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Abstract The paper focuses on the deformation

behaviour of isotropic and orthotropic plates subjected

to bending moments distributed along the edges, two

couples M0 and -M0 along the longitudinal and the

transverse direction, respectively. It can be experimen-

tally noted that the deformed shape of the plate tends to

be a saddle for low values of M0 and cylindrical for high

values of M0. The linear Kirchhoff plate model predicts

‘saddle-shaped’ deformations for all values of M0. A

model based on energy minimisation and taking into

account geometrical nonlinearities is capable to predict

the transition from a deformed shape to another: the

phenomenon is affected by the plate length-to-width

ratio (aspect ratio) and by material anisotropy. These

effects are explored throughout the paper.

Keywords Plate deformation � Bending

moment � Bifurcation of the solution

1 Introduction

The study of the pure bending of plates is far from

being of exclusive academic interest and has many

important practical/industrial implications. For

instance, bi-metallic plates and disks subjected to

uniform temperature differentials [1], unsymmetric

composite plates subjected to residual curing stress [2–

9] and transient hygrothermal stress [10, 11], compos-

ite and hybrid multilayered plates for multifunctional,

morphing and smart structural applications [12–20] are

all examples of initially flat structures subjected to

almost uniform bending load. The mechanical behav-

iour of some biological structures can be also simulated

by employing models of plates under bending [21].

Ashwell [22] has presented an analytical solution for

the pure bending of rectangular beams and plates,

covering the nonlinear regime and showing that non-

linearities in the bending response are strongly coupled

to the development of anticlastic curvature, whose

magnitude may be in turn related to the plate length-to-

width ratio (aspect ratio, AR) and to the applied bending

moment. Some development of the Ashwell solution

has been provided by Pao [23] who proposed a simple

bending analysis of laminated plates by large-deflection

theory, and by Hyer and Bhavani [24], who provided

experimental validation to the Ashwell’s and Pao’s

models, for both isotropic and composite plates.

Real structures are rarely subjected to pure simple

bending though—in several cases [1–21]—their state

of stress can be approximated by a uniform double
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bending load set; for sample structures—such as the

Timoshenko’s bi-metallic strip and of the Hyer’s 0/90

unsymmetric composite sample—a temperature dif-

ferential promotes a double curvature distortion,

whose magnitude depends on the intensity of the

heating/cooldown load and on the coefficient of

thermal expansion of the elementary lamina [1, 2]:

this behaviour can be relatively complex, as curvatures

may depend nonlinearly on the applied thermal load

and exhibit multistability and bifurcation behaviour.

Experiments on 0/90 composite samples thermally

loaded [2] reveal that the plate deformed shape tends to

be saddle-like (characterised by two curvatures of equal

magnitude and opposite sign) and cylindrical-like,

respectively, for low and high values of the temperature

differential: more precisely, starting from a flat config-

uration, a saddle-like deformed shape develops for low

values of the temperature differential while a cylindri-

cal-like deformed shape (whose generator may be along

the longitudinal or the transverse direction) takes place

starting from a critical value of temperature—more or

less well identified experimentally. For high values of

the temperature differential in fact two cylindrical-like

deformed shapes tend to coexist—one along the

longitudinal, another along the transverse direction—

separated by a snap-though event: one shape may be

reached starting from the other by applying a snapping

force. The above reasoning applies for square plates: as

far as rectangular plates are concerned multistability

can be lost [9] depending on the plate aspect ratio (AR,

that is, the plate length-to-width ratio).

The difference between the structural problem of a bi-

material structure bent by internal/residual strain/stress

(Timoshenko’s bi-metallic strip, Hyer’s 0/90 unsym-

metric composite plate) and that of a plate subjected to a

pure double bending moment at its edges and is more

apparent than substantial. Of course, the locking of a

residual strain/stress field into a bi-material structure will

results in multistability at room temperature, while, for

plates subjected to bending loads, multiple solutions will

vanish as soon as the bending moments are removed. In

this sense, the term multistable may sound inappropriate

for doubly bent flat plates. However both structural cases

may be approximated by a uniform double bending load-

set and may exhibit bifurcation behaviour. The existence

or the lack of bifurcation behaviour—in both cases—is

crucial to the existence of multiple solutions in the

bifurcated regime. For the bi-material structure bent by

residual strain/stress, an ‘‘equivalent’’ bending moment

can be calculated, so that a full—though approximate—

analogy with the flat plate subjected to bending load at

the edges can be singled out.

The present paper tries to put forward the nonlinear

bending analysis carried out by Ashwell [22], extend-

ing it to the case of double bending solicitation and

exploring in detail the case of flat square/rectangular

isotropic/anisotropic plates subjected to pure double

bending moments along the four edges. This analysis

is closer than Ashwell’s to structural cases of practical

interest [1–21] but somehow simpler than many

literature models devoted to the simulation/interpre-

tation of complex tests on multistable structures [12–

20, 25, 26] and aims at investigating conditions for

which multistability behaviour can be found. The

applied bending load distributed along the edges of the

plate becomes the main parameter entering the

analysis; like in Ashwell’s study [22] the plate

materials properties and geometry play a prominent

role but—differently from Ashwell—in the present

case they do affect bifurcation behaviour. To carry out

the analysis, two plate theories—both implying plane

stress conditions—are taken in consideration (Sect. 2):

the first one is based on a classical geometrically linear

model (Sect. 2.1), the second one (Sect. 2.2) employs

geometrical nonlinearities within the framework of the

Von Karman model of plates [27]. In order to find

approximate solutions to the latter model, the Ray-

leigh–Ritz method is employed by the use of two

distinct discretized displacement fields: the first one

proposed by Hyer in the 1980s [25] for the analogous

problem of a 0/90 square unsymmetric composite

plate subjected to a temperature differential and

involving four unknown coefficients (4-term model),

the second one derived from opportune discretization

of the analytical in-plane and out-of-plane displace-

ment fields presented by Ashwell [22] and Galletly

and Guest [28] and including twelve unknown coef-

ficients (12-term model). In Sect. 3 a comparison

between the two models and with a finite element

model is provided through simulations involving

several specific load cases specialized to isotropic

and orthotropic flat plates. Incidentally, the effective-

ness of the proposed displacement fields for the

analysis of more complex loading conditions (tem-

perature differentials, thermal gradients…) is extrap-

olated through discussion of the output results.

