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Abstract Shear deformations in beam-like struc-

tures as well as devices allowing deflection disconti-

nuities, besides influencing the compressive buckling,

can induce instability in presence of tensile axial

loads. In this work a novel study to address both the

compressive and the tensile buckling in slender beams

in presence of multiple internal sliders endowed with

translational springs, that induce deflection disconti-

nuities along the beam axis, is presented. The general

exact closed-form solutions is derived as a function

of four boundary conditions only, as in the case of

homogeneous beam, irrespective on the number of

concentrated singularities. The range where the tensile

buckling load values are comparable to the compres-

sive counterpart is highlighted. Furthermore, sudden

switches from symmetric to anti-symmetric buckling

shapes are identified. Finally, for an increasing

number of deflection discontinuities an interesting

comparison with a uniform column with distributed

shear deformations, according to the Timoshenko

model, is presented. The latter comparison suggests

that elastic internal sliders, which allow transversal

deflection discontinuities, can be interpreted as con-

centrated shear deformations and are addressed to as

shear deformation singularities.

Keywords Tensile buckling � Compressive

buckling � Displacement discontinuity �
Elastic slider � Shear deformations �
Column � Singularities

1 Introduction

Occurrence of different types of singularities in

structural, mechanical and aerospatial engineering

components might be the cause of changes in the

system properties, of a significant reduction of the

operational life and also of failure mechanisms.

Efficient analysis tools are required in these cases

and, most of all, exact explicit expressions of response

parameters might be of great help. In particular,

singularities leading to discontinuities of the transver-

sal deflection and the rotation functions of beam-like

structures might be adopted to model real phenomena

encountered in the common practice and can effi-

ciently model concentrated damage [1–6]. Further-

more, modelling concentrated damage by means of

singularities has been shown to be an effective tool to

address also the inverse problem of identification of

single and multiple cracks [7–10].

With regard to the analysis of the buckling

phenomenon that appears in slender columns, the

influence of discontinuities of the rotation function

only, due to presence of cracks, has been studied
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extensively in the specific literature by using different

approaches [11–20]. Very few papers study the

buckling phenomenon of columns in presence of

discontinuities of the transversal deflection. Those

models that include deflection discontinuities due to

the presence of a concentrated damage are limited to

the analysis of a single crack and address the buckling

due to compressive loads only [21, 22].

Besides the compressive buckling phenomenon, it

has to be remarked that the occurrence of buckling

under the action of tensile axial loads (tensile buck-

ling) has been evidenced by Kelly [23] with regard to

highly shear deformable short beams such as the

rubber bearing isolators. Relying on the latter work it

can be stated that tensile buckling results from

accounting for the shear deformability, hence, it can

be recovered when the Timoshenko column is con-

sidered. Examples of tensile buckling has been studied

in damaged columns in presence of single [24] and

multiple cracks [25] according to the Timoshenko

model. However, the crack model considered in the

latter two papers do not account for the presence of any

transversal deflection discontinuity.

On the other hand, tensile buckling has been also

evidenced, and confirmed by experimental tests, also

in concentrated elasticity beam-like structures and in

Euler–Bernoulli columns in presence of an internal

slider (inducing a transversal displacement disconti-

nuity) as studied in [26, 27]. In the latter works, it has

been suggested that the influence of the axial load on

the behaviour of columns with internal sliders may

provide application to innovative attuators for

mechanical wave control.

In view of the numerical and experimental evi-

dence, the following question arises: Is the Euler–

Bernoulli column with an internal sliders somehow

related to the Timoshenko column?

Starting from this question in this work the case

of Euler–Bernoulli column in presence of multiple

elastic internal sliders is investigated. The latter

internal constraints have not been considered in the

last work of the authors [25] where, differently, the

tensile buckling phenomenon arose from the distrib-

uted shear deformability characterising the Timo-

shenko beam model.

Internal elastic sliders, inducing transversal deflec-

tion discontinuities, are usually studied by imposing

suitable continuity and discontinuity conditions at

intermediate cross sections, as reported in [26] for the

case of a single slider without transversal spring,

leading to an increasing number of integration

constants to be determined when multiple singularities

have to be accounted for.

In this work the latter classical approach is avoided,

the application of the theory of distributions (gener-

alised function) is adopted leading to novel exact

explicit expressions of the buckling shape together

with an explicit formulation of the buckling load

characteristic equation in presence of an arbitrary

number of internal sliders. The general solution is

obtained as a function of four boundary conditions

only, as for the homogeneous beam, irrespective on

the number of concentrated singularities.

