .: ð5:35Þ

We now seek to express It in terms of frequency

domain quantities. Let us put

eGðuÞ ¼ 0; _EtðuÞ ¼ 0; u 2 IR��: ð5:36Þ

Then

Z1

�1

eGðuþ sÞe�ixudu ¼
Z1

0

eGðvÞe�ixvdv eixs

¼ eGþðxÞ eixs: ð5:37Þ

Parseval’s formula, applied to (5.1)5, gives

ItðsÞ ¼ 1

2p

Z1

�1

eGþðxÞ _Et
þðxÞe�ixsdx; s� 0:

ð5:38Þ

We have

ItðsÞ ¼ 1

2p

Z1

�1

½eGþðxÞ þ keGþðxÞ� _Et
þðxÞe�ixsdx;

ð5:39Þ

for arbitrary complex values of k, since the added term

gives zero. This can be seen by integrating over a

contour around Xð�Þ, noting that the exponential goes

to zero as Imx! �1 and using (3.15). Let us choose

k ¼ 1. Then, recalling (3.5)1, we find that

ItðsÞ ¼ 1

p

Z1

�1

HðxÞ
x2

_Et
þðxÞe�ixsdx

¼ 1

p

Z1

�1

HðxÞ
x2

_Et
þðxÞeixsdx; ð5:40Þ

for s� 0, where the reality of It has been used. This

relation generalizes (3.17). It follows that

It
þðxÞ ¼

Z1

0

ItðsÞe�ixsds

¼ � 1

pi

Z1

�1

Hðx0Þ _Et
þðx0Þ

ðx0Þ2ðx0 � x�Þ
dx0: ð5:41Þ

We must choose x� so that the integration over the

exponential converges. From (5.1)3, it follows that

It
þðxÞ is a FMS. Similarly, the derivatives of ItðsÞ,

given by (5.29), for s 2 IRþ are also FMSs, in

particular It
1þðxÞ and It

2þðxÞ.
For the discrete spectrum case, it follows from (5.6)

that

It
þðxÞ ¼ �i

Xn

i¼1

Gi
_Et
þð�iaiÞ

x� iai

: ð5:42Þ

By virtue of remark 5.3, equation (5.42) implies that

It
þðxÞ is a FMS, which confirms for such materials the

general property stated after (5.41).
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Similarly, let It be defined by (5.39) for s\0. In this

case, we cannot close the contour in Xð�Þ because the

exponential diverges on this half-plane. It follows that

ItðsÞ depends on k for s\0. Let us take k ¼ 1 so that it

is given by (5.40) for s\0. This is equivalent to the

choice given by (5.33), as may be seen by transforming

the integration variable in (5.33) from u to�u and using

(3.7) together with the convolution theorem. Also,

It
�ðxÞ ¼

Z0

�1

ItðsÞe�ixsds

¼ 1

ip

Z1

�1

Hðx0Þ _Et
þðx0Þ

ðx0Þ2ðx0 � xþÞ
dx0; ð5:43Þ

and

It
FðxÞ ¼ It

�ðxÞ þ It
þðxÞ

¼
Z1

�1

ItðsÞe�ixsds ¼ 2HðxÞ
x2

_Et
þðxÞ; ð5:44Þ

by virtue of the Plemelj formulae (3.19) and (3.20). It

follows from (5.44) that It
� is not a FMS. Also, one can

deduce from (3.13)1 and (5.44) that

_It
FðxÞ ¼ ixIt

FðxÞ þ 2
HðxÞ
x2

_EðtÞ: ð5:45Þ

We see, using (3.6) and (3.15), that

It
FðxÞ	x�3; ð5:46Þ

at large x.

Note that (5.44) allows us to write (3.17) in the form

TðtÞ ¼ TeðtÞ þ
1

2p

Z1

�1

It
FðxÞdx

¼ TeðtÞ þ
1

2p

Z1

�1

It
FðxÞdx: ð5:47Þ

For the discrete spectrum case, we have from (4.14)1,

(5.42) and (5.44) that

It
�ðxÞ¼ It

FðxÞ� It
þðxÞ

¼ i
Xn

i¼1

Gi½ _Et
þð�iaiÞ� _Et

þðxÞ�
x� iai

þ i
Xn

i¼1

Gi
_Et
þðxÞ

xþ iai

;

ð5:48Þ

which is analytic on XðþÞ. Returning to general

materials, we see from (5.40)2 that

It
1ðsÞ ¼ �

1

ip

Z1

�1

HðxÞ
x

_Et
þðxÞeixsdx;

It
2ðsÞ ¼ �

1

p

Z1

�1

HðxÞ _Et
þðxÞeixsdx; s� 0:

ð5:49Þ

Thus

It
1�ðxÞ ¼ �

1

p

Z1

�1

Hðx0Þ _Et
þðx0Þ

x0ðx0 � x�Þ dx0;

It
2�ðxÞ ¼ �

1

pi

Z1

�1

Hðx0Þ _Et
þðx0Þ

x0 � x�
dx0;

It
1FðxÞ ¼ ixIt

FðxÞ; It
2FðxÞ ¼ �x2It

FðxÞ:

ð5:50Þ

We have

It
2FðxÞ ¼ �2HðxÞ _Et

þðxÞ ¼ It
2þðxÞ þ It

2�ðxÞ;
ð5:51Þ

by virtue of (5.44) and the Plemelj formulae (3.19) and

(3.20). The quantities It
þ, It

1þ and It
2þ are analytic in X�

while It
�, It

1� and It
2� are analytic in Xþ. For the

complex conjugate of these quantities, the opposite is

true.

In the case of discrete spectrum materials, we have,

from (5.6),

It
1ðsÞ ¼ �

Xn

i¼1

aiGi
_Et
þð�iaiÞe�ais

It
2ðsÞ ¼

Xn

i¼1

a2
i Gi

_Et
þð�iaiÞe�ais; ð5:52Þ

and

It
1þðxÞ ¼ i

Xn

i¼1

aiGi

x� iai

_Etð�iaiÞ;

It
2þðxÞ ¼ �i

Xn

i¼1

a2
i Gi

x� iai

_Etð�iaiÞ: ð5:53Þ
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The corresponding quantities It
1�ðxÞ and It

2�ðxÞ can

be given in the same way as (5.48).

5.4 Frequency domain representation of the work

function

The frequency domain version of (2.22) is [1, 10]

WðtÞ ¼ /ðtÞ þ 1
2p

R1
�1

HðxÞ
x2

_Et
þðxÞ

�� ��2dx

¼ /ðtÞ þ 1
8p

R1
�1

x2

HðxÞ It
FðxÞ
�� ��2dx

¼ /ðtÞ þ 1
8p

R1
�1

It
2FðxÞ
�� ��2
x2HðxÞ dx;

ð5:54Þ

by virtue of (5.44) and (5.50)4.

6 Single integral quadratic forms in terms of It

derivatives

Consider the functional

wðtÞ ¼ /ðtÞ þ 1

2

Z1

0

LðsÞ½It
1ðsÞ�

2
ds; ð6:1Þ

in terms of I1ðsÞ, defined by (5.30)1. This quantity is

assumed to be a free energy. We now explore the

constraints on LðsÞ imposed by this requirement.

The relation (2.9) must hold. Using (2.13), (5.31)1

and (5.32), we deduce that

_wðtÞ¼ _EðtÞ TeðtÞþ
Z1

0

G0ðsÞLðsÞIt
1ðsÞds

2
4

3
5

þ
Z1

0

It
2ðsÞLðsÞIt

1ðsÞds¼ TðtÞ _EðtÞ

�1

2
Lð0Þ½It

1ð0Þ�
2�1

2

Z1

0

L0ðsÞ½It
1ðsÞ�

2
ds; ð6:2Þ

provided that the condition

Z1

0

G0ðsÞLðsÞIt
1ðsÞds ¼ TðtÞ � TeðtÞ ð6:3Þ

holds. With the help of (2.3), (5.3) and (5.30)1, this can

be written as

Z1

0

½G0ðsÞLðsÞ þ 1�It
1ðsÞds

¼
Z1

0

Z1

0

½G0ðsÞLðsÞ þ 1�G0ðsþ uÞ _EtðuÞdsdu ¼ 0;

ð6:4Þ

which must be true for arbitrary histories. Let us write

the resulting condition as an integral equation of the

form

Z1

0

G0ðsþ uÞf ðsÞds ¼ 0 8u 2 IRþ;

f ðsÞ ¼ G0ðsÞLðsÞ þ 1: ð6:5Þ

An alternative pathway to (6.5) is to express (6.1) in

the form (2.14) with

eGðs; uÞ ¼
Z1

0

G0ðsþ sÞLðsÞG0ðsþ uÞds; ð6:6Þ

and to impose the constraint (2.16), written in terms of

eGðuÞ. Condition (6.5) has the same form as (5.7),

leading to

2i

x
HðxÞfþðxÞ ¼ JþðxÞ; ð6:7Þ

where JþðxÞ is an unknown function, analytic in Xð�Þ.
This corresponds to (5.10).