Section 3.3 offers further evaluation of the models

by comparison with the Ashwell exact theory [22] for
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the nonlinear simple bending of flat plates. For each

model, the appropriateness in predicting multistability

behaviour, possibly bifurcation behaviour, is tested;

moreover the efficiency in terms of computational

time is also estimated.

Concluding, the final aim of the paper is twofold:

– to investigate the nonlinear double bending of flat

square/rectangular isotropic/anisotropic plates as a

sample case for the study of multistable structure

(Sects. 3.1, 3.2): in this context the work by

Ashwell [22] is put forward and employed (Sect.

3.3) as a support for discussion,

– to investigate the effectiveness of a simple high-

order/low-term polynomial approximation for the

efficient simulation of this load case, testing its

potential ability to be employed for more complex

applications.

2 Model approach

2.1 Geometrically linear plate theory

Let us consider an initially flat plate subjected to

uniform bending moment distributed along the four

edges, Mxx = M0 along the x direction, (longitudinal

direction) and Myy = -Mxx = -M0 along the y direc-

tion (transverse direction), see Fig. 1: this scheme can

be representative of more complex loading conditions

such as those presented in the introductory section, this

point will be discussed in Sect. 3.

According to the linear theory of plates (Kirchhoff

model, [27]) the longitudinal and transverse in-plane

strains, Exx and Eyy are given by

Exx ¼ E0
xx � zKxx ¼

ouðx; yÞ
ox

� z
o2wðx; yÞ

ox2

Eyy ¼ E0
yy � zKyy ¼

ovðx; yÞ
oy

� z
o2wðx; yÞ

oy2

ð1Þ

in which Exx
0 and Eyy

0 are the membrane longitudinal

and transverse in-plane strains, while Kxx and Kyy are

the longitudinal and the transverse curvatures of the

plate. By Eq. 1 it is noted that Exx and Eyy are linear

functions of the longitudinal and transverse in-plane

displacement fields, u(x, y) and v(x, y), and of w(x, y),

which is the out-of-plane displacement field: all fields

depend uniquely on x and y. Equation 1 gives also a

definition of curvature along a given direction which

is linearly related to w(x, y) and calculated as the

second derivative of w(x, y) with respect to that

direction. The relations

Mxx ¼ DðKxx þ vKyyÞ
Myy ¼ DðKyy þ vKxxÞ ð2Þ

express the simplest constitutive law for an elastic and

isotropic material with bending stiffness D and Pois-

son ratio m. Taking into account the appropriate

boundary conditions, that is:

– the out-of-plane displacement w(x, y) is zero at the

centre of the plate,

– the local rotation of the plate along the x and

y directions (that is, the first derivative of the out-

of-plane displacement with respect to these direc-

tions) is zero at the centre of the plate,

under the constraints Mxx = -Myy = M0 it allows

finding the following explicit expression for the out-

of-plane displacement field.

wðx; yÞ ¼ M0

2Dð1� vÞ ðx
2 � y2Þ ð3Þ

This result is exact within the limits of the linear

theory. According to this model, the in-plane displace-

ments are identically equal to zero while the out-of-

plane displacement field is a quadratic function of x and

y: this means that the curvature fields are uniform across

the plate (they do not depend on x or y), moreover they

are of equal magnitude and opposite sign (saddle-like

deformed shape) for each value of M0.

Fig. 1 Geometry of the plate and schematics of the applied

bending load
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This theory fails predicting the behaviour observed

through experiments on bi-metallic disks, 0/90 com-

posite plates, multistable morphing plates [1–21] and

works only qualitatively for low M0 values: when the

out-of-plane displacement becomes higher than the

smallest plate dimension (for instance the thickness)

the geometrically linear theory must be abandoned.

2.2 Geometrically nonlinear plate theory

According to the simplest geometrically nonlinear

plate model [27]—usually referred as Von Karman

plate model—the in-plane strains are given by

Exx ¼ E0
xx � zKxx

Eyy ¼ E0
yy � zKyy

ð4Þ

with

E0
xx ¼

ouðx; yÞ
ox

þ 1

2

owðx; yÞ
ox

� �2

E0
yy ¼

ovðx; yÞ
oy

þ 1

2

owðx; yÞ
oy

� �2
ð5Þ

and

Kxx ¼
o2wðx; yÞ

ox2

,
1þ owðx; yÞ

ox

� �2
 !3=2

ffi o2wðx; yÞ
ox2

Kyy ¼
o2wðx; yÞ

oy2

,
1þ owðx; yÞ

oy

� �2
 !3=2

ffi o2wðx; yÞ
oy2

ð6Þ
The membrane in-plane strains are related by

nonlinear relationships to the out-of-plane displace-

ment function (in-plane/out-of-plane coupling, Eq. 5),

while the curvatures defined by Eq. 6 are equivalent to

those in Eq. 1 only for moderate rotations, that is,

when the square of the local rotation function is

everywhere a small number with respect to unity. The

total potential energy of the plate, E, can be written

down as

E ¼
Z
v

1

2
E �QEdVþ Eext ð7Þ

in which E is the strain tensor, Q is the plane stress

elasticity tensor, V is the volume of the plate (Lx * Ly *

e) and Eext the potential of the applied external bending

moments [27]. The solution of the variational problem

dE ¼ 0 ð8Þ

—asserting that the total potential energy of the plate

is stationary at equilibrium—allows finding the

unknown displacement field and since nonlinearities

are involved by Eqs. 5 and 6, multiple solutions can be

found. Stable solutions are those for which

d2E [ 0 ð9Þ
An exact solution based on Eq. 8 is difficult to find

in the general case, even for the specific and relatively

simple problem treated here.