Both the compressive and the tensile static buckling

are addressed by means of the proposed approach. In

particular, the range where the tensile buckling load

values are comparable to the compressive counterpart

is highlighted. Furthermore, sudden switches from

symmetric to anti-symmetric buckling shapes are

identified both for the compressive and tensile buck-

ling cases. Finally the central question regarding the

relation between the Euler–Bernoulli and the Timo-

shenko columns finds an affirmative answer. The

answer is detailed in the work by showing the

compressive buckling, and also recovering the tensile

buckling, for an increasing number of elastic internal

sliders.

2 A model for buckling of Euler–Bernoulli beams

with multiple elastic internal sliders

Singularities along the axis of beam-like structures can

be promptly modelled by means of distributions. In

particular, the correct use of such generalised func-

tions provides the tools to reproduce discontinuities of

the response parameters.

In this section a model to deal with deflection

discontinuities along the beam axis is presented.

In practice the model accounts for the presence of

multiple internal sliders endowed with translational

springs, as reported in Fig. 1.

The buckling governing equation of Euler–Ber-

noulli beams in presence of multiple elastic internal

sliders, under the action of an axial load, is considered

and the exact solution is obtained in explicit form.

Let us consider an Euler–Bernoulli beam with

length L and referred to the normalised abscissa
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0� n ¼ x=L� 1. The normalised deflection response

function uðnÞ with a single discontinuity DuðniÞ at the

cross section ni is described over the entire beam

length by the following expression uðnÞ þ DuðniÞ
Uðn� niÞ, where Uðn� niÞ is the well known Heaviside

unit step generalised function. The presence of such

deflection discontinuity should be guaranteed in the fourth

order buckling governing equation by an additional term

that avoids the formulation over different fields and the

consequent enforcement of any continuity and disconti-

nuity conditions at ni. Differently from what proposed

in [28], a convenient distributional model able to

capture such discontinuity in the governing equation

requires the introduction of the fourth derivative

of the Heaviside function by means of the following

term DuðniÞd000ðn� niÞ where dðn� niÞ indicates the

Dirac’s delta centred at ni and the apex means

derivative with respect to the normalised abscissa n.

The unknown deflection discontinuity DuðniÞ has to

be associated to the shear force at n�i , i.e. at the left of

the cross-section where the discontinuity occurs, as

follows:

Du nið Þ ¼ �k i u000 n�i
� �

ð1Þ

where k i is the normalised translational spring

compliance related to the translational spring stiffness

K i as follows: k i ¼ EI
K i

1
L3 with EI the flexural stiffness

of the uniform beam.

The behaviour of a uniform Euler–Bernoulli beam

subjected to a constant axial force N (column), in

presence of n along axis internal sliders, is hence

governed by the following differential equation:

uIV nð Þ � r2u00 nð Þ ¼
Xn

i¼1

Du nið Þd000 n� nið Þ ð2Þ

where the axial load parameter r2 ¼ NL2

EI
has been

introduced. The term �r2u00 nð Þ accounts for the

influence of the axial force in the buckling equation

where the upper or lower sign applies to the case of

compressive or tensile axial load, respectively.

The solution of Eq. (2), characterised by the

unknown singular term on the right hand side, is

pursued by means of application of the Laplace

Transform as follows:

uðsÞ ¼ 1

s2 s2 � r2ð Þ

�
"

s s2 � r2
� �

u 0ð Þ þ s2 � r2
� �

u0 0ð Þ

þs u00 0ð Þ þ u000 0ð Þ þ
Xn

i¼1

s3e�s xiDu nið Þ
#

ð3Þ

where the variable s represents the complex frequency

introduced to perform the Laplace transform. The

inverse Laplace transform of Eq. (3) provides the

following expression for the deflection function u nð Þ:

u nð Þ ¼ h�1 nð Þu 0ð Þ þ h�2 nð Þu0 0ð Þ þ h�3 nð Þu00 0ð Þ

þ h�4 nð Þu000 0ð Þ þ
Xn

i¼1

�h�i nð ÞDu nið Þ ð4Þ

where the functions h�1 nð Þ; h�2 nð Þ; h�3 nð Þ; h�4 nð Þ;
�h�i nð Þ , apex þ for the compressive and apex � for