If the material has only isolated singularities, taken

here to be the discrete spectrum type, in accordance

with remark 5.2, we see that there are many non-trivial

solutions of (6.5) given by a form similar to (5.18).

However, in this case, there is no reason for f ð0Þ to be

zero, so that, at large x,

fþðxÞ	
f ð0Þ
ix

: ð6:8Þ

which differs from (5.17). Thus, we put

fþðxÞ ¼ �
if0

x� iv0

Yn

j¼1

xþ iaj

x� ivj

( )
; f0 ¼ f ð0Þ;

ð6:9Þ

where the constants vi, i ¼ 0; 1; . . .; n are arbi-

trary positive quantities. Also, f0 may be chosen

arbitrarily.
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Remark 6.1 The observations before (5.17) and at

the end of subsection 5.1 on more general choices of

EdþðxÞ do not apply to fþðxÞ. This is because for f ðsÞ,
given by (6.5)2, a material with only isolated singu-

larities cannot have branch cuts in the Fourier

transform of the quantities G0ðsÞ and LðsÞ. Thus,

(6.9) is the most general form of fþðxÞ for discrete

spectrum materials.

Note that if we choose vi ¼ ci, i ¼ 1; 2; . . .; n then

fþðxÞ ¼ �
if0h1

ðx� iv0ÞHN
�ðxÞ

; ð6:10Þ

where HN
�ðxÞ is given by (4.21) and v0 is an arbitrary

non-negative quantity.

The quantity f ðsÞ is the inverse transform of fþðxÞ.
It follows from (6.5)2 that

LðsÞ ¼ � 1

G0ðsÞ þ
f ðsÞ

G0ðsÞ ; s 2 IRþ: ð6:11Þ

We deduce from (2.9) and (6.2) that the rate of

dissipation is given by

DðtÞ ¼ 1

2
Lð0Þ½It

1ð0Þ�
2 þ 1

2

Z1

0

L0ðsÞ½It
1ðsÞ�

2
ds:

ð6:12Þ

In order that wðtÞ � /ðtÞ and DðtÞ be non-negative, we

must have

LðsÞ� 0; L0ðsÞ� 0; 8s 2 IRþ: ð6:13Þ

Note that, from (4.11), the relaxation function of the

material obeys the constraints

G0ðsÞ� 0; G00ðsÞ� 0; 8s 2 IRþ: ð6:14Þ

The quantity LðsÞ, given by (6.11), obeys (6.13) if

f ðsÞ� 1;
f 0ðsÞ

f ðsÞ � 1
� G00ðsÞ

G0ðsÞ ; 8s 2 IRþ: ð6:15Þ

If the free energies of the form (6.1) are to exist, based

on (6.5)2 with f ðsÞ non-zero, we must show that the set

of functions f ð�Þ, obeying the conditions (6.15), is not

empty. We can write (6.9) in the form

fþðxÞ ¼ �if0

Pn
i¼0

Bi
x� ivi

;

Bi ¼ vi þ ai
vi � v0

Qn
j ¼ 1

j 6¼ i

vi þ aj
vi � vj

� �
; i ¼ 1; 2; . . .; n;

B0 ¼
Qn
j¼1

v0 þ aj
v0 � vj

� �
;
Pn
i¼0

Bi ¼ 1;

ð6:16Þ

where the last relation follows from (6.8). Taking the

inverse Fourier transform of (6.16)1, we obtain that

f ðsÞ ¼ f0

Xn

i¼0

Bie
�vis; s 2 IRþ: ð6:17Þ

It may be confirmed from (6.16) that a relation similar

to (5.23) holds. The coefficients Bi alternate in sign, so

that f ðsÞ and f 0ðsÞmay take both positive and negative

values. However, by taking f0j j to be sufficiently small,

we can ensure that (6.15)1 holds, as may be seen by the

following argument. Let

f ðsÞ ¼ f0½T1ðsÞ � T2ðsÞ�;
T1ðsÞ ¼

P
Bi [ 0 Bie

�vis; T2ðsÞ ¼ �
P

Bi\0 Bie
�vis:

ð6:18Þ

Both T1ðsÞ and T2ðsÞ are positive quantities, decaying

monotonically to zero at large s. Let f0 [ 0 (f0\0).

Then, if we choose

f0�
1

T1ð0Þ
f0j j �

1

T2ð0Þ

	 

; ð6:19Þ

condition (6.15)1 holds. We choose f0 so that f ðsÞ\1,

s 2 IRþ by choosing the inequalities in (6.19) to be

strict. It follows that

M1 ¼ min
s2IRþ

f0½T1ðsÞ � T2ðsÞ� � 1j j[ 0: ð6:20Þ

Now, from (4.11), we have

�G00ðsÞ
G0ðsÞ 2 ½a; b� 8s 2 IRþ; ð6:21Þ

where a, b are positive quantities, obeying a\b. Let

f0 [ 0. We put

f 0ðsÞ ¼ f0½�T3ðsÞ þ T4ðsÞ�;
T3ðsÞ ¼

P
Bi [ 0 Bivie

�vis� 0; T4ðsÞ ¼ �
P

Bi\0 Bivie
�vis� 0:

ð6:22Þ
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Then (6.15)2 is satisfied if

f0½T3ðsÞ � T4ðsÞ�
f0½T1ðsÞ � T2ðsÞ� � 1j j [ � a; ð6:23Þ

or

f0½T3ðsÞ � T4ðsÞ�[ � a f0½T1ðsÞ � T2ðsÞ� � 1j j:
ð6:24Þ

This will be true if

f0½T3ðsÞ � T4ðsÞ�[ � aM1: ð6:25Þ

where M1 is defined by (6.20). Let

M2 ¼ min
s2IRþ
½T3ðsÞ � T4ðsÞ�: ð6:26Þ

If M2� 0, then (6.24) holds. If M2\0, we choose

f0\a
M1

M2j j ; ð6:27Þ

to ensure that (6.15)2 holds. If f0\0, we define

M2 ¼ min
s2IRþ
½T4ðsÞ � T3ðsÞ�: ð6:28Þ

and (6.27) is replaced by

f0j j\a
M1

M2j j : ð6:29Þ

For materials where n ¼ 1, all free energies which are

FMSs reduce to the same form [2]. It can be shown

easily that for LðsÞ given by (6.31) below, the

functional defined in (6.1) has this form, so that the

extra quadratic form involving f ðsÞ cannot contribute.

We see that (6.17) is given by

f ðsÞ ¼ f0 B0e�v0s þ B1e�v1s½ �;
B0 ¼ � v0 þ a

v1 � v0
; B1 ¼ v1 þ a

v1 � v0
;

B0 ¼ 1� B1; B1 [ 1;

ð6:30Þ

for n ¼ 1. Using (5.52)1, it is straightforward to show

that the resulting contribution to (6.1) indeed vanishes.

If the material has branch cut singularities, then

f ðsÞ ¼ 0, s 2 IRþ is the only solution of (6.5), so that

LðsÞ ¼ � 1

G0ðsÞ ; s 2 IRþ; ð6:31Þ

and the only possibility for a free energy given by a

single integral quadratic form is the quantity wF ,

introduced in [6]. This functional and the associated

rate of dissipation have the forms

wFðtÞ ¼ /ðtÞ � 1

2

Z1

0

½It
1ðsÞ�

2

G0ðsÞ ds; ð6:32Þ

and

DFðtÞ ¼ �
1

2

½It
1ð0Þ�

2

G0ð0Þ �
1

2

Z1

0

d

ds
1

G0ðsÞ

� �
½It

1ðsÞ�
2
ds

¼ � 1

2

½It
1ð0Þ�

2

G0ð0Þ þ
1

2

Z1

0

G00ðsÞ It
1ðsÞ

G0ðsÞ

� �2

ds:

ð6:33Þ

These quantities are non-negative and wFðtÞ is a valid

free energy if conditions (6.14) hold, not only for

materials with branch point singularities, but for all

materials. It is a relatively simple functional, conve-

nient for applications.

For materials with only isolated singularities, a more

general choice of LðsÞ, given by (6.11), also produces

valid free energy functionals, provided that the

inequalities (6.15) are enforced. This can be done by

ensuring that f0 obeys (6.19) and (6.27) or (6.29), for

any given choices of the quantities vi, i ¼ 0; 1; . . .; n.