The so called Rayleigh–Ritz method can be

employed by searching approximate solutions

uR(x,y,z) of u(x,y,z) in the sub-space of the q base

functions vi(x,y,z) (i = 1 … q)

uRðx; y; zÞ ¼
Xq

i¼0

aiviðx; y; zÞ ð10Þ

ai are unknown parameters while vi(x,y,z) are a priori

chosen base functions (such as polynomial and

trigonometric functions, Tchebychev polynomials…)

which have to satisfy kinematics boundary conditions

only. According to the discretisation in Eq. 10, the

total potential energy takes the form

ER uRðx; y; zÞ
� �

¼ ERðaiÞ ð11Þ

therefore Eqs. 8 and 9 become

oER

oai

¼ 0 i ¼ 1. . .q
o2ER

oaioai

[ 0 ð12Þ

The problem is thus to find a set of kinematically

admissible displacement field functions giving a good

approximation of the actual displacement fields,

satisfying all the kinematics boundary conditions and

the compatibility condition.

o2E0
xx

oy2
þ

o2E0
yy

ox2
� 2

o2E0
xy

oxoy
þ o2w

ox2

o2w

oy2
� o2w

oxoy

� �2
( )

¼ 0

ð13Þ
The search for appropriate functions is not trivial;

recently Vidoli [26] has reported an exhaustive and

general study concerning the employment of discrete

approximations of the Foppl-von Karman shell model,

showing that the intrinsic complexity of the solution

for plates subjected to thermal loads requires
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simultaneous enrichment of the in-plane and out-of-

plane displacement base functions.

A very first choice, proposed by Hyer [25], consists

in assuming the out-of-plane function coming from the

linear theory (Eq. 3)

wR4ðx; yÞ ¼ 1

2
ðax2 þ by2Þ ð14Þ

and deducing the in-plane displacement field functions

in such a way that they satisfy the compatibility

conditions (Eq. 13)

uR4ðx; yÞ ¼ cx� a2x3

6
� abxy2

4

vR4ðx; yÞ ¼ dy� b2y3

6
� abx2y

4

ð15Þ

Equations 14 and 15 represent the displacement

field presented by Hyer [25] for the nonlinear bending

of 0/90 unsymmetric plates under thermal solicita-

tions. The model—referred as 4-term model, the

superscript R4 indicating such a discretisation—

involves low order polynomial functions for the

description of the plate displacements: the out-of-

plane functions are polynomials of order two with two

unknown terms; the in-plane displacements are poly-

nomials of order three with two additional unknown

terms. According to Eq. 6—under the hypothesis of

moderate rotations—the longitudinal and transverse

curvatures are uniform across the plate and expressed,

respectively, by the a and b coefficients of Eq. 14. In a

historical perspective, Hyer’s model has been essential

for providing a reasonable explanation for the com-

plex multistable behaviour observed in thermally

loaded asymmetric composite plates and for predict-

ing their cured shapes and still constitutes a reference

solution for researchers and scholars approaching the

behaviour of smart plates and shells in the nonlinear

regime (see the recent review by Herakovich [29] on

the matter).

Let us have a qualitative look at the Hyer’s

solution—initially developed for 0/90 composite

plates under temperature differentials—for the case

of a plate subjected to double bending moment

distributed along the four edges and see in what this

solution differs from the linear one. The qualitative

comparison between the linear and the nonlinear

4-term model can be appreciated in Fig. 2, in which

the longitudinal and transverse curvatures—Kxx and

Kyy (corresponding to the a and b parameters of the

nonlinear 4-term model)—are schematically illus-

trated as functions of the applied bending moment,

M0 = Mxx = -Myy.

According to Eq. 3, the curvatures calculated by the

linear theory are of equal magnitude and opposite sign

for all M0 values, the deformed shape is saddle-like

across the whole explored loading range, and vary in a

linear fashion with respect to M0. The a and b

curvatures of the nonlinear 4-term model are of equal

magnitude and opposite sign up to a critical M0 value

(referred as M0c) so that the saddle-like solutions are

available along the path O–A: in this range they vary

in a nonlinear fashion with respect to the applied

bending moment. Beyond M0c, a bifurcation phenom-

enon takes place giving rise either to a cylindrical-like

shape along the longitudinal direction (path A–B)

either to a cylindrical-like shape along the transverse

direction (path A–C): the saddle-like shape solution is

still calculated as an equilibrium solution (dotted line,

path A–D) by Eq. 12a which is unlikely to be

observed, being unstable according to Eq. 12b. M0c

corresponds to a critical bifurcation value of M0 for

which the following explicit expression can be given

Moc ¼
Ee3

1� v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20

3

1þ v

2L4
x

s
ð16Þ

Equation 16 is valid within the framework of the

nonlinear 4-term model approximation, for a square

plate with side Lx made of isotropic material and

indicates that the main parameters affecting M0c are

the material properties (Young’s modulus and Pois-

son’s ratio), the thickness of the plate and its length.

Fig. 2 Schematics evolution of the longitudinal and transverse

curvatures as a function of the applied double bending moment

(linear and nonlinear models)
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The nonlinear 4-term model captures bifurcation

behaviour also for rectangular plates: in this case—

for an isotropic plate with length Lx and width Ly—the

critical bending moment is given by

Moc ¼
Ee3

1� v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20

3

1þ v

L4
x þ L4

y

s
ð17Þ

Equation 17 predicts that the critical bending

moment is slightly affected by the plate AR. Since the

nonlinear solution derives from a numerical calcula-

tion, the critical value of the applied bending moment,

M0c, for both square and rectangular plates (Eqs. 16

and 17) is approximate and depends on the chosen

level of discretisation.

The presented bifurcation behaviour—for both

square and rectangular plates—can be referred as

symmetric bifurcation, since it exhibits the same

features along both the longitudinal and the transverse

direction: symmetric bifurcation reproduces an

abstract behaviour which can be never observed in

practice, due to structural, geometrical, material, load

imperfections. Moreover, within the framework of bi-

material plates and shells subjected to temperature

differentials, experimental evidence of bifurcation

behaviour has been reported for square configurations

but not for rectangular ones [2, 9].

The following section will be devoted to finding

an answer to the question: is a simultaneous

enrichment of the assumed in-plane and out-of-

plane displacement functions capable to enhance the

predictions of the 4-term model, in particular for

what concerns the range of existence of multistable

solutions, for both square and rectangular plates?