the tensile axial load, are defined by the following

expressions:

hþ1 nð Þ¼ 1 h�1 nð Þ¼ 1

hþ2 nð Þ¼ n h�2 nð Þ¼ n

hþ3 nð Þ¼ 1� cosrn
r2

h�3 nð Þ¼ coshrn�1

r2

hþ4 nð Þ¼ 1

r3
rn� sinrnð Þ h�4 nð Þ¼ 1

r3
sinhrn�rnð Þ

�hþi nð Þ¼ cosr n�nið ÞU n�nið Þ �h�i nð Þ¼ coshr n�nið ÞU n�nið Þ

ð5Þ
The key passages leading to Eq. (4) by means of the

Laplace transform and the inverse Laplace transform

1ξ

2ξ

1nξ −

nξ

NFig. 1 Euler–Bernoulli

column with multiple

internal elastic sliders
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are reported in Appendix for convenience. On the

other hand, the definition of the successive derivatives

of distributions and the related rules can be found in

[29–31].

Equation (4) does not provide an explicit expres-

sion for the deflection function u nð Þ since it depends

on the unknown discontinuity DuðniÞ at ni that

requires, in view of Eq. (1), the evaluation of the

third derivative of the deflection function u000ðn�i Þ at

the same cross section.

Substitution of Eq. (1) into Eq. (4), and evaluation

of the third derivative, provides the following expres-

sion for u000ðn�i Þ:

u000 n�i
� �

¼ h�
000

1 n�i
� �

u 0ð Þ þ h�
000

2 n�i
� �

u0 0ð Þ
þ h�

000

3 n�i
� �

u00 0ð Þ þ h�
000

4 n�i
� �

u000 0ð Þ

�
Xi�1

k¼1

�h�
000

k n�i
� �

ki u000 n�k
� �

ð6Þ

The third derivative of the deflection function at n�i ,

given by Eq. (6), can be transformed, after some

algebra, in explicit form as follows:

u000 n�i
� �

¼ g�1 n�i
� �

u 0ð Þ þ g�2 n�i
� �

u0 0ð Þ
þ g�3 n�i

� �
u00 0ð Þ þ g�4 n�i

� �
u000 0ð Þ ð7Þ

where the terms gþj n�i
� �

and g�j n�i
� �

, j ¼ 1; . . .; 4, to

be adopted for the compressive and the tensile axial

load, respectively, are defined by the following

expressions:

g�j n�i
� �

¼ h� 000j n�i
� �

�
Xi�1

k¼1

�h� 000k n�i
� �

k k g�j n�k
� �

;

j ¼ 1; . . .; 4

ð8Þ

Substitution of Eq. (7) into Eq. (4), in view of Eq.

(1), provides the following explicit expression of the

deflection function assumed by the column in its

buckled configuration:

u nð Þ ¼ f�1 nð Þu 0ð Þ þ f�2 nð Þu0 0ð Þ þ f�3 nð Þu00 0ð Þ
þ f�4 nð Þu000 0ð Þ ð9Þ

where

f�j nð Þ ¼ h�j nð Þ �
Xn

i¼1

�h�i nð Þk ig
�
j n�i
� �

; j ¼ 1; . . .; 4

ð10Þ
Equation (9) represents a novel achievement since,

to the best of the authors’ knowledge, explicit solution

of the static, both compressive and tensile, buckling

problem of the Euler–Bernoulli beam in presence of

multiple elastic internal sliders, allowing a convenient

parametric analysis, has never been presented in the

literature. Equation (9) requires the enforcement of

four boundary conditions in order to obtain the

buckling load and the relevant buckling shape. In

particular the case of clamped–clamped column with

single and multiple elastic internal sliders will be

extensively treated in Sect. 4.

3 The moment discontinuities at the internal

sliders

The proposed model based on the use of distributions,

discussed in the previous section, implies that the

discontinuity conditions due to the elastic internal

sliders are embedded in the explicit closed form

solution of the column. Precisely, at cross-sections

at abscissae ni, the column undergoes a transversal

deflection discontinuity that has to be considered in the

deformed configuration to study the stability problem.

Due to the presence of the axial load the mentioned

deflection discontinuity implies a discontinuity of the

bending moment as depicted in Fig. 2.