The necessity to enforce such conditions renders these

choices less convenient for practical applications.

7 Double integral quadratic forms in terms of It

derivatives: time domain representations

We now discuss double integral quadratic forms for

free energies and rates of dissipation. The time domain

formulation is explored in this section, while the

corresponding frequency domain relations are pre-

sented in the next.

Consider the form

wðtÞ ¼ /ðtÞ þ 1

2

Z1

0

Z1

0

It
2ðsÞLðs; uÞIt

2ðuÞdsdu; ð7:1Þ

There is no loss of generality in putting

Lðs; uÞ ¼ Lðu; sÞ: ð7:2Þ

The assumptions

Lð�; �Þ 2 L1ðIRþ 
 IRþÞ \ L2ðIRþ 
 IRþÞ;

lim
s!1

Lðs; uÞ ¼ lim
s!1

Lðu; sÞ ¼ 0
ð7:3Þ
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will be adopted. It is understood that Lðs; uÞ vanishes

for negative values of s and u. We have from (2.13)

and (5.31)2 that

_wðtÞ ¼ _EðtÞ TeðtÞ þ
1

2

Z1

0

Z1

0

G00ðsÞLðs; uÞIt
2ðuÞdsdu

2
4

þ 1

2

Z1

0

Z1

0

It
2ðsÞLðs; uÞG00ðuÞdsdu

3
5

þ 1

2

Z1

0

Z1

0

It
3ðsÞLðs; uÞIt

2ðuÞdsdu

þ 1

2

Z1

0

Z1

0

It
2ðsÞLðs; uÞIt

3ðuÞdsdu:

ð7:4Þ

It is assumed that

Lð0; uÞ ¼ Lðs; 0Þ ¼ 0: ð7:5Þ

This property greatly simplifies the next step of the

argument, making possible an analogy with the history

based formalism presented in [10].

The two integrals in brackets in (7.4) can be shown

to be equal by interchanging integration variables.

Applying partial integrations and using (5.32), we

obtain

_wðtÞ ¼ _EðtÞ TeðtÞ þ
Z1

0

Z1

0

G00ðsÞLðs; uÞIt
2ðuÞdsdu

2
4

3
5

� 1

2

Z1

0

Z1

0

It
2ðsÞ½L1ðs; uÞ þ L2ðs; uÞ�It

2ðuÞdsdu:

ð7:6Þ

It is assumed in general that

Z1

0

Z1

0

G00ðsÞLðs; uÞIt
2ðuÞdsdu ¼

Z1

0

eGðsÞ _EtðsÞds;

ð7:7Þ

for arbitrary choices of histories. Using (5.30)2, this

leads to the condition

Z1

0

Z1

0

G00ðsÞLðs; uÞG00ðuþ vÞdsdu ¼ eGðvÞ: ð7:8Þ

This can also be derived in an alternative manner. We

observe from (2.14), (5.30)2 and (7.1) that

eGðs;uÞ¼
Z1

0

Z1

0

G00ðsþ s1ÞLðs1;u1ÞG00ðu1þuÞds1du1:

ð7:9Þ

This relation corresponds to (6.6). Applying (2.16)

gives (7.8). Let

mðuÞ ¼
Z1

0

G00ðsÞLðs; uÞds; ð7:10Þ

noting that mð0Þ ¼ 0, by virtue of (7.5). Then, with the

aid of a partial integration, (7.8) can be expressed as

Z1

0

G0ðsþ uÞf ðuÞdu ¼ 0; 8s 2 IRþ;

f ðuÞ ¼ 1� m0ðuÞ ¼ 1�
Z1

0

G00ðsÞL2ðs; uÞds

¼ 1þ
Z1

0

G0ðsÞL12ðs; uÞds;

ð7:11Þ

which corresponds to (6.5). Note that Remark 6.1 also

applies here. Referring to (2.3)1 and (2.9), equation

(7.6) can be written as

_wðtÞ þ DðtÞ ¼ TðtÞ _EðtÞ;

DðtÞ ¼ 1

2

Z1

0

Z1

0

It
2ðsÞRðs; uÞIt

2ðuÞdsdu;

Rðs; uÞ ¼ L1ðs; uÞ þ L2ðs; uÞ ¼ Rðu; sÞ:

ð7:12Þ

The kernels Lðs; uÞ and Rðs; uÞ must be such as to

render the integral terms in (7.1) and (7.12)2 non-

negative.

The work function cannot be expressed in terms of

It
2ðsÞ, s� 0, but can be given in terms of this quantity

for s 2 IR. This follows from the frequency represen-

tation (5.54). We write

WðtÞ ¼ /ðtÞ þ 1

2

Z1

�1

It
2ðsÞJð s� uj jÞIt

2ðuÞdsdu;

ð7:13Þ

where the kernel Jð uj jÞ is related to the inverse

transform of the kernel in (5.54)3. Convergence issues

in this context must be handled carefully.
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It follows from (2.10) that the total dissipation must

also depend on It
2ðsÞ, s 2 IR. We write

DðtÞ ¼ 1

2

Z1

�1

Z1

�1

It
2ðsÞVðs; uÞIt

2ðuÞdsdu;

Vðs; uÞ ¼ Vðu; sÞ; ð7:14Þ

where, to satisfy (2.10), we must have

Vðs; uÞ ¼
Jð s� uj jÞ; s\0 or u\0;

�Lðs; uÞ þ Jð s� uj jÞ; s [ 0 and u [ 0:

�

ð7:15Þ

Note that Vðs; uÞ is continuous at s ¼ 0 and u ¼ 0.

Also,

V1ðs;uÞþV2ðs;uÞ¼�L1ðs;uÞ�L2ðs;uÞ¼�Rðs;uÞ:
ð7:16Þ

Differentiating (7.14) with respect to time and using

(5.34)2, we obtain

_DðtÞ ¼ DðtÞ; ð7:17Þ

where DðtÞ is given by (7.12), provided that

Z1

�1

Z1

�1

o2

os2
Gð sj jÞVðs; uÞIt

2ðuÞdsdu ¼ 0: ð7:18Þ

This condition must hold for arbitrary histories, which

yields

Z1

�1

Z1

�1

o2

os2
Gð sj jÞVðs; uÞ o2

ou2
Gð uþ vj jÞdsdu ¼ 0:

v 2 IRþ: ð7:19Þ

We see that Qðs; uÞ in (2.21) is given by

Qðs; uÞ ¼
Z1

�1

Z1

�1

o2

os2
Gð sþ s1j jÞVðs1; u1Þ

o2

ou2
Gð u1 þ uj jÞds1du1; ð7:20Þ

so that (7.19) is equivalent to (2.26).

Relationships (7.13)–(7.20) are incomplete without

specifying the forms of the kernels more precisely.

This is difficult in the time domain. The natural

framework for a deeper treatment of such issues is the

frequency domain, as is clear from (5.54), and will be

further demonstrated in Sect. 8.

7.1 Free energy kernel in terms of the dissipation

kernel

Results were obtained in [10] which allowed the

kernel of the quadratic form (2.14) to be determined in

terms of the kernel of (2.18). A corresponding theory

was also given in terms of frequency domain quanti-

ties, which proved more useful for applications. We

now adapt this method to apply to functionals that are

quadratic in It. It will emerge that the new technique

does not lead to new free energies. However, it is

useful in the context of dealing with the minimum free

energy.