In order to increase the solution, the following

reasoning will be applied:

– the out-of-plane approximate displacement func-

tion, w(x, y), will be generated by proper devel-

opment (and truncation) of the Ashwell’s

analytical solution [22] for the nonlinear pure

bending of isotropic plates,

– the in-plane approximate displacement functions,

u(x, y) and v(x, y) will be developed by applying an

analogous procedure to the semi-analytical solu-

tion proposed by Galletly and Guest [28] for the

bending of composite slit tubes.

Ashwell found that—for a flat plate bent along the

longitudinal direction, x, with given radius of

curvature, R—the exact out-of-plane displacement of

a central transverse section of the plate (x = 0) is

given by

wðyÞ
e
¼ Bcosh aLy

y

Ly

� �� �
cos aLy

y

Ly

� �� ��

þCsinh aLy

y

Ly

� �� �
sin aLy

y

Ly

� �� �� ð18Þ

with

B ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ

p sinh
aLy

2

	 

cos

aLy

2

	 

� cosh

aLy

2

	 

sin

aLy

2

	 

sinhðaLyÞ þ sinðaLyÞ

ð19Þ

C ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ

p sinh
aLy

2

	 

cos

aLy

2

	 

þ cosh

aLy

2

	 

sin

aLy

2

	 

sinhðaLyÞ þ sinðaLyÞ

ð20Þ

and

aLy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ4

p Ly

Re
ð21Þ

The adimensional parameter s ¼ L2
y

Re
is important for

determining the mode of distortion: for low values of s
the plate can develop anticlastic curvature (‘linear’ or

‘beam behaviour’), for high values of s the anticlastic

curvature is constrained and the plate remains sub-

stantially flat except near the edge (‘large plate

behaviour’). It is reasonable to develop the trigono-

metric functions appearing in Eq. 1 in Taylor’s series

up to a desired order, that is

sin x ¼
X1
n¼0

ð�1Þn

ð2nþ 1Þ! x2nþ1 ð22Þ

cos x ¼
X1
n¼0

ð�1Þn

ð2nÞ! x2n ð23Þ

sinh x ¼
X1
n¼0

1

ð2nþ 1Þ! x2nþ1 ð24Þ

cosh x ¼
X1
n¼0

1

ð2nÞ! x2n ð25Þ

For instance, stopping the series (Eqs. 22–25) at

n = 1 gives

B ¼ � q

24
ðaLyÞ2 ð26Þ
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C ¼ q

2
1� 1

12

aLy

2

� �4
" #

ð27Þ

wðyÞ
e
¼ C0 þ C1y2 þ C2y4 � C3y6 ð28Þ

with

C0 ¼ �
ql
24

L2
y

Re
ð29Þ

C1 ¼
ql

2eR
�

ql3L4
y

384e3R3

 !
ð30Þ

C2 ¼
ql3

96

L2
y

e3R3
ð31Þ

C3 ¼
ql3

72e3R3
�

ql5L4
y

13824e5R5

 !
ð32Þ

in which l and q depend only upon the material

properties

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ

p
ð33Þ

q ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ

p ð34Þ

The polynomial approximation of the Ashwell

exact solution, Eq. 28, can be expanded in order to

take into account the dependency upon the x co-

ordinate, namely

wR12ðx; yÞ ¼ c1x2 þ c2y2 þ c3x4 þ c4y4 þ c5x6 þ c5y6

ð35Þ
In Eq. 35 the coefficients C0, C1, C2, C3 of Eq. 28

are replaced by 6 unknown terms, c1–c6. Since the

plate is clamped at its centre (x = 0, y = 0) the C0

terms can be setup to zero without loosing generality.

Equation 35 does not take into account mixed terms

related to the product xy, the relevance of this

approximation will be discussed next.

The in-plane displacement fields can be formulated

following a similar procedure employing the semi-

analytical displacement fields proposed by Galletly

and Guest [28] for the distortion of composite slit

tubes under bending. When the plate has a doubled

curved deformed shape, with longitudinal curvature

Kxx, a distorted section appears schematically as

illustrated in Fig. 3.

The parameter c represents the distance between the

neutral axis of the section and the center of bending,

the strain along the x direction has a linear dependence

from the location of the neutral axis. Indeed, consid-

ering a constant deformation on the neutral plane Ex,

the in-plane strain E0
xx is given by

E0
xx ¼ Ex � 1Kxx ð36Þ

where f represents the displacement from the neutral

axis, which can be expressed as (with the symbols in

Fig. 1)

1 ¼ c� b ¼ 1

Kyy

2sin
LyKyy

2

	 

LyKyy

� 1

Kyy

cos yKyy

� �
ð37Þ

The in-plane strain has therefore the form

E0
xx ¼ Ex � Kxx

1

Kyy

2sin
LyKyy

2

	 

LyKyy

� 1

Kyy

cos yKyy

� �2
4

3
5

ð38Þ
The trigonometric function can be again developed

in Taylor series and stopping the development for

n = 2, the in-plane strain becomes

E0
xx ¼ Ex þ Kxx

Kyy

2

L2
y

12
�

K2
yyL4

y

960
� y2 þ

K2
yy

12
y4

 !" #

ð39Þ

Fig. 3 Schematics of a section distortion in the case of a plate

subjected to double bending moment (the scheme follows Ref.

[28])
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and—using a set of independents coefficients.

E0
xx ¼ c7 þ c9y2 þ c11y4 ð40Þ

The in-plane strain along the y direction, Eyy
0 , can be

found by following a similar procedure, thus giving

E0
yy ¼ c8 þ c10x2 þ c12x4 ð41Þ

The in-plane displacements can be obtained by

integration of the strain fields

uðx; yÞ ¼
Z

E0
xx �

1

2

ow

ox

� �2
" #

dx ð42Þ

vðx; yÞ ¼
Z

Eo
yy �

1

2

ow

oy

� �2
" #

dy ð43Þ

The final form of the displacement field functions in

given by Eqs. 35, 44 and 45.

uR12ðx; yÞ ¼ c7x� 2

3
c2

1x3 � 8

5
c1c3x5 � 8

7
c2

3x7

� 12

7
c1c5x7 � 8

3
c3c5x9 � 18

11
c2

5x11

þ c9xy2 þ c11xy4 ð44Þ

vR12ðx; yÞ ¼ c8y� 2

3
c2

2y3 � 8

5
c2c4y5 � 8

7
c2

4y7

� 12

7
c2c6y7 � 8

3
c4c6y9 � 18

11
c2

6y11

þ c10x2yþ c12x4y ð45Þ

This model involves 12 independent parameters, c1–c12

and is referred as 12-term model, the superscript R12

indicating such a discretisation. The minimizing of the total

potential energy (Eqs. 8–9) gives a system of 12 nonlinear

equations whose unknowns are the coefficients ci.