When classical approaches, requiring the enforce-

ment of additional conditions at the discontinuity

cross-sections, are adopted, the latter bending moment

discontinuity has to be accounted for explicitly by

imposing the following condition at the discontinuity

cross-sections:

u00 nþi
� �

� u00 n�i
� �

¼ �r2 u nþi
� �

� u n�i
� �� �

;
i ¼ 1; . . .; n

ð11Þ

In addition, at n i, the rotation and shear force

continuity has to be enforced as follows u0 nþi
� �

¼
u0 n�i
� �

; u000 nþi
� �

¼ u000 n�i
� �

together with the deflec-

tion discontinuity u nþi
� �

� u n�i
� �

¼ �k i u000 n�i
� �

.

The explicit closed form solution presented in Eqs.

(9), (10) holds for any number of deflection discon-

tinuities and requires the evaluation of four boundary

conditions only. On the contrary, classical approaches

do not provide explicit closed form solutions since

require four additional boundary conditions for each

singularity. Hence the adoption of Eqs. (9), (10) is

recommended for columns with multiple singularities.

The latter statement is proved in the next section
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where explicit form of the buckling load characteristic

equation is derived for the clamped–clamped column.

4 The case of a clamped–clamped column

with internal elastic sliders subjected to an axial

compressive/tensile load

The adoption of classical approaches to the problem at

hand would require enforcement of continuity condi-

tions at each cross-section endowed with an internal

slider. As a consequence, no explicit solution of the

governing equation has been previously presented.

The consequent buckling load equation would be

obtained by a matrix whose order increases with the

number of sliders. On the contrary, the passages

presented from Eqs. (3) to (10) lead to a solution in

terms of four integration constants only, as also

required by columns without any singularity. What-

ever the number of sliders, four conditions only have

to be enforced to derive the buckling load equation.

The closed form solution presented in Sect. 2 is here

exploited to study the case of a clamped–clamped column

in presence of multiple elastic internal sliders. The

buckling load characteristic equation is obtained by the

following boundary conditions for the case at hand:

u 0ð Þ ¼ 0; u0 0ð Þ ¼ 0; u 1ð Þ ¼ 0; u0 1ð Þ ¼ 0

ð12Þ
In view of the closed-form solution provided by

Eqs. (9), (10), enforcement of the boundary conditions

in Eq. (12) leads to:

GðrÞ ¼ f�3 1ð Þ f�4 1ð Þ
f�
0

3 1ð Þ f�
0

4 1ð Þ

� �
u00ð0Þ
u000ð0Þ

" #

¼
0

0

" #

ð13Þ

where, in view of Eqs. (5), (10), the terms f�3 1ð Þ,
f�4 1ð Þ, f� 03 1ð Þ, f� 04 1ð Þ are given the following compact

form:

f�3 1ð Þ ¼ � 1� c�

r2
þ
Xn

i¼1

C�i k ig
�
3 n�i
� �

;

f�4 1ð Þ ¼ � 1

r3
r� s�
� �

þ
Xn

i¼1

C�i k ig
�
4 n�i
� �

f�
0

3 1ð Þ ¼ s�

r
�
Xn

i¼1

rS�i k ig
�
3 n�i
� �

;

f�
0

4 1ð Þ ¼ � 1� c�

r2
�
Xn

i¼1

rS�i k ig
�
4 n�i
� �

ð14Þ

where the following positions have been introduced:

sþ ¼ sin r; cþ ¼ cos r; Sþi ¼ sin r 1� nið Þ;

Cþi ¼ cos r 1� nið Þ; s� ¼ sinh r; c� ¼ cosh r;

S�i ¼ sinh r 1� nið Þ; C�i ¼ cosh r 1� nið Þ ð15Þ

and the terms g�3 n�i
� �

, g�4 n�i
� �

, are given, in view of

Eqs. (5), (8), as follows:

gþ3 n�i
� �

¼�rsinrni�
Xi�1

k¼1

r3 sinr ni�nkð Þkk gþ3 n�k
� �

g�3 n�i
� �

¼ rsinhrni�
Xi�1

k¼1

r3 sinhr ni�nkð Þkk g�3 n�k
� �

gþ4 n�i
� �

¼ cosrni�
Xi�1

k¼1

r3 sinr ni�nkð Þkk gþ4 n�k
� �

g�4 n�i
� �

¼ coshrni�
Xi�1

k¼1

r3 sinhr ni�nkð Þkk g�4 n�k
� �

ð16Þ
The buckling load characteristic equation is

obtained by setting equal to zero the second-order

determinant of the system of Eqs. (13), expressed in

terms of the axial load parameter r, in view of

Eq. (14), as follows:

NN
N

NN

Δ u
N N

N

Δ = ΔM N uFig. 2 Bending moment

discontinuity due to the axial

load at a cross-section with

an internal slider

Meccanica (2015) 50:707–720 711

123



� 1� c�

r2
þ
Xn

i¼1

C�i k if�
000

3 nið Þ
" #

� � 1� c�

r2
�
Xn

i¼1

rS�i k if�
000

4 nið Þ
" #

� � 1

r3
r� s�
� �

þ
Xn

i¼1

C�i k if�
000

4 nið Þ
" #

� s�

r
�
Xn

i¼1

rS�i k if�
000

3 nið Þ
" #

¼ 0

ð17Þ

Equation (17) is the sought explicit form for the

buckling load characteristic equation where the upper

sign and the upper apex have to be adopted for the

compressive axial load, while the lower sign and the

lower apex for the tensile axial load.

Once the compressive/tensile critical values of the

axial load parameter r2 ¼ NL2

EI
are obtained, by

solving Eq. (17), the critical compressive/tensile

buckling shapes are obtained by determining the

two unknown boundary values u00 0ð Þ ; u000 0ð Þ, by

solving the system in Eq. (13), and substituting in

the solution (9).

5 Numerical applications

The proposed explicit closed form expressions pre-

sented in the previous sections are here exploited to

investigate on the influence of single and multiple

elastic internal sliders on the column buckling with

regard to the position, spatial distribution and the

compliance of the elastic slider.

The detailed buckling behaviour will be discussed

both for the compressive and the tensile case and a

comparative analysis is also presented in this section.

5.1 A single elastic slider

The case of a single slider is considered in Fig. 3

where the buckling load values, in terms of the r2 ¼
NL2

EI
parameter, versus the slider position n1 is reported.

In Fig. 3 the upward values of r2 refer to the

compressive buckling load, the downward values to

the tensile load.

Besides the horizontal line at r2 ¼ 4p2, represent-

ing the Euler compressive buckling load of the

homogeneous column without slider, five curves have

been reported for different values of compliance

Fig. 3 Buckling load

parameter r2 versus the

slider position n1 for a

clamped–clamped column

with a single elastic slider

for given values of the

compliance parameter k
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k ¼ 0:01; 0:05; 0:1; 0:5; 1. With regard to the

compressive buckling load values, different behav-

iours are shown as the compliance k increases. A

detailed description is as follows. When the slider is

adjacent either to the clamped end (n1 ¼ 0) or to the

middle cross-section (n1 ¼ 0:5), low values of k do not

alter the buckling load with respect to the homoge-

neous column. Furthermore, for low values of the

compliance parameter k, the maximum decrement of

the compressive buckling load is attained at an

intermediate position of the slider. On the other hand,

as the compliance k increases the buckling load value

diminishes when the slider is next to the clamped end

or the middle cross-section. Finally, for high values of

the compliance k the compressive buckling load

obtained for the slider at the clamped end represents

the absolute minimum.

With regard to the tensile case it has to be

preliminarily remarked that no buckling phenomenon

occurs in the homogeneous column (i.e. without any

slider) or when the slider is located at the clamped end.

Then, Fig. 3 shows that, as the slider moves from the

clamped end, the tensile buckling phenomenon

appears. Precisely, the tensile buckling load decreases

as the abscissa n1 increases from 0 up to 0.5. The

minimum value of the tensile buckling load is attained

at the middle cross-section n1 ¼ 0:5. It has to be

remarked that, except for the range 0� n1\0:1, the

values of the tensile buckling load are comparable to

the compressive buckling load ones.

Furthermore, it has to be noted that, when the slider

is located at the middle cross-section and for the

elastic compliance parameter k!1, the values of

compressive and tensile buckling load r2 ¼ 31:3526

and r2 ¼ 5:7993, respectively, obtained in the litera-

ture by Zaccaria et al. [26] for a slider, in absence of

any translational elastic spring, are recovered.

In order to present a wider perspective regarding the

influence of the slider compliance, in Fig. 4 the

buckling load is plotted against the compliance

parameter k for different positions n1 ¼
0:1; 0:25; 0:4; 0:5 of the internal slider. For all

cases, as the compliance parameter k increases, the

buckling load undergoes a rapid decrement and tends

asimptotically to a constant value. Furthermore, for

the compressive case the buckling load increases as

the slider moves towards the middle cross-section

(except for very small values of the compliance

parameter) while for the tensile case the buckling load

decreases.