Let us treat (7.12)3 as a first order partial differential

equation for Lðs; uÞ; s; u 2 IRþ, where Rðs; uÞ; s; u 2
IRþ is presumed to be known. We introduce new

variables,

x ¼ sþ u� 0; y ¼ s� u; ð7:21Þ

in terms of which (7.12)3 becomes

o

ox
Lnðx; yÞ ¼

1

2
Rnðx; yÞ; Lnðx; yÞ ¼ Lðs; uÞ;

Rnðx; yÞ ¼ Rðs; uÞ; ð7:22Þ

with general solution

Lnðx; yÞ ¼ Lnðx0; yÞ þ
1

2

Zx

x0

Rnðx0; yÞdx0 ð7:23Þ

where x0 is an arbitrary non-negative real quantity. It

follows from (7.2) and (7.12)4 that

Lnðx; yÞ ¼ Lnðx;�yÞ ¼ Lnðx; yj jÞ;
Rnðx; yÞ ¼ Rnðx;�yÞ ¼ Rnðx; yj jÞ: ð7:24Þ

Observe that, by virtue of (7.5),

Lnðu; uÞ ¼ Lnðu;�uÞ ¼ Lnðu; uj jÞ ¼ 0; u 2 IRþ:

ð7:25Þ

Putting

x0 ¼ s0 þ u0 � 0; y ¼ s0 � u0 ¼ s� u; ð7:26Þ

we have

s0 ¼ 1
2
ðx0 þ yÞ; u0 ¼ 1

2
ðx0 � yÞ;

Rnðx0; yÞ ¼ R 1
2
ðx0 þ yÞ; 1

2
ðx0 � yÞ

� �
;

ð7:27Þ

so that (7.23) and (7.25) give
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Lðs; uÞ ¼ Lnðx; yÞ ¼
1

2

Zx

yj j

Rnðx0; yÞdx0

¼
Zminðs;uÞ

0

Rðs� v; u� vÞdv; ð7:28Þ

which, as expected, obeys (7.5). Relation (7.1) gives

wðtÞ¼/ðtÞþ1

2

Z1

0

Z1

0

It
2ðsÞ

Zminðs;uÞ

0

Rðs� v;u� vÞdvIt
2ðuÞdsdu

¼/ðtÞþ1

2

Z1

0

Z1

0

Z1

0

It
2ðsÞRðs� v;u� vÞIt

2ðuÞdvdsdu;

ð7:29Þ

since Rðs� v;u� vÞ¼ 0 for v[ minðs;uÞ. Let us

assume that we have chosen Rð�; �Þ so that DðtÞ, given

by (7.12)2, is non-negative for any choice of It
2. For

v�0 and arbitrary choices of It
2, we have

Z1

0

Z1

0

It
2ðsÞRðs� v; u� vÞIt

2ðuÞdsdu

¼
Z1

0

Z1

0

It
2ðs1 þ vÞRðs1; u1ÞIt

2ðu1 þ vÞds1du1

¼
Z1

0

Z1

0

f ðs1ÞRðs1; u1Þf ðu1Þds1du1� 0;

ð7:30Þ

where f ðs1Þ ¼ It
2ðs1 þ vÞ and is therefore arbitrary. It

follows that the integral in (7.29)2 is also non-

negative. Therefore, Lð�; �Þ, given by (7.28), has the

property that the integral term in (7.1) is non-negative.

Thus, the basic strategy developed in [10] is valid here

also. The idea is to assign Rð�; �Þ so that the rate of

dissipation is non-negative. Then, the associated free

energy, i.e. that with kernel given by (7.28), also has

the required positivity property. It will emerge how-

ever that the strategy developed in [10] is not useful in

the present case, except in the context of the minimum

free energy.

We note the similarity between the expression

(7.28) and the kernel of the expression for the total

dissipation in [10].

8 Double integral quadratic forms in terms of It

derivatives: frequency domain representations

The initial results presented here are analogous to

those in [10]. We define

Lþ�ðx1;x2Þ ¼
Z1

0

Z1

0

Lðs; uÞe�ix1sþix2udsdu

¼ Lþ�ðx2;x1Þ;

Rþ�ðx1;x2Þ ¼
Z1

0

Z1

0

Rðs; uÞe�ix1sþix2udsdu

¼ Rþ�ðx2;x1Þ;

VFðx1;x2Þ ¼
Z1

�1

Z1

�1

Vðs; uÞe�ix1sþix2udsdu

¼ VFðx2;x1Þ;
ð8:1Þ

where L is introduced in (7.1), R is defined by (7.12)3

and V by (7.15). The functions Lþ�ðx1;x2Þ and

Rþ�ðx1;x2Þ are analytic in the lower half of the x1

complex plane and in the upper half of the x2 plane.

The quantity VFðx1;x2Þ may have singularities

anywhere in the x1 and x2 complex planes. Inverting

Fourier transforms in (8.1) yields that

Lðs;uÞ¼ 1

4p2

Z1

�1

Z1

�1

Lþ�ðx1;x2Þeix1s�ix2udx1dx2;

Rðs;uÞ¼ 1

4p2

Z1

�1

Z1

�1

Rþ�ðx1;x2Þeix1s�ix2udx1dx2;

Vðs;uÞ¼ 1

4p2

Z1

�1

Z1

�1

VFðx1;x2Þeix1s�ix2udx1dx2:

ð8:2Þ

Note that, for complex values of the frequencies,

Lþ�ðx1;x2Þ ¼ Lþ�ð�x1;�x2Þ ¼ Lþ�ðx2;x1Þ;
ð8:3Þ
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with analogous relations for Rþ�ðx1;x2Þ and

VFðx1;x2Þ. We define

L0ðsÞ ¼ L1ð0; sÞ ¼ L2ðs; 0Þ;

Rðs; 0Þ ¼ Rð0; sÞ ¼ RðsÞ ¼ L0ðsÞ;

L0þðxÞ ¼
Z1

0

L0ðsÞe�ixsds;

RþðxÞ ¼
Z1

0

RðsÞe�ixsds ¼ L0þðxÞ:

ð8:4Þ

Relations (7.5) and (7.12)3 have been used in deriving

these connections. We have

lim
x!1

ixL0þðxÞ ¼ L0ð0Þ ¼ Rð0; 0Þ: ð8:5Þ

Equations (7.5), (7.12)3 and (8.1) give

iðx1 � x2ÞLþ�ðx1;x2Þ ¼ Rþ�ðx1;x2Þ; ð8:6Þ

which yields

Lþ�ðx1;x2Þ ¼
Rþ�ðx1;x2Þ
iðx�1 � xþ2 Þ

; ð8:7Þ

on using the notation of (4.8). This choice, rather than

that in (4.7), is dictated by the analytic properties of

Lþ�ðx1;x2Þ. We refer to the analogous formula for

the kernel of the total dissipation in [10].

Also

iðx1 � x2ÞVFðx1;x2Þ ¼ �Rþ�ðx1;x2Þ; ð8:8Þ

by virtue of (7.16). This gives an equation for

VFðx1;x2Þ similar to (8.7) for Lþ�ðx1;x2Þ. The

question which arises is whether the quantity in the

denominator is x�1 � xþ2 , as in (8.7), or xþ1 � x�2 .

These are the only two possibilities. What they mean

respectively is specified after (4.7). Now, the first

choice would yield a quadratic form for the total

dissipation equal to the negative of the integral term in

the expression for the free energy (see (8.19) below).

This would yield a meaningless result, so we take

VFðx1;x2Þ ¼ �
Rþ�ðx1;x2Þ
iðxþ1 � x�2 Þ

: ð8:9Þ

Another derivation of this result is given below; see

(8.21).

Relation (8.1)2 and the asymptotic behaviour of

Fourier transforms [1, 10] yield that

Rþ�ðx1;x2Þ	
L0þðx1Þ
�ix2

as x2 !1;

L0þðx2Þ
ix1

as x1 !1;

8><
>:

ð8:10Þ

where L0þðxÞ is defined in (8.4). It follows from (8.7)

that

Lþ�ðx1;x2Þ	
� L0þðx1Þ

x2
2

as x2 !1;

� L0þðx2Þ
x2

1

as x1 !1:

8>><
>>:

ð8:11Þ

The asymptotic behaviour of VFðx1;xÞ is similar to

(8.11), by virtue of (8.9). The condition corresponding

to (7.5) is

Z1

�1

Lþ�ðx1;xÞdx1

¼
Z1

�1

Lþ�ðx;x2Þdx2 ¼ 0 8x 2 IR;

ð8:12Þ

which follows from Cauchy’s theorem and (8.11).

It is shown in [10] that the free energy, the rate of

dissipation and total dissipation, in terms of histories,

are given by

wðtÞ ¼ /ðtÞ þ 1

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞeGþ�ðx1;x2Þ

_Et
þðx2Þdx1dx2;

DðtÞ ¼ � 1

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞKþ�ðx1;x2Þ _Et

þðx2Þdx1dx2;

DðtÞ ¼ 1

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞQþ�ðx1;x2Þ _Et

þðx2Þdx1dx2;

¼ i

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞKþ�ðx1;x2Þ _Et

þðx2Þ
x�1 � xþ2

dx1dx2;

ð8:13Þ

where eGþ�ðx1;x2Þ. Kþ�ðx1;x2Þ and Qþ�ðx1;x2Þ
are the Fourier transforms of eGðs; uÞ in (2.14), Kðs; uÞ
in (2.18), (2.19) and Qðs; uÞ in (2.21). These are

Fourier transforms as defined in (8.1).

