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Abstract A new slender-body theory for viscous

flow, based on the concepts of dimensional reduction

and hyperviscous regularization, is presented. The

geometry of flat, elongated, or point-like rigid bodies

immersed in a viscous fluid is approximated by lower-

dimensional objects, and a hyperviscous term is added

to the flow equation. The hyperviscosity is given by

the product of the ordinary viscosity with the square of

a length that is shown to play the role of effective

thickness of any lower-dimensional object. Explicit

solutions of simple problems illustrate how the

proposed method is able to represent with good

approximation both the velocity field and the drag

forces generated by rigid motions of the immersed

bodies, in analogy with classical slender-body theo-

ries. This approach has the potential to open up the

way to more effective computational techniques, since

geometrical complexities can be significantly reduced.

This, however, is achieved at the expense of involving

higher-order derivatives of the velocity field. Impor-

tantly, both the dimensional reduction and the

hyperviscous regularization, combined with suitable

numerical schemes, can be used also in situations

where inertia is not negligible.
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1 Introduction

Composite systems where microscopic bodies move in

a viscous fluid are ubiquitous in both biological and

technological contexts, and the flows involved are

often characterized by very small Reynolds numbers.

In an early seminal contribution, Stokes [25] com-

puted the flow past a translating rigid sphere in the

low-Reynolds-number limit, determining the corre-

sponding drag force and showing how Newtonian

liquids can evade D’Alembert’s paradox. This result

was extended to ellipsoidal particle shapes by Ober-

beck [23], and to the case of rotating and shearing

surrounding flows by Edwardes [9] and Jeffery [15],

respectively. The solution for a general surrounding

flow was provided by Kim and Karrila [18].

An explicit solution of the same problem for a rigid

body of general shape immersed in a low-Reynolds-

number flow appears to be out of reach, but the broad

G. G. Giusteri (&)

Dipartimento di Matematica e Fisica ‘‘N. Tartaglia’’,
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spectrum of possible applications have favoured the

development of methods to approximate the velocity

field generated by the body, or at least the drag force

and torque exerted on it. For a rigid body whose length

is large compared with its breadth, starting with an idea

of Burgers [4], various authors, including Tuck [27],

Tillett [26], Batchelor [3], and Cox [7], have contrib-

uted to the development of what is known as slender-

body theory. In essence, that theory provides

approximate expressions for the relevant quantities

simulating the action of the immersed body on the

surrounding fluid by means of force and torque distribu-

tions concentrated on suitable lines. The flow generated

by those distributions is divergent precisely on the lines

where forces concentrate, hence the use of the name

‘‘singularity method’’ to describe this technique. The

same methodology has been exploited also for particles

which are not slender since the formative contribution of

Oseen [24] and a clear account of it with applications to

Stokes flows was given by Chwang and Wu [5].

Despite the possibility of approximating with good

accuracy many quantities of physical interest, it is

difficult to apply classical slender-body theory to

particles of arbitrary shape and to situations featuring

the presence of many particles, which are clearly

important for applications. For this reason, modifica-

tions of the theory have been proposed by de Mestre

[8], Johnson [16], Barta and Liron [2], and Barta [1],

and also somewhat different theories have been

developed by Lighthill [19, 20] and Keller and

Rubinow [17]. In a recent paper, Cortez and Nicholas

[6] presented a new theory in which the concentrated

force densities are replaced by forces which are

localized in a small three-dimensional region lying

within the slender body. Our approach can be viewed

as complementary to theirs, in that we consider not

only concentrated force distributions, but also concen-

trated bodies, regularizing in turn the flow equation.

We propose a new slender-body theory which can

be applied to rigid bodies whose slenderness can affect

one dimension (flat bodies), two dimensions (elon-

gated bodies), or even three dimensions (point-like

spherical particles). In so doing, we are motivated by

the understanding that the hyperviscous regularization

of the Stokes equation described in Sect. 2 makes it

possible to obtain a solution for the flow past a

translating point-like spherical particle such that:

(i) the drag exerted by the particle on the fluid is equal

to the total viscous traction exerted on a Newtonian

fluid by a spherical particle; (ii) the solution of the

regularized problem is a good approximation of the

classical solution for a point-like sphere. Moreover, by

comparing the classical and regularized solutions, it is

possible to assign to the coefficient of the hyperviscous

term the geometric meaning of effective thickness of

the slender body, as discussed in Sect. 2.1.

In Sect. 3, we derive the Green’s function for the

regularized Stokes operator, which is exploited, in

Sect. 4, to compute the flow generated by a point-

like spherical particle, and to evaluate the hydrody-

namic interaction between point-like spheres. The

problem of the flow generated by a rigid rod is

considered in Sect. 5, where some limitations of the

singularity method, associated with the rigidity

constraint, are considered. In the final discussion,

we mention possible advantages in numerical sim-

ulations based on our theory, and we outline further

developments.