The buckling shapes for the compressive and the

tensile cases are depicted in Figs. 5 and 6, respec-

tively, for the slider at the middle cross-section with

a high value k ¼ 10 of the elastic compliance. As

already enhanced in the literature [26] for the case of a

single slider without the translational elastic spring

(i.e. k!1) compressive and tensile buckling occur

with different shapes as it is clearly shown by a

comparison of Figs. 5a and 6a. Furthermore, the

buckling shape in terms of rotation function undergoes

Fig. 4 Buckling load

parameter r2 versus the

compliance parameter k for

a clamped–clamped column

with a single elastic slider

for given values of the slider

position n1

Meccanica (2015) 50:707–720 713
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a change of sign in the compressive case (Fig. 5b) that

is not encountered for the tensile case (Fig. 6b).

Moreover, the displacement and bending moment

discontinuities appropriately captured by the adopted

model, as clearly outlined in Sect. 3, appear for both

compressive (Fig. 5a, c) and tensile (Fig. 6a, c)

buckling. Buckling shapes expressed in terms of

rotation (Figs. 5b, 6b) and shear force (Figs. 5d, 6d)

are continuous but undergo first order discontinuities.

The shear force is close to zero at the middle cross-

section in view of the high value assumed for the

elastic compliance.

5.2 Two elastic sliders at symmetric positions

The presented model allows to analyse the case of two

internal sliders with elastic springs without the intro-

duction of any additional condition at the discontinuity

Fig. 5 Compressive

buckling shape functions

clamped–clamped column

with a single slider (k = 10,

n1 = 0.5) in terms of

a displacement and rotation

and b bending moment and

shear force

Fig. 6 Tensile buckling

shape functions clamped–

clamped column with a

single slider (k = 10,

n1 = 0.5) in terms of

a displacement and rotation

and b bending moment and

shear force
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cross-section. As a matter of example the two sliders

are here considered endowed with the same elastic

compliance and placed at symmetric positions along

the column axis identified by the distance from the

clamped ends denoted as n1.

In Fig. 7 the buckling load parameter r2 versus the

slider position parameter n1 is reported.

It can be noted that, both for compressive and

tensile load, the buckling load decreases monotoni-

cally for a fixed position n1 of the internal sliders as the

spring compliance increases. On the contrary, Fig. 7

shows that, for a fixed value of the spring compliance,

the buckling load undergoes a non monotonic behav-

iour. The latter non monotonic behaviour is due to the

presence of corners in the buckling load curves that

correspond to sudden switches to different buckling

shapes. Precisely, for the compressive case two

corners for each curve are shown in Fig. 7 denoting

three different regions of the slider positions where

buckling occurs with different mode shapes. The first

region, where both sliders are adjacent to the clamped

end, and the third region, identified by both sliders

next to the middle cross-section, correspond to

compressive buckling occurring with anti-symmetric

shapes as depicted in Fig. 8a, c for n1 ¼ 0:05 and

n1 ¼ 0:49, respectively. The second, more extended,

region comprising intermediate positions of the slid-

ers, induces compressive buckling with the symmetric

shape as reported in Fig. 8b for the case n1 ¼ 0:25.

For the tensile case, one corner only is encountered

in Fig. 7 for each curve. This corner point separates

positions of the two sliders inducing symmetric tensile

Fig. 7 Buckling load

parameter r2 versus the

slider position n1 for a

clamped–clamped column

with two symmetric elastic

sliders for given values of

the compliance parameter k

Fig. 8 Buckling shapes for

a clamped–clamped column

in compression for different

positions of two symmetric

sliders (k = 0.05)
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buckling shapes from anti-symmetric buckling shapes.

Two examples of the latter cases are depicted in Fig. 9a,

b where the symmetric and anti-symmetric buckling

shapes are reported for the tensile load for n1 ¼ 0:25

and n1 ¼ 0:4, respectively. In addition, Fig. 7 shows

that the mentioned corner for tensile buckling curves

moves toward the middle cross-section as the elastic

compliance parameter increases. As a result the region

of the slider positions inducing a symmetric tensile

buckling shape becomes wider as the elastic springs

stiffness decreases. Under the latter circumstance

the anti-symmetric shape, somehow resembling that

obtained for the single slider, occurs only when the

two sliders approach the middle cross-section.