We can write the frequency domain version of

(7.12)2 in the form
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DðtÞ ¼ 1

8p2

Z1

�1

Z1

�1

It
2þðx1ÞRþ�ðx1;x2Þ

It
2þðx2Þdx1dx2

¼ 1

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2Þ

It
2Fðx2Þdx1dx2

¼ 1

8p2

Z1

�1

Z1

�1

It
Fðx1Þx2

1x
2
2Rþ�ðx1;x2Þ

It
Fðx2Þdx1dx2:

ð8:14Þ

where It
2þ, It

F and It
2F are defined in (5.50)2;4 and (5.44)

respectively. The second form of (8.14) relies on

(5.51) and the fact that

Z1

�1

Rþ�ðx1;x2ÞIt
2�ðx2Þdx2

¼
Z1

�1

It
2�ðx1ÞRþ�ðx1;x2Þdx1 ¼ 0; ð8:15Þ

which are consequences of (8.10) and Cauchy’s

theorem. Using (5.44)3, we can write (8.14)3 as

DðtÞ ¼ 1

2p2

Z1

�1

Z1

�1

_Et
þðx1ÞHðx1ÞHðx2Þ

Rþ�ðx1;x2Þ _Et
þðx2Þdx1dx2

¼ 1

2p2

Z1

�1

Z1

�1

_Et
þðx1ÞHðx1ÞHðx2Þ

Rþ�ðx2;x1Þ _Et
þðx2Þdx1dx2;

ð8:16Þ

on interchanging integration variables. Comparing

with (8.13)2, we deduce that

� 4Hðx1ÞHðx2ÞRþ�ðx2;x1Þ ¼ Kþ�ðx1;x2Þ
þ k2þðx1;x2Þ þ k1�ðx1;x2Þ;

ð8:17Þ

where k2þðx1;x2Þ has singularities on the x2 com-

plex plane only in XðþÞ and k1�ðx1;x2Þ has singular-

ities on the x1 plane only in Xð�Þ. They must also

decay to zero at large x1, x2 but are otherwise

arbitrary. This is an expression of the non-uniqueness

of the kernels in the frequency domain, which is

explored in [10], and which indeed apply to

Rþ�ðx1;x2Þ and Lþ�ðx1;x2Þ in the present context.

Using such non-uniqueness leads however to kernels

that do not have the analytic properties possessed by

Rþ� and Lþ�.

By analogy with (8.14) and (8.15), the frequency

domain version of (7.1) takes the forms

wðtÞ ¼ /ðtÞ þ 1

8p2

Z1

�1

Z1

�1

It
2þðx1ÞLþ�ðx1;x2Þ

It
2þðx2Þdx1dx2

¼ /ðtÞ þ 1

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞLþ�ðx1;x2Þ

It
2Fðx2Þdx1dx2

¼ /ðtÞ þ 1

8p2

Z1

�1

Z1

�1

It
Fðx1Þx2

1x
2
2Lþ�ðx1;x2Þ

It
Fðx2Þdx1dx2:

ð8:18Þ

Note the all free energies and dissipations of the form

(8.13) are expressible as quadratic forms in It
FðxÞ, by

virtue of (5.44). However, in general, the analytic

properties of the resulting kernels will not be given as

in (8.14) and (8.18), so that the special forms (8.14)1

and (8.18)1 do not hold. It follows from (8.7) and

(8.18) that

wðtÞ ¼ /ðtÞ � i

8p2

Z1

�1

Z1

�1

It
2þðx1ÞRþ�ðx1;x2ÞIt

2þðx2Þ
x�1 � xþ2

dx1dx2

¼ /ðtÞ � i

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2ÞIt

2Fðx2Þ
x�1 � xþ2

dx1dx2:

ð8:19Þ

By virtue of the result proved in subsection 7.1, if Rþ�
is such that DðtÞ, given by (8.14), is non-negative, then
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wðtÞ � /ðtÞ, given by (8.19), is also non-negative. Let

us use (3.19) with respect to the integral in (8.19)2 over

x1 to obtain

wðtÞ ¼ /ðtÞ � i

8p2
P

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2ÞIt

2Fðx2Þ
x1 � x2

dx1dx2

þ 1

8p

Z1

�1

It
2FðxÞRþ�ðx;xÞIt

2FðxÞdx:

ð8:20Þ

The frequency domain version of (7.14), combined

with (8.9), yields

DðtÞ¼ i

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2ÞIt

2Fðx2Þ
xþ1 �x�2

dx1dx2

¼ i

8p2
P

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2ÞIt

2Fðx2Þ
x1�x2

dx1dx2

þ 1

8p

Z1

�1

It
2FðxÞRþ�ðx;xÞIt

2FðxÞdx:

ð8:21Þ

Alternatively, we can obtain this result by substituting

for Kþ�ðx1;x2Þ in (8.13)4 from (8.17), noting that

k2þðx1;x2Þ and k1�ðx1;x2Þ do not contribute. This

expression cannot be reduced to a quadratic form in

It
2þðxÞ.

Relations (8.20), (8.21) and (5.54)3 give (2.10) or

wðtÞ þDðtÞ ¼ /ðtÞ þ 1

4pZ1

�1

It
2FðxÞRþ�ðx;xÞIt

2FðxÞdx ¼ WðtÞ; ð8:22Þ

provided we put

Rþ�ðx;xÞ ¼
1

2x2HðxÞ
; ð8:23Þ

which is similar to a relation for Kþ�ðx;xÞ, derived in

[10]. Indeed, it can be seen from (8.17) that the two

conditions are consistent if and only if k2þðx;xÞ
þk1�ðx;xÞ ¼ 0. Furthermore, if Rþ�ðx1;x2Þ is

replaced by an equivalent kernel, using the non-

uniqueness arguments referred to after (8.17), then

(8.23) is typically no longer valid.

From (5.45), (8.14)2;3 and (5.50)4, we obtain

_DðtÞ ¼ DðtÞ ¼ 1

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2ÞIt

2Fðx2Þdx1dx2;

ð8:24Þ

if

i

8p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

xþ1 � x�2
dx1dx2

þ i

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2ÞHðx2Þ

xþ1 � x�2
dx1dx2 ¼ 0:

ð8:25Þ

The two terms on the left are complex conjugates of

each other, and can be shown to be individually real, so

that we can express this condition as

i

8p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

xþ1 �x�2
dx1dx2¼ 0:

ð8:26Þ

Let us apply (3.20) to the integral over x1 in (8.26).

This gives, with the aid of (8.23) and (5.50)4,

i

8p2
P

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

x1 � x2

dx1dx2

¼ � 1

8p

Z1

�1

HðxÞRþ�ðx;xÞIt
2FðxÞdx

¼ 1

16p

Z1

�1

It
FðxÞdx

ð8:27Þ

It follows from (8.19)2, (5.45) and (2.13) that
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_wðtÞ ¼ � 1

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRþ�ðx1;x2Þ

It
2Fðx2Þdx1dx2 þ _EðtÞ TeðtÞ þ

i

2p2

�

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

x�1 � xþ2
dx1dx2

�
;

ð8:28Þ

where the reality of the last integral has been invoked.

Since (2.9) or (7.12)1 must be satisfied, we require that

i

2p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

x�1 � xþ2
dx1dx2

¼ 1

2p

Z 1
�1

It
FðxÞdx ¼ ½TðtÞ � TeðtÞ� _EðtÞ;

ð8:29Þ

by virtue of (5.47). Now, using (3.19), we find that

i

2p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

x�1 �xþ2
dx1dx2

¼ i

2p2
P

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

x1�x2

dx1dx2

þ 1

2p

Z1

�1

HðxÞRþ�ðx;xÞIt
2FðxÞdx

¼ i

2p2
P

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞIt
2Fðx2Þ

x1�x2

dx1dx2

þ 1

4p

Z1

�1

It
FðxÞdx:

ð8:30Þ

Using (8.27), we see that (8.29) is satisfied.

Of the relations (8.23), (8.25) and (8.29), any two

implies the third.

We can show directly that (8.29) is the frequency

domain equivalent of (7.7). Using (8.2)1 and (5.47),

we can write (7.7) as

1

4p2

Z1

�1

Z1

�1

G00þðx1ÞLþ�ðx1;x2Þ

It
2þðx2Þdx1dx2 ¼

1

2p

Z1

�1

It
FðxÞdx: ð8:31Þ

With the help of (8.11), (8.12) and the property

Z1

�1

G00þðx1ÞLþ�ðx1;x2Þdx1 ¼ 0; ð8:32Þ

which follows by closing the integral on Xð�Þ, we

conclude from (3.5) that G00þðx1Þ can be replaced by

�2Hðx1Þ. Also, we can replace It
2þ by It

2F , as

concluded in relation to (8.18). Thus, the left-hand

side of (8.31) becomes

� 1

2p2

Z1

�1

Z1

�1

Hðx1ÞLþ�ðx1;x2ÞIt
2Fðx2Þdx1dx2

¼ i

2p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2Þ
x�1 �xþ2

It
2Fðx2Þdx1dx2;

ð8:33Þ

where (8.7) has been invoked. Therefore, (8.31) is

equivalent to (8.29).