3 Simulations

In this Section the geometrically nonlinear 12-term

model developed and presented in Sect. 2 is compared

to the Hyer’s 4-term model [25] through the analysis

of three different case studies: depending on the

application comparison with the linear theory, the

finite element model and the analytical model by

Ashwell [22] is also provided. The presentation of

results is organised in three distinct sections, namely:

– Section 3.1, which is the heart of the discussion, is

concerned with the nonlinear double bending of

square and rectangular isotropic plates. The

12-term model is compared to the 4-term model,

the linear theory and the finite element model,

– Section 3.2 is concerned with the nonlinear double

bending of square and rectangular orthotropic

plates and compares the 12-term and the 4-term

models,

– Section 3.3 focuses on the nonlinear simple bend-

ing of isotropic square and rectangular plates. Here

the 12-term and the 4-term model are both

compared to the analytical model by Ashwell [22].

3.1 Isotropic square and rectangular plates

under nonlinear double bending

The multistable behaviour of a freestanding isotropic

plate under nonlinear double bending is explored by

comparing the 12-term and the 4-term models. Since an

analytic exact solution for this problem does not exist

further comparison to a finite element model is provided;

for reference, the results of the linear model simulations

are also given. The average longitudinal and the

transverse curvatures calculated by the three models

are illustrated as functions of the applied bending

moment (Mxx = -Myy = M0); moreover the out-of-

plane displacement fields along given directions are

given as output. Material properties are given in Table 1.

While the predictions of the linear theory are found

by simply inverting Eq. 2, the curvatures of the 4-term

nonlinear model are given by the parameters a and b in

Eqs. 14 and 15, which are calculated by solving

Eq. 12 numerically by means of a MATLAB solver:

according to the 4-term model, the curvatures are

uniform across the plate. The calculation of the

curvatures predicted by the 12-term model needs

some post-processing: in this case the twelve unknown

parameters c1-c12 characterising the displacement

field functions, Eqs. 35, 44 and 45 are first calculated

numerically by a dedicated Netwon–Raphson solver

implemented in the MATLAB code then the local

curvatures (depending on x and y) calculated by means

of Eq. 6, under the hypothesis of moderate rotation.

Finite element model calculations have been per-

formed by employing the ABAQUS commercial

Table 1 Isotropic material

properties for the numerical

simple bending simulations

E (GPa) m12

70 0.33
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software and by modelling both square and rectangu-

lar plate with ‘‘S4’’ 4-node doubly curved thin shell

elements, each element being characterised by a plane

2 mm 9 2 mm surface. The bending load has been

applied at the surface edges through the ‘‘shell edge

load’’ option allowing distributing uniformly the

solicitation; by adopting a purely elastic material

behaviour, a simple 1-step static analysis has been

carried out, taking into account the large displace-

ment/moderate rotation effects through the NLGEOM

option. The main difficulty with the finite element

model is that the user has to ‘‘drive’’ the solver in the

presence of multiple solutions or in order to follow

bifurcated branches; by default the finite element

model has the tendency to follows unique branches

even when they become eventually unstable after

crossing a bifurcation point. In this case, in order to

find alternative stable solutions or to promote ‘‘switch-

ing’’ between two adjacent stable solutions, some kind

of asymmetry has to be introduced into the model, for

instance by reproducing a rather small artificial

geometrical imperfection or by integrating some

modest perturbation load at some convenient location

of the structure; in the present work a concentred force

of magnitude ± 1 N has been applied at the upper-

right plate coin to allow the plate ‘‘snapping’’ from one

stable configuration to an adjacent one (exhibiting

almost the same energetic content); this load has been

removed in an extra step in order to avoid excessive

perturbation of the numerical solution.

In order to compare the 12-term and the finite

element model (predicting nonuniform curvature

distortion) to the linear and the 4-term models the

curvatures Kxx and Kyy have been averaged by

employing the following formula

Kxx ¼
1

Lx

ZLx
2

�Lx
2

o2w

ox2

� �
y¼0

dx ð46Þ

Kyy ¼
1

Ly

ZLy
2

�Ly
2

o2w

oy2

� �
x¼0

dy ð47Þ

The material properties employed for simulations

are summarised in Tab. 1.

Figure 4a illustrates the longitudinal and the trans-

verse average curvatures as a function of M0 for a

square isotropic plate (AR = 1), as predicted by the

linear (dotted line), the 4-term (cross points), the

12-term (circles) and the finite element (continuous

line) models.

The nonlinear models behave all qualitatively as

illustrated schematically in Fig. 2 differing in a

substantial way from the predictions of the linear

theory. While the curvatures calculated by the linear

model are of equal magnitude and opposite sign

(saddle-like deformed shape), for each value of the

applied bending moment and depend linearly on M0,

the 4-term, the 12-term and the finite element nonlin-

ear models predict symmetric bifurcation behaviour,

though differing slightly from a quantitative point of

view.

Discrepancies reside above all in the prediction of

the critical bending moment, M0c, the value predicted

by the 12-term nonlinear model for a square isotropic

plate, that is

Moc ¼
Ee3

1� v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15:5

1þ v

2L4
x

s
ð48Þ

differs slightly from the equivalent value given by the

4-term model, Eq. 16. While the discrepancy resides

in the different level of discretisation characterising

the two models, the exactness of the two expressions

cannot be checked since an explicit solution for this

problem does not exist. Taking as 1 the values

calculated by the 4-term nonlinear model, Table 2

gives a comparison among the various models in the

prediction of the critical bending moment values.