5.3 Multiple elastic sliders evenly distributed

along the axis

The proposed closed form solution allows a straight

treatment of buckling of columns with multiple

singularities due to elastic sliders that are here

considered, as a matter of example, placed at constant

intervals along the axis. The case of the Euler–

Bernoulli column with multiple elastic sliders is the

natural evolution of the Euler–Bernoulli column with

a single internal slider without elastic spring studied in

[26].

In particular, in Fig. 10 the buckling load parameter

r2 versus the number n of sliders is reported.

Inspection of Fig. 10 reveals that a rapid decrement

of the compressive buckling is shown from a single to

a double slider; on the other hand, as the number of

sliders increases, the decrement of the compressive

buckling load attenuates. The same rapid decrement

with the occurrence of the second slider is not

encountered in the tensile case. Furthermore, Fig. 10

shows that the tensile buckling load becomes less

sensitive to the number of sliders as the elastic

compliance parameter k increases.

Finally, in Fig. 11 the deflection buckling shapes

are presented for n ¼ 20 sliders evenly distributed

along the column axis and with the same compliance

Fig. 9 Buckling shapes for

a clamped–clamped column

in tension for different

positions of two symmetric

sliders (k = 0.05)

Fig. 10 Buckling load

parameter r2 versus the

number of sliders for a

clamped–clamped column

for given values of the

compliance parameter k
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parameter k ¼ 0:1, both for the compressive and the

tensile case.

At this stage it is worth mentioning that the tensile

buckling behaviour in the considered Euler–Bernoulli

column arose from the presence of multiple elastic

sliders. On the other hand, since the tensile buckling

has been also encountered in columns with distributed

shear deformation, consistently to the classical Tim-

oshenko model, a comparison between the two models

deserves attention.

In the classical Timoshenko column the compres-

sive buckling occurs under a symmetric buckling

shape while the tensile buckling under an anti-

symmetric buckling shape as shown in [25]. On the

other hand, for the Euler–Bernoulli column with

multiple elastic sliders, it can be observed in Fig. 11

that the compressive and tensile buckling occur with a

symmetric and an anti-symmetric shape, respectively,

that are compared with buckling shapes of the

Timoshenko column where the normalised shear

stiffness parameter br2 ¼ EI
GA

L2 ¼ 0:5 (with GoAo the

column shear stiffness) has been adopted.

A final comparison between the Euler–Bernoulli

column with multiple elastic sliders and the homoge-

neous Timoshenko column is provided in Fig. 12.

The buckling load values r2 ¼ 10:61064 (compres-

sive) and r2 ¼ 11:066 (tensile) of the Timoshenko

column with br2 ¼ 0:4 p2obtained in [25] are

compared with the Euler–Bernoulli beam with an

increasing number n of internal elastic sliders. To this

aim, it has to be pointed out that the normalised shear

stiffness parameter of the Timoshenko column can be

related to the compliance of the elastic sliders as

follows br2 ¼ 1
nk. Inspection of Fig. 12 reveals that the

buckling load of the uniform Timoshenko column

with equivalent shear stiffness parameter br2 ¼ 0:4 p2

is recovered as the number of elastic sliders in the

Euler–Bernoulli column increases.

It can be concluded that, although the Euler–

Bernoulli model is not characterised by shearing

strain and angular distortion, proper of the Timo-

shenko model, multiple elastic internal sliders are

able to reproduce the effect of the distributed shear

deformation of the Timoshenko column. The Euler–

Bernoulli column with multiple elastic sliders

might, hence, be considered somehow as a discrete

counterpart of a column with distributed shear

deformation according to the classical Timoshenko

model.

Shear deformations, implying angular distortion

between the cross-section and the beam axis, in a beam

segment produce a difference of transversal displace-

ment between the two extreme cross-sections of the

segment while an internal slider induces a difference

of transversal displacement concentrated at a cross-

section (discontinuity).

Fig. 11 Buckling shapes

for a clamped–clamped

column with 20 evenly

distributed sliders with

k = 0.1 (discontinuous

lines) and for the uniform

Timoshenko column with

shear stiffness parameter

br2 ¼ 0:5 (continuous

lines): a compressive and

b tensile buckling

Meccanica (2015) 50:707–720 717

123



It can hence be stated that transversal deflection

discontinuities can be addressed to as ‘‘shear defor-

mation singularities’’, even though applied to the

Euler–Bernoulli model, in the sense that has been

above clarified, i.e. shear deformations occurring in an

infinitesimal beam segment.