Similarly, we can show, using (8.9), that (8.26) is

the frequency domain equivalent of (7.18).

We can write (8.29) in the form

1

2p2

Z1

�1

Z1

�1

Hðx1ÞLþ�ðx1;x2Þx2
2

It
Fðx2Þdx1dx2 ¼

1

2p

Z1

�1

It
FðxÞdx; ð8:34Þ

with the aid of (5.50)4.

Let us now explore possible solutions of (8.34),

leading to new free energies. This equation must be

true for an arbitrary history, so that, on using (5.44),

we obtain the relations

1

p

Z1

�1

Hðx1ÞLþ�ðx1;xÞHðxÞdx1 ¼
HðxÞ
x2
þ S�ðxÞ;

ð8:35Þ

2228 Meccanica (2014) 49:2207–2235

123



where S�ðxÞ is an arbitrary function that is analytic in

Xþ and goes to zero at infinity, since, by Cauchy’s theorem,

Z1

�1

S�ðxÞ _Et
þðxÞdx ¼ 0: ð8:36Þ

Recall that (7.8) has the same relationship with (7.7)

that (8.35) has with (8.34).

The frequency version of (7.11) has the same form

as (8.35) and indeed (6.7). Comparing these latter two

equations, we see that

fþðxÞ ¼
x
pi

Z1

�1

Hðx1ÞLþ�ðx1;xÞdx1 �
1

ixþ

¼ �x
p

Z1

�1

Hðx1ÞRþ�ðx1;xÞ
x1 � xþ

dx1 �
1

ixþ
;

S�ðxÞ ¼ �
1

2
JþðxÞ:

ð8:37Þ

Relations (8.37)1;2 and (8.23) are constraints on

Lþ�ðx1;xÞ and Rþ�ðx1;xÞ, which derive from

(7.11) or ultimately (2.16).

The quantity fþðxÞ is given by (6.9) for discrete

spectrum materials, and is zero if the material has

branch points.

Alternatively, we can argue that (8.26) must be true

for arbitrary history _Et
þðxÞ, so that, instead of (8.35),

we have

1

ip

Z1

�1

Hðx1ÞRþ�ðx1;xÞHðxÞ
x1 � x�

dx1 ¼ S�ðxÞ;

ð8:38Þ

and (8.37)2 is replaced by

fþðxÞ ¼ �
x
p

Z1

�1

Hðx1ÞRþ�ðx1;xÞ
x1 � x�

dx1: ð8:39Þ

Using (8.23), (3.19) and (3.20), we see that (8.39) is

equivalent to (8.37)2.

9 Quadratic forms for wf ðtÞ in terms of It

Consider the quadratic forms (4.7) and (4.9). These

can be replaced by quadratic forms in terms of It
2FðxÞ,

using (5.51)1. The question discussed in this section is:

can they be expressed as quadratic forms in It
2þðxÞ,

which would provide examples of (8.14)1 and (8.19)1

or, in the time domain, (7.1) and (7.12)2. It emerges in

Sect. 9.1 that only the minimum free energy wmðtÞ
corresponding to f ¼ 1 can be expressed in such a

manner. This property of wmðtÞ is discussed in detail in

Sect. 9.2.

This is consistent with the fact that wmðtÞ is a FMS.

However, it is also true that all the wf ðtÞ are FMSs. It

will be shown how this property holds even though the

wf ðtÞ for f [ 1 are not expressible as quadratic func-

tionals of It
2þðxÞ or in the time domain, It

2ðsÞ, s [ 0.

9.1 Quadratic forms for wf ðtÞ

We will base our discussion on (4.2) and (4.3).

Referring to (4.3) and (5.51), we put

PftðxÞ ¼ iHf
�ðxÞ
x

_Et
þðxÞ ¼

1

2ix�H
f
þðxÞ

" #
It
2FðxÞ
� �

:

ð9:1Þ

There is no singularity at x ¼ 0 because of the factor

x2 in It
2FðxÞ, given by (5.50)4. The superscript on x�

is chosen for convenience. The last form of Pft is the

product of two functions both in L2ðIRÞ. For f ¼ 1, the

first factor has all its singularities in XðþÞ, by virtue of

the property that the zeros of H
f
þ are in XðþÞ. However,

for other values of f , the zeros of H
f
þ can be in XðþÞ or

Xð�Þ. Using (5.51)2, we obtain

PftðxÞ ¼ 1

2ix�H
f
þðxÞ

½It
2þðxÞ þ It

2�ðxÞ� ð9:2Þ

The quantity pðftÞ� ðxÞ in (4.2) and (4.3) will now be

considered in more detail. Let us write
1

2ix�H
f
þðxÞ

¼ AþðxÞ þ A�ðxÞ; ð9:3Þ

where, as indicated by the notation, A�ðxÞ has all its

singularities in Xð�Þ respectively. For discrete spec-

trum materials, H
f
þðxÞ is given by (4.20) and

1

H
f
þðxÞ

¼ 1

h1
þ
Xn

i¼1

V
f
i

x� iqf
i

;

V
f
i ¼ lim

x!iqf
i

x� iqf
i

H
f
þðxÞ

; i ¼ 1; 2; . . .; n: ð9:4Þ
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Thus, 2ixAþðxÞ is equal to the sum of terms with

qf
i ¼ þci and 2ixA�ðxÞ consists of terms where

qf
i ¼ �ci.

If f ¼ 1, then A�ðxÞ will vanish, while for f ¼ N

(yielding the maximum free energy referred to after

(4.9); see also remark 7.1 of [10] and [1], p 343) AþðxÞ
is zero. For all values of f , p

ft
�ðxÞwill be given by (4.3)

with

Pftðx0Þ ¼ Aþðx0ÞIt
2þðx0Þ þ A�ðx0ÞIt

2þðx0Þ
þAþðx0ÞIt

2�ðx0Þ þ A�ðx0ÞIt
2�ðx0Þ:

ð9:5Þ

The relation for pðftÞ� ðxÞ can be simplified to give

pðftÞ� ðxÞ ¼
1

2pi

Z1

�1

Aþðx0ÞIt
2þðx0Þ þ A�ðx0ÞIt

2þðx0Þ þ A�ðx0ÞIt
2�ðx0Þ

x0 � xþ
dx0

¼ 1

2pi

Z1

�1

Aþðx0ÞIt
2þðx0Þ þ A�ðx0ÞIt

2Fðx0Þ
x0 � xþ

dx0:

ð9:6Þ

The first form follows by observing that if we evaluate

the term with Aþðx0ÞIt
2�ðx0Þ by closing the contour on

Xð�Þ then, by Cauchy’s theorem, the result is zero.

Consider the second form. For the case of the

minimum free energy, only the first term of the

integrand is non-zero and it follows immediately that

wmðtÞ can be expressed as a quadratic form in It
2þðxÞ,

as noted above.

We now seek to show that pðftÞ� ðxÞ (and therefore

wf ðtÞ) is a FMS even if f [ 1, for which the second

term in the denominator of (9.6)2 is non-zero. The

argument will be presented for discrete spectrum

materials (Remark 5.2) but is in fact more general.

The first term in (9.6)2 contributes a sum of simple

poles at the points �ial, l ¼ 1; 2; . . .; n by virtue of

(5.53)2, in an expression involving _Et
þðxÞ evaluated

only at x ¼ �ial. This can be seen by closing the

contour on Xð�Þ. In the second term, the singularities

of A�ðx0Þ are cancelled by It
2Fðx0Þ because of the

factor Hðx0Þ in this quantity, defined by (5.51). This

can be shown by using (9.4) to evaluate A�ðxÞ, and by

taking the product of H
f
�ðxÞ, given by (4.20). The

cancellation would not be manifest if It
2F were

expressed in terms of It
2�. Closing on Xð�Þ again, we

find that the only contributing singularities are those at

�iai in HðxÞ, in spite of the fact that It
2F is not a FMS.

One again obtains an expression where the only

dependence on _Et
þðxÞ is through _Et

þð�iajÞ,
j ¼ 1; 2; . . .; n, as required by Remark 5.3.

However, the point we wish to emphasize here is

that pðftÞ� for f 6¼ 1 or f 6¼ N is linear in both It
2þ and It

2F ,

so that wf is quadratic in these quantities, as we see

from (4.2).

One could also have approached the above argu-

ment from another point of view, by expressing (4.7)

as a quadratic functional in It
2F , using (5.51). With the

aid of arguments similar to those after (9.6), one again

obtains a quadratic functional of It
2þ and It

2F . This

approach is developed explicitly for the minimum free

energy in Sect. 9.2.