Furthermore, Fig. 4b illustrates the adimensional out-

of-plane displacements (w/e) calculated along the

longitudinal (x/Lx) and transverse (y/Ly) coordinates,

respectively at y = 0 and at x = 0, for several values

of the applied bending moment. Looking at the

illustration of Fig. 4 and reading through the numer-

ical results in Table 2, the comparison with finite

element simulations does not help deciding in favour

of one of the two approximated displacement fields, at

least for square plates (AR = 1): from one side the

average curvatures predicted by the finite element

model look globally closer to the 12-term displace-

ment model, from another side as soon as the

calculation of the critical bending moment is con-

cerned, the 4-term model gives predictions which are

in good agreement with the finite element model. It

must be emphasized that the finite element model—

though sufficiently refined—by no means can be
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considered as an exact/reference solution, since its

predictions depend on the adopted numerical spatial/

temporal discretisation; this reasoning applies to the

case of square plates (AR = 1), for which the

calculation of the bifurcated branches (and of the

bifurcation point) relies on the artificial procedure

employed to catch bifurcation.

Figure 5 illustrates the average curvatures as a

function of M0 for a rectangular isotropic plate

(AR = 2), as predicted by the linear (dotted line),

the 4-term (cross points), the 12-term (circles) and the

finite element (continuous line) models.

The 4-term model keeps predicting symmetric

bifurcation behaviour, the calculated critical bending

moment (Eq. 17) differing only slightly from that

given by Eq. 16 for a square plate (AR = 1). The 12-

term and the final element model predict a completely

different behaviour: by increasing M0 a unique

cylindrical-like shape along the longitudinal direction

has the tendency to develop (path O–A), while an

alternative quasi cylindrical shape—along the trans-

verse direction—becomes available at some point

(path B–C). Unstable solutions are not plotted for both

the 12-term and the finite element model. Figure 5

brings an important conclusion about the multistable

behaviour of rectangular (but not narrow) rectangular

plates subjected to (symmetric) double bending load:

though multiple stable equilibrium shapes can be

effectively observed, the transition takes place without

classical bifurcation (point B is not a classical

bifurcation point), leading to a response behaviour

which is not symmetric. This time the finite element

predictions are in support of the 12-term model, the

agreement between the two solutions is excellent in

almost all the explored loading range.

Figure 6a illustrates the average curvatures as a

function of M0 for a rectangular isotropic narrow plate

(AR = 10), as predicted by the linear (dotted line), the

Table 2 Critical bending moment for a square isotropic plate

4-term 12-term FEM

M0c [N] 1 1,54 0,87

Fig. 4 a Longitudinal and transverse curvatures and b out-of-

plane displacement as a function of the adimensional longitu-

dinal (x/Lx) and transverse (y/Ly) coordinate for several values of

the applied double bending moment (Mxx = -Myy = M0) for a

square isotropic plate (AR = 1)
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4-term (cross points), the 12-term (circles) and the

finite element (continuous line) models.

Still for narrow strips, the 4-term model keeps

predicting symmetric bifurcation behaviour, whose

value of critical bending moment differs only slightly

from that predicted for square and moderately rectan-

gular plates. The 12-term and the finite element model

both predict a distinctly different behaviour, calculat-

ing—in all the explored loading range—a unique

saddle-like shape developing along path O–A with

increasing M0: moreover, this solution is reasonably

close to that predicted by the linear model, for almost

all values of bending loading in explored range.

Figure 6b—illustrating the adimensional out-of-plane

displacements (w/e) calculated along the longitudinal

(x/Lx) and transverse (y/Ly) coordinates, respectively

at y = 0 and at x = 0, for several values of the applied

bending moment—strengthens the conviction that the

12-term and the finite element model are predicting

the solution with almost the same level of accuracy

and are both very close to the linear solution.

In conclusion while some reserve can be expressed

concerning the ability of the 12-term nonlinear model

to predict exactly (or it should be said ‘‘more exactly

than’’ the 4-term model) the behaviour of square plates

(AR = 1), the qualitative and quantitative accuracy

gained thanks to the employment of the 12-term model

for the simulation of moderately and narrow rectan-

gular plates is evident: this is due to the capability of

the refined solution to catch the loss of classical

symmetric bifurcation and of multistability phenom-

ena which take place as soon as the geometrical

symmetry of the configuration is broken due to a

change in the plate geometrical arrangement (passing

from square to rectangular): this aspect will be

discussed in more detail in Sect. 3.3.

To conclude this section, it could be demonstrated

that a refined out-of-plane displacement field of the

form

wR15ðx; yÞ ¼ c1x2 þ c2y2 þ c3x4 þ c4y4 þ c5x6 þ c6y6

þ c13x2y2 þ c14x4y2 þ c15x2y4

ð49Þ

taking into account 15 unknown parameters and

making use of mixed terms (xy cross products), do

not enhance significantly the exactness of solution,

leading to a maximal discrepancy of around 3 % and

increasing the computational cost of the numerical

solution of around three times with respect to the

12-term model.

3.2 Orthotropic square and rectangular plates

under nonlinear double bending

This Section is devoted to the prediction of the

behaviour of orthotropic square and rectangular plates

subjected to bending moments applied at the four

edges (Mxx = -Myy = M0). Material properties for

the orthotropic ply are reported in Table 3. The

analysis—supported by the conclusions of Sect.

3.1—relies on the conviction that the 12-term model

is more prone to catch the loss of classical bifurcation

and multistability phenomena taking place in struc-

tural configurations subjected to the breaking of some

sort of symmetry—geometrical, for plates whose

Fig. 5 Longitudinal and transverse curvatures as a function of

the applied double bending moment (Mxx = -Myy = M0) for a

rectangular isotropic plate (AR = 2)
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shape passes from square to rectangular, material, for

plates whose constitutive behaviour splits from iso-

tropic to orthotropic/anisotropic.

Figure 7 illustrates the average curvatures as a

function of M0 for an orthotropic square plate

(AR = 1), as calculated by the linear (dotted line), the

4-term (cross points) and the 12-term (circles) models.

Both the 4-term and the 12-term models predict a

loss of symmetric bifurcation behaviour which is

coherent with the assigned level of orthotropy of the

ply: a unique cylindrical-like shape has the tendency to

develop with increasing M0, while alternative solu-

tions—among which one is unstable and not

observable (path C–D)—can be calculated starting

from a given value of M0 (point C in Fig. 7). Up to this

point the predictions of the two models are in

reasonably good agreement.