6 Closure

In this work tensile and compressive buckling of

the Euler–Bernoulli column in presence of multiple

elastic sliders, interpreted as shear deformation sin-

gularities, has been investigated. The presented model,

relying on the use of distributions, allowed the

formulation of a novel exact solution in explicit form.

The presented study is concluded by addressing the

following question that has been posed in the Introduc-

tion: ‘‘Is the Euler–Bernoulli column with an internal

slider somehow related to the Timoshenko column?’’.

On the basis of the presented results, it can be stated

that the Euler–Bernoulli column with shear deformation

singularities can be considered as the discrete counter-

part of the uniform Timoshenko column and its accuracy

in terms of compressive/tensile buckling load depends

on the number of singularities considered in the model.

The presented model, showing static bifurcation of

the field equations due to the presence of internal

translational springs, reproduces somehow the consti-

tutive bifurcation usually occurring under yielding or

else in materials with a high shear deformability in the

elastic regime.

Appendix

In this appendix, starting from the governing equation

of the Euler–Bernoulli column in presence of multiple

deflection discontinuities, the key passages leading to

the expression of the deflection function in the buckled

configuration in Eq. (4), together with the definition

of the functions h�1 nð Þ; h�2 nð Þ; h�3 nð Þ; h�4 nð Þ; �h�i
nð Þ reported in Eq. (5), are presented in detail.

Precisely, application of the Laplace transform to

Eq. (2) leads to:

s4uðsÞ � s3uð0Þ � s2u0ð0Þ � s u00ð0Þ � u000ð0Þ
� r2s2uðsÞ � r2s uð0Þ � r2u0ð0Þ

¼
Xn

i¼1

s3e�s xiDu nið Þ ð18Þ

where uðsÞ ¼ L uðnÞf g is the Laplace transform of the

deflection function uðnÞ, the variable s being the

complex frequency variable introduced to perform the

Laplace transform. Solving Eq. (18) in terms of uðsÞ
leads to:

uðsÞ ¼ 1

s
u 0ð Þ þ 1

s2
u0 0ð Þ þ 1

s s2 � r2ð Þ u
00 0ð Þ

þ 1

s2 s2 � r2ð Þ u
000 0ð Þ

þ 1

s2 s2 � r2ð Þ
Xn

i¼1

s3e�s xiDu nið Þ ð19Þ

The inverse Laplace transform of Eq. (19) provides

the expression of the deflection function u nð Þ ¼

Fig. 12 Buckling load

parameter r2 vs the number

of sliders for a clamped–

clamped Euler–Bernoulli

column (continuous lines)

and for the uniform

Timoshenko column

(dashed lines) with

br2 ¼ 0:4 p2
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L �1 uðsÞf g in the original spatial normalised abscissa

n. However, application of the inverse Laplace

transform provides two different expressions for the

deflection function u nð Þ according to the sign of the

buckling parameter r2 as follows:

u nð Þ ¼ u 0ð Þ þ u0 0ð Þ þ u00 0ð Þ
r2

1� cos rn½ �

þ u000 0ð Þ
r3

rn� sin rn½ �

þ
Xn

i¼1

Du nið Þ cos r n� nið ÞU n� nið Þ

ð20Þ

when the case of compressive axial load is considered

in Eq. (19), and:

u nð Þ ¼ u 0ð Þ þ u0 0ð Þ þ u00 0ð Þ
r2

cosh rn� 1½ �

þ u000 0ð Þ
r3

sinh rn� rn½ �

þ
Xn

i¼1

Du nið Þ cosh r n� nið ÞU n� nið Þ

ð21Þ

if, otherwise, the case of tensile axial load, for the

buckling parameter r2 appearing in Eq. (19), is

considered.

Equations (20) and (21) are equivalent to the

compact form reported in Eq. (4) in the main text if the

definitions proposed in Eq. (5) for the functions

h�1 nð Þ; h�2 nð Þ; h�3 nð Þ; h�4 nð Þ; �h�i nð Þ are accounted for.
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18. Caddemi S, Caliò I (2008) Exact solution of the multi-

cracked Euler–Bernoulli column. Int J Solids Struct 45(16):

1332–1351
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