These quadratic functionals can be expressed also

in terms of time domain quantities, as shown for the

minimum free energy in Sect. 9.2.

For f ¼ N, giving the maximum free energy, the

quadratic form depends only on It
2F .

Thus, for all linear combinations of the wf ðtÞ
involving terms with f [ 1, we need to include It

2F ,

and the property of being a FMS is dependent on a

special cancellation, which is a specific property of the

kernel associated with those given by (4.10), where at

least one kf for f [ 1 is non-zero. This will not

necessarily hold for a quadratic form in It
2þ and It

2F

with a general kernel.

9.2 The minimum free energy as an explicit

functional of It

It has already been shown in subsection 9.1 that the

minimum free energy can be expressed as a quadratic

form in It
2þðxÞ or It

2ðsÞ, s 2 IRþ. Derivations of the

explicit form of this functional were given in [1, 6].

We give a different derivation of this result here. Also,

we show that the conditions (8.23) and (8.29) are

obeyed.

Consider firstly the frequency domain representa-

tion. Recalling (5.51), we can write (4.7)–(4.9) (for

f ¼ 1, corresponding to the minimum free energy) in

the form (after exchanging x1 and x2)
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wmðtÞ ¼ /ðtÞ � i

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRmþ�ðx1;x2ÞIt

2Fðx2Þ
x�1 � xþ2

dx1dx2;

DmðtÞ ¼
1

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRmþ�ðx1;x2Þ

It
2Fðx2Þdx1dx2;

DmðtÞ ¼
i

8p2

Z1

�1

Z1

�1

It
2Fðx1ÞRmþ�ðx1;x2ÞIt

2Fðx2Þ
xþ1 � x�2

dx1dx2;

Rmþ�ðx1;x2Þ ¼
1

2x�1 Hþðx1Þxþ2 H�ðx2Þ
:

ð9:7Þ

The quantity Rmþ�ðx1;x2Þ is analytic with respect to

x1 in Xþ and with respect to x2 in X�. We now

replace It
2F in these two relations by the right-hand side

of (5.51)2. It follows from Cauchy’s theorem, by

closing the contour on XðþÞ, that

Z1

�1

Rmþ�ðx1;x2ÞIt
2�ðx2Þ

x�1 � x2

dx2 ¼ 0: ð9:8Þ

Similarly, It
2�ðx1Þ may be dropped from (9.7)1 on

integration over x1 and we obtain

wmðtÞ ¼ /ðtÞ � i

8p2

Z1

�1

Z1

�1

It
2þðx1ÞRmþ�ðx1;x2ÞIt

2þðx2Þ
x�1 � xþ2

dx1dx2

¼ /ðtÞ þ 1

8p2

Z1

�1

Z1

�1

It
2þðx1ÞLmþ�ðx1;x2ÞIt

2þðx2Þdx1dx2;

Lmþ�ðx1;x2Þ ¼
Rmþ�ðx1;x2Þ
iðx�1 � xþ2 Þ

;

ð9:9Þ

which is the explicit quadratic form implied by (9.6)

for f ¼ 1. A similar argument yields that

DmðtÞ ¼
1

4p2

Z1

�1

Z1

�1

It
2þðx1ÞRmþ�ðx1;x2Þ

It
2þðx2Þdx1dx2

¼ 1

4p2

Z1

�1

It
2þðxÞ

2xþH�ðxÞ
dx

������

������
2

¼ 1

4p2

Z1

�1

It
2FðxÞ

2xH�ðxÞ
dx

������

������
2

:

ð9:10Þ

Observe that (8.23) is true for (9.7)4.

Consider now the time domain representations. We

seek to express DmðtÞ and wmðtÞ as quadratic func-

tionals of ItðsÞ, s 2 IRþ. Let us define the quantity

MðsÞ by

MðsÞ ¼ 1

2p

Z1

�1

1

2ix�HþðxÞ
eixsdx; s 2 IR:

ð9:11Þ

This is a real quantity which vanishes for s 2 IR��.

The integrand has a quadratic singularity near the

origin, due to the explicit pole term and the factor x in

HþðxÞ which is taken, for consistency, to be x�. This

gives a finite contribution.

Let us write the time domain version of (9.9)2 in the

form

wmðtÞ ¼ /ðtÞ þ 1

2

Z1

0

Z1

0

It
2ðuÞLmðu; vÞIt

2ðvÞdudv;

ð9:12Þ

corresponding to (7.1), where Lmðu; vÞ is given by

(8.2)1 in terms of Lþ�ðx1;x2Þ. The rate of dissipation

given by (9.10) becomes, in the time domain, (c.f.

(4.6))

DmðtÞ ¼ KðtÞj j2; KðtÞ ¼
Z1

0

MðuÞIt
2ðuÞdu; ð9:13Þ

on using Parseval’s formula. Therefore

DmðtÞ ¼
Z1

0

MðuÞIt
2ðuÞdu

������

������
2

¼
Z1

0

Z1

0

It
2ðuÞMðuÞMðvÞIt

2ðvÞdudv; ð9:14Þ
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so that

Rðs; uÞ ¼ 2MðsÞMðuÞ: ð9:15Þ

It follows from (7.28) that

Lmðu; vÞ ¼ 2

Zminðu;vÞ

0

Mðu� zÞMðv� zÞdz ¼ Lmðv; uÞ:

ð9:16Þ

The following two results are of interest.

Proposition 9.1 We seek to show that (8.29)1 holds

for the minimum free energy. This implies that the

equivalent time domain version (7.7) is also true.

Proof Substitute Rmþ�ðx1;x2Þ, given by (9.7)4, into

the left-hand side of (8.29). By integrating around

XðþÞ, we obtain

i

2p2

Z1

�1

H�ðx1Þ
x1ðx1 � xþ2 Þ

dx1 ¼ �
1

p
H�ðx2Þ

x2

; ð9:17Þ

and (8.29)1 follows immediately, on noting the last

relation of (5.50). h

Proposition 9.2 The quantity fþðxÞ in (8.37) or

(8.39) vanishes in the case of the minimum free energy

Proof For (8.39), closing the x1 contour over XðþÞ

gives zero. For (8.37)2, the two terms cancel. h

Thus, this property, which is true for all free

energies in materials with branch cut singularities,

holds also for materials with only isolated singularities

in the case of the minimum free energy.

Proposition 9.3 The minimum free energy is the

only free energy functional for which the rate of

dissipation is given by a simple product. This is in

effect the result that the factorization of HðxÞ, given

by (3.8) and (3.9), where both zeros and singularities

of H�ðxÞ are in X� respectively, is unique up to a sign

([1], p 240).

Proof Let

Rþ�ðx1;x2Þ ¼ rþðx1Þr�ðx2Þ; ð9:18Þ

under the condition

rþðxÞj j2¼ 1

2x2HðxÞ
: ð9:19Þ

Equation (8.39) reduces to

Z1

�1

Hðx1Þrþðx1Þ
x1 � x�

dx1 ¼ �
fþðxÞp
xr�ðxÞ

¼ F�ðxÞ;

ð9:20Þ

since the zeros of r�ðxÞ are in Xð�Þ. Using the Plemelj

formulae (3.19) and (3.20), we can write (cf. (4.3))

Hðx1Þrþðx1Þ ¼ q�ðx1Þ � qþðx1Þ;

q�ðx1Þ ¼
1

2pi

Z1

�1

Hðx1Þrþðx1Þ
x1 � x�

dx1; ð9:21Þ

and (9.20) is the requirement that qþðxÞ ¼ F�ðxÞ.
Both sides vanish at infinity, so that both must be zero

everywhere, by Liouville’s theorem (for example, [1],

p 534). Thus, we have that

Hþðx1Þrþðx1Þ ¼
q�ðx1Þ
H�ðx1Þ

: ð9:22Þ

Multiplying across by a factor x1, we see that both

sides must be equal to a constant k, by Liouville’s

theorem, giving

rþðx1Þ ¼
k

xHþðx1Þ
: ð9:23Þ

It follows from (9.19) that kj j2¼ 1=2, and (9.23),

substituted into (9.18), yields (9.7)4. Thus, the mini-

mum free energy is the only possibility associated with

(9.18). The requirement that F�ðxÞ vanishes implies

that, in agreement with proposition 9.2, we have

fþðxÞ ¼ 0. h

10 General form of free energies that are FMSs:

discrete spectrum materials

We now present quadratic forms in terms of the

minimal state functionals It for discrete spectrum

materials, just as (5.25) and (5.28) apply to

quadratic forms in terms of histories. Let us

consider the form (8.14)1 for It
2þðxÞ given by

(5.53)2. We obtain
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DðtÞ ¼ 1

2
w>ðtÞRwðtÞ

wðtÞ ¼ ðw1ðtÞ;w2ðtÞ; . . .;wnðtÞÞ; wiðtÞ ¼ a2
i GieiðtÞ;

Rij ¼
1

4p2

Z1

�1

Z1

�1

Rþ�ðx1;x2Þ
ðx1 þ iaiÞðx2 � iajÞ

dx1dx2

¼ Rþ�ð�iai; iajÞ; i; j ¼ 1; 2; . . .; n;

ð10:1Þ

where eiðtÞ is defined by (5.24) and the last relation is

deduced by integrating over Xð�Þ on the x1 plane and

XðþÞ on the x2 plane. Relations (10.1) can also be

obtained from (7.12) and (5.52).