The situation is distinctly different for the case of an

orthotropic heavily rectangular, narrow plate

(AR = 10), illustrated in Fig. 8: the 4-term model

keeps predicting loss of bifurcation behaviour quali-

tatively and quantitatively similar to the one plotted in

Fig. 7, for a square plate, while the 12-term model a

unique quasi-saddle shape tends to develop with

increasing M0. This solution is unique, for all values

of M0 in the explored range.

Again the finer discretisation put forward by the

12-term model—which poorly contributes to the

enhancement of the quality of the solution for square

plates—is decisive for the correct prediction of the

multistable behaviour of rectangular—especially nar-

row—plates. This behaviour implies some consider-

ations which will constitute—partly—the object of the

next section.

Fig. 6 a Longitudinal and transverse curvatures and b out-of-

plane displacement as a function of the adimensional longitu-

dinal (x/Lx) and transverse (y/Ly) coordinate for several values of

the applied double bending moment (Mxx = -Myy = M0) for a

rectangular isotropic plate (AR = 10)

Table 3 Orthotropic material properties for the double bend-

ing simulations

EL ET GLT vLT

[GPa] [GPa] [GPa] –

152 16.54 4.63 0.35
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3.3 Isotropic square and rectangular plates

under nonlinear simple bending

The present section is devoted to the simulation of the

behaviour of square and rectangular isotropic plates

subjected to pure bending carried out by the 4-term

and the 12-term nonlinear models as well as by the

Ashwell’s [22] analytical ‘exact’ solution. As a

reference, the predictions of the Large Plate and of

the Linear Plate (beam) Theory are also provided: the

longitudinal and transverse curvatures according to

the Linear theory are given, respectively, by

Kxx ¼
M0

EI
ð50Þ

and

Kyy ¼ �vKxx ð51Þ

being EI is the flexural rigidity of the plate, while the

Large Plate Theory is based on the assumption that the

transverse curvature (along the y direction) is equal to

zero, thus providing

Kxx ¼
M0

EI
ð1� v2Þ ð52Þ

Kyy ¼ 0 ð53Þ

Ashwell ‘exact’ theory gives a nonlinear relation-

ship between the applied bending moment, Mxx, and

the resulting longitudinal curvature, that is

Kxx ¼
M0

EI
U ð54Þ

Fig. 7 Longitudinal and transverse curvatures as a function of

the applied double bending moment (Mxx = -Myy = M0) for a

square orthotropic plate (ET = 0.1EL, AR = 1)

Fig. 8 Longitudinal and transverse curvatures as a function of

the applied double bending moment (Mxx = -Myy = M0) for a

rectangular orthotropic plate (ET = 0.1EL, AR = 10)
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in which

U ¼ 1

1� v2
þ 3

2aLy

f ðaLyÞ �
2
ffiffiffiffiffi
3v
p

aLy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� v2Þ

p FðaLyÞ

ð55Þ

and

f ðaLyÞ ¼2ðB2 þ C2ÞðsinhaLy þ sinaLyÞ
þ ðB2 � C2 þ 2BCÞcoshaLysinaLy

þ ðB2 � C2 � 2BCÞsinhaLycosaLy

þ 2ðB2 � C2ÞaLy

ð56Þ

FðaLyÞ ¼ ðBþ CÞsinh
aLy

2
cos

aLy

2
� ðB

� CÞcosh
aLy

2
sin

aLy

2
ð57Þ

B and C are expressed by Eqs. (19) and (20).

The aim of the present section is twofold:

– from one side, since no exact solution is available

for the test cases presented in Sects. 3.1 and 3.2, a

comparison with an analytical model helps

strengthening the confidence about the employ-

ment of the developed models. This step is almost

an a posteriori validation of the 12-term nonlinear

model which is in fact built on a proper develop-

ment of the Ashwell exact solution and therefore is

expected to give comparable (if not identical)

results,

– from the other side, and most importantly, this

section tries to provide some proper discussion in

support of the results presented in Sects. 3.1 and

3.2, in which it is seen that a modest/moderate

refinement of the polynomial approximation is in

fact able to change dramatically the trend behav-

iour predicted by low-order polynomial models.

Figure 9 shows the average longitudinal and

transverse curvatures, Kxx and Kyy, as a function of

M0 for a square isotropic plate (AR = 1).

The 4-term, the 12-term and the Ashwell ‘exact’

theory predict the average longitudinal curvature with

very good agreement, for all values of M0: they are

also in good agreement with the Large Plate Theory,

leading to the conclusion that—with regard to simple

bending behaviour—a square plate (AR = 1) can be

considered as Large for all the tested values of M0.

Some small discrepancy can be observed between the

approximate models (both the 4-term and the 12-term)

and the Ashwell ‘exact’ theory as soon as the

prediction of the transverse curvature is concerned in

particular for high values of M0 (M0 [ 300 N). In

order to elucidate the reason for such discrepancy,

further investigation about the plate distortion is

needed: to this aim Fig. 9b illustrates the adimensional

out-of-plane displacements (w/e) as a function of the

adimensional transverse coordinate, y/Ly, calculated at

x = 0, for several values of the applied bending

moment. While the 4-term model, which assumes

constant curvatures, follows the Ashwell out-of-plane

displacements only in average, the 12-term model

follows closely the Ashwell exact theory, despite some

small discrepancies for intermediate values of M0.

These discrepancies can be appreciated in the prox-

imity of the external free edge (y/Ly = 0,5), where the

4-term and the 12-term models are not asked to satisfy

exactly the boundary condition of zero transverse

bending moment and are therefore constrained with

respect to the development of a full anticlastic

curvature.

Figure 10 shows the case of a moderately rectan-

gular isotropic plate (AR = 4). The 12-term model

and the Ashwell ‘exact’ theory both predict the

average longitudinal and transverse curvatures with

very good agreement, for all values of M0, while the

4-term model fails predicting correctly the average

transverse curvatures, differing significantly from the

analytical solution: the discrepancy can be ascribed to

the poor discretization of the displacement field

which—for the 4-term model—is able to capture the

deflection of the plate only in average, as illustrated in

Fig. 10b.

Figure 11 illustrates the case of heavily rectangular

‘narrow’ plate (AR = 10). Here the behaviour pre-

dicted by the 4-term model differs distinctly from that

calculated by the 12-term and by the ‘exact’ Ashwell

model, which—as expected—are in excellent agree-

ment for all values of M0. But this is not all. The

12-term and the Ashwell ‘exact’ models are also in very

agreement—almost surprisingly—with the Linear

(beam) theory, for almost all the explored values of

M0: this behaviour can be appreciated by looking at the

plots in Fig. 11b, illustrating the transverse deflection

of the plate for several values of the applied bending

moments. In this case the anticlastic curvature is less

constrained than for square plates and can be well

simulated by the 12-term distortion model: on the

contrary, the 4-term model, which assumes constant
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Fig. 9 a Longitudinal and transverse curvatures and b out-of-plane displacement as a function of the adimensional transverse

coordinate (y/Ly) for several values of the applied bending moment (Mxx = M0) for a square isotropic plate (AR = 1)
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Fig. 10 a Longitudinal and transverse curvatures and b out-of-plane displacement as a function of the adimensional transverse

coordinate(y/Ly) for several values of the applied bending moment (Mxx = M0) for a rectangular isotropic plate (AR = 4)
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curvatures, is evidently too stiff with respect to the

‘exact’ theory and keeps following closely the predic-

tions of the Large Plate model—still for narrow plates.

This result suggests an almost unexpected

conclusion: with regard to simple bending behav-

iour a heavily rectangular ‘narrow’ plate can be

considered as a beam in a large loading range.

Going further along this line of reasoning it can be

concluded that the Linear (beam) and the Large Plate

Theories represent two sort of bounds incorporating all

the explored structural solutions: the bending behav-

iour is characterised by ‘large plate-to-beam’ transi-

tion which occurs when switching from square to

heavily rectangular plate configuration and ruled by

the mode of distortion of such configurations. This

phenomenon results in a dramatic change of the

apparent bending stiffness of the plates and affects

their response with respect to an externally applied

bending load. Ashwell had already noted this result

and indicated the main parameter affecting the bend-

ing behaviour: this parameter (see Eq. 21)—deciding

the mode of distortion—depends mainly on the plate

width (‘‘breadth’’ in Ashwell’s words).

The above reasoning provides some motivation for

discussing the results presented in Sect. 3.1 and 3.2

about square and rectangular plates subjected to

distributed bending moments of equal magnitude and

opposite sign along two orthogonal directions. This

discussion can be roughly summarised as follows:

though the bending moments are nominally of equal

magnitude, the apparent stiffness across the two

orthogonal directions is not the same—except for

square plates—and is affected by the breadth mea-

sured along that direction. Therefore—though the

rectangular configuration is symmetrical from the

point of view of loading—it is not from the point of

view of the apparent stiffness, leading to a loss of

symmetry of its global structural response. The perfect

symmetric configuration—from all viewpoints—is

represented by the square one: as soon as this

configuration is abandoned plate-to-beam transition

takes plates and symmetry is lost. A polynomial model

trying to reproduce such behaviour must be suffi-

ciently rich to reproduce—though approximately—at

least plate-to-beam transition: in the present context,

among the explored discretisation functions, it is

evident that the 4-term model is too stiff to simulate

this transition correctly and works badly with rectan-

gular plates, while the 12-term model is sufficiently

rich to handle this condition.
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Fig. 11 a Longitudinal and transverse curvatures and b out-of-plane displacement as a function of the adimensional transverse

coordinate (y/Ly) for several values of the applied bending moment (Mxx = M0) for a rectangular isotropic plate (AR = 10)
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By the above results the following conclusion can

be tentatively extrapolated: since the 4-term Hyer’s

model [25] has been already successfully applied for

the prediction of the cured shape of square composite

plates under thermal loads, it is reasonable to think that

the 12-term model has some chance to work satisfac-

torily for predicting the distortion of square and

rectangular plates under thermal loads, temperature

gradients and for more complex multi-physical appli-

cations. Future research is needed to set this set of

conclusions on more solid grounds.

As a conclusion, Table 4 presents the difference

between the simulation times of the different models,

taking as 1 the simulation time of the 4-term model.

The Linear theory is around three times faster than the

4-term model, which is geometrically nonlinear. The

12-term model is only 7 times slower than 4-term

model, giving more affordable results.

4 Conclusion

The paper presents an efficient 12-term Rayleigh–Ritz

based model to predict the deformed shape of isotropic

and orthotropic square and rectangular plates sub-

jected to double bending loads distributed along all

edges within the framework of the nonlinear Von

Karman theory: this investigation may serve as a basic

reference test case for more complex structural

conditions (multistable plates and shells…). The out-

of-plane and in-plane displacement functions of the

model are generated through proper development of

the analytical solution proposed by Ashwell [22] for

the pure nonlinear bending of plates and of the semi-

analytical expression of strain proposed by Galletly

and Guest [28] for the nonlinear deformation of slit

tubes. The model is characterised by high-order

displacement functions and by few unknown terms

and it is therefore appropriate to achieve sufficient

accuracy, with high efficiency.

The performance of the model is tested against the

4-term model by Hyer [25]—a low-order/low-param-

eter approximation characterised by uniform curva-

tures across the plate—the finite element model and

the Ashwell [22] analytical solution for the nonlinear

simple bending of isotropic plates.

The lack of an analytical explicit expression for the

critical bifurcation bending load for isotropic and

anisotropic plates subjected to double bending

moment does not help does not help deciding in

favour of one of the two approximated displacement

fields, for square plates (AR = 1). However, with

respect to the 4-term model, the 12-term model is

capable to capture with sufficient accuracy the loss of

symmetric bifurcation phenomena occurring in rect-

angular isotropic and orthotropic plates under double

bending moments.

As discussed in Sect. 3.3 these phenomena are

strictly related to the large plate-to-beam transition

effect occurring in rectangular plate configurations

when switching from low to high Aspect Ratio values:

the 12-term approximation is sufficiently accurate to

catch this transition satisfactorily.

In future research experimental validation of the

predicted features will be provided: moreover the

model will be applied for the simulation of more

complex situations, involving for instance plates and

shells subjected to the effect of multi-physical coupled

solicitations, temperature gradients, nonuniform sol-

vent distribution, electro-mechanical load…
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