The free energy functional (7.1) has the form

wðtÞ ¼ /ðtÞ þ 1

2
w>ðtÞLwðtÞ

Lij ¼
1

4p2

Z1

�1

Z1

�1

Lþ�ðx1;x2Þ
ðx1 þ iaiÞðx2 � iajÞ

dx1dx2

¼ Lþ�ð�iai; iajÞ ¼
Rij

ai þ aj

; i; j ¼ 1; 2; . . .; n;

ð10:2Þ

by virtue of (8.7). The quantities R and L are

symmetric. Using (5.27), we see that

_wiðtÞ ¼ �aiwiðtÞ þ zi
_EðtÞ;

zi ¼ a2
i Gi; i ¼ 1; 2; . . .; n:

ð10:3Þ

It follows that (2.9) holds, provided that

Xn

i¼1

wiðtÞ
a2

i

1�
Xn

j¼1

a2
i Lija

2
j Gj

" #
¼ 0; ð10:4Þ

which is (7.7) for discrete spectrum materials. Let us

put

Lij ¼
lij

a2
i a

2
j

; i; j ¼ 1; 2; . . .; n; ð10:5Þ

in terms of the matrix l. Relation (10.4) holds for all

histories, so that we must have

Xn

j¼1

lijGj ¼ 1; i ¼ 1; 2; . . .; n: ð10:6Þ

Referring to (5.26), we see that if l ¼ C�1, then (10.6)

holds. The form (10.6) corresponds to the Laplace

transform of (7.11)3 for discrete spectrum materials, at

the points iai, where, from (6.9), we know that

fþðiaiÞ ¼ 0, i ¼ 1; 2; . . .; n.

We can also see that (8.37)1 gives

fþðxÞ ¼ ix
Xn

i¼1

a2
i GiLþ�ð�iaj;xÞ �

1

ixþ

¼ �x
Xn

i¼1

a2
i GiRþ�ð�iaj;xÞ

xþ iai

� 1

ixþ

ð10:7Þ

on using (4.14)2, (8.12) and by closing the contour on

Xð�Þ. Putting x ¼ iaj yields (10.6).

The expressions (10.1) and (10.2) are not helpful in

characterizing quadratic forms in terms of It
2ðsÞ, s 2

IRþ because they are, in effect, quadratic forms in the

eiðtÞ; while the free energies wf , given by (4.7), and

discussed in Sect. 9, can also be expressed as such

quadratic forms, even though they depend on It
2FðxÞ in

the frequency domain, or It
2ðsÞ, s 2 IR, in the time

domain.

11 Proof that no new free energies can be

expressed in terms of It

The approach adopted in [10] was based on product

formulae in the time domain, and more particularly in

the frequency domain, for the kernel of the rate of

dissipation, which ensure that this quantity is non-

negative. They also ensure that the resulting free

energy has the correct non-negativity properties. In

principle, the same approach should apply in the

present context, as demonstrated in Sect. 7.1. How-

ever, as we will now show, there are no free energy

functionals expressible as quadratic forms in It other

than the minimum free energy. This is a generalization

of the conclusion of Sect. 9.1 that, of the family wf ðtÞ,
only wmðtÞ has this property. It further indicates how

restrictive the requirement is that a free energy

functional be expressible in the form (7.1) or (8.18)1.

Proposition 11.1 The only possible choice of

Lþ�ðx1;x2Þ obeying (8.37) is the kernel

Lmþ�ðx1;x2Þ, given by (9.9)3.

Proof We express Lþ�ðx1;x2Þ in the form

Lþ�ðx1;x2Þ ¼ Lmþ�ðx1;x2Þ þ L1þ�ðx1;x2Þ:
ð11:1Þ
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The case of materials with only discrete spectrum

singularities (remark 5.2) will be considered first. The

quantity Lmþ�ðx1;x2Þ is a solution of (8.37)1;2 for

fþðxÞ ¼ 0 (proposition 9.2), so that we have

fþðxÞ ¼ UðxÞ;

UðxÞ ¼ x
pi

Z1

�1

Hðx1ÞL1þ�ðx1;xÞdx1

¼ x
pi

Z1

�1

Hþðx1ÞH�ðx1ÞL1þ�ðx1;xÞdx1;

8x 2 IR:

ð11:2Þ

The quantity fþðxÞ is given by (6.9); it vanishes at

�iai, i ¼ 1; 2; . . .; n, and has singularities at ivi,

i ¼ 0; 1; . . .; n, where the parameters vi are arbitrary

positive quantities. The kernel L1þ�ðx1;xÞ must

depend on the vi, since Hðx1Þ is independent of them.

Let us seek forms of L1þ�ð�; �Þ which are solutions of

(11.2)1, for any choices of the vi.

The simplest way of ensuring that the zeros of UðxÞ
are consistent with the location of the zeros of fþðxÞ is

to assume that L1þ�ðx1;xÞ vanishes at each point

x ¼ iai. Alternatively, if L1þ�ðx1;xÞ is not zero at a

given point x ¼ iai, then it is still possible that UðiaiÞ
could vanish, for given values of vi, thus achieving

consistency with (11.2)1. Thus, we take the quantity

L1þ�ðx1;xÞ to be zero at each point x ¼ iai for most

values of the parameters vi, i ¼ 1; 2; . . .; n.

Let us consider a given set of values vj, j 6¼ k as

fixed parameters, and regard UðxÞ as a function of vk,

denoted by Uðx; vkÞ. Now, Uðiai; vkÞ may have

discrete roots, in other words, may vanish at discrete

values of vk. However, this does not allow us to drop

the assumption that L1þ�ðx1; iaiÞ is zero at these

values of vk, since such an assumption would intro-

duce anomalous discontinuities in the function

L1þ�ðx1; iaiÞ, regarded as a function of vk, because

it is zero for almost all choices of this parameter and

non-zero at certain isolated values.

It follows that L1þ�ðx1;xÞmust be taken to vanish

at each point x ¼ iai, i ¼ 1; 2; . . .; n. Relation (8.3)

then implies that it is zero at each point x1 ¼ �iai,

i ¼ 1; 2; . . .; n, and the singularities of H�ðx1Þ, as

given by (4.18)3, are cancelled by L1þ�ðx1;xÞ in

(11.2)3. The remaining singularities of the integrand

are all in XðþÞ. Therefore, by closing the contour on

Xð�Þ and recalling (8.11), we find that the right-hand

side of (11.2) vanishes.

Thus, there are no kernels that are consistent with a

non-zero choice of fþðxÞ. Any acceptable choice of

L1þ�ðx1;xÞ must obey the equation

Z1

�1

Hþðx1ÞH�ðx1ÞL1þ�ðx1;xÞdx1 ¼ 0; 8x 2 IR:

ð11:3Þ

The only way to ensure this condition for all x is to

assign to L1þ�ðx1;xÞ the property that it vanishes at

each point x1 ¼ �iai, and thereby cancels the singu-

larities in H�ðx1Þ. But these points are the singular-

ities of It
2þðx1Þ in (8.18), so that the quadratic form

with kernel L1þ�ðx1;xÞ would give a zero contribu-

tion to the free energy, as can be seen by integrating x1

over a contour on Xð�Þ.
We conclude that fþðxÞ must be zero, even for

materials with only isolated singularities and

L1þ�ðx1;xÞ in (11.1) makes no contribution to the

free energy functional.

For materials with some branch cuts, the quantity

fþðxÞ vanishes, in any case, and we must have a

relation of the same form as (11.3). Then, there will be

some branch cuts in L1þ�ðx1;xÞ as a function of x1.

These must be in XðþÞ. There will also be branch cuts

in H�ðx1Þ , which must be in Xð�Þ. There is no

mechanism whereby these can neutralize or cancel

each other. The only remaining possibility is that

L1þ�ðx1;xÞ vanishes. h
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