2 Hyperviscous regularization

The classical Stokes equation for incompressible

Newtonian fluids, that is the low-Reynolds-number

linearisation of the Navier–Stokes equation, reads

q
ou

ot
¼ �rpþ lDuþ qb;

where p is the pressure field, u is the divergence-free

velocity field, q[ 0 is the constant and homogeneous

mass density, l[ 0 is the dynamic viscosity, and qb

is a volumetric force density. For a steady flow, the

Stokes equation reduces to

rp� lDu ¼ qb:

It is well-known that the regularity of solutions to

the three-dimensional Navier–Stokes equation is still

an open problem, and various modifications of that

equation with better regularity theories have been

analysed. Among those, the hyperviscous regulariza-

tion (see Lions [21], Chap. I, Remarque 6.11) entails

adding a term proportional to DDu to the equation. For

this modified equation, the existence and uniqueness

of regular solutions (that is of solutions which are

continuous on the flow domain for every instant in a

finite time interval) have been established. The low-

Reynolds-number linearisation of that equation is, for

a steady flow,
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rp� lDuþ nDDu ¼ qb;

where the additional parameter n[ 0 is called the

hyperviscosity.

Despite the mathematical appeal of the hyperviscous

regularization, assigning a relevant physical meaning to

n can be problematic, other than that of a higher-order

dissipation coefficient. In a series of papers, Fried and

Gurtin [11], Musesti [22], Giusteri et al. [14], and

Giusteri [12] introduce and analyse different contribu-

tions to n associated with dissipation functionals. Here,

we assign to n a geometric, rather than kinetic,

meaning, thereby allowing for a clearer interpretation

in terms of standard physical quantities. To this end,

we introduce a length-scale L [ 0, and set n ¼ lL2, so

that the hyperviscous steady flow equation becomes

rp� lDðu� L2DuÞ ¼ qb: ð1Þ

2.1 Dimensional reduction and hyperviscosity

In the slender-body theory presented in this paper, the

length scale L is viewed as the effective thickness of the

lower-dimensional objects which approximate three-

dimensional bodies that are in one way or another

slender. We now clarify how the hyperviscous regular-

ization discussed above can be combined with dimen-

sional reduction to approximate the flow past slender

bodies, and elucidate the role of L in this procedure.

Recall the Stokes problem of determining the

steady flow v past a rigid sphere R of radius L centred

at the origin,

rpv � lDv ¼ 0 inR3 n R;
div v ¼ 0 inR3 n R;
v ¼ 0 on oR;
v ¼ U at infinity;

8
>><

>>:

ð2Þ

where U 2 R
3 denotes the constant far-field velocity.

The hyperviscous Stokes problem for the steady flow u

past a point-like spherical particle placed at the origin

has the form

rpu� lDðu� L2DuÞ ¼ ddðxÞ inR3;
divu¼ 0 inR3;
u¼ 0 at the origin,

8
<

:
ð3Þ

where d is the three-dimensional Dirac distribution

and d is the drag force. Notice that a far-field condition

akin to that entering (2) is not imposed in (3).

However, (3) admits a unique solution, and the value

of u at infinity is determined by the force d:

The solution to the Stokes Eq. (2) in the entirety ofR3

is divergent at the origin; the solution of (3) (with

L [ 0) is bounded and continuous in 0; making

explicit the reason why the hyperviscous Eq. (1) is

considered a regularization of the classical one,

namely (1) with L = 0. It is important to notice that,

in the limit L? 0, the problem (3) becomes ill-posed.

In x4.1, we solve explicitly problem (3), showing

that, far enough from the sphere of radius L; u is a

good approximation of the solution v of problem (2).

Moreover, u takes at the origin the same value taken

by v on the spherical surface oR; and it turns out that,

to obtain also u ¼ U at infinity, we must take the drag

force exerted by the point-like spherical particle as

d ¼ �l
Z

oR

ðrvþrvyÞn ¼ 6plLU;

where n denotes the unit outward normal to oR and

rvy denotes the transpose of rv: Namely, d must be

equal to the traction exerted on the fluid by the sphere

in problem (2). In the context of (3), it is precisely this

last fact which suggests the interpretation of L as the

effective thickness of a point-like spherical particle.

A point-like spherical particle represents a body

which is slender in all spatial directions, but we are

interested also in describing the motion of flat and

elongated bodies. Actually, there are two different

classes of problems worthy of mention: resistance

problems and mobility problems.

– In a resistance problem, the velocities of the

immersed objects are assigned and the goal is to

determine the drag force required to sustain the

motion.

– In a mobility problem, the forces acting on the

immersed objects are prescribed and the goal is to

determine the resulting velocity field.

The solution of resistance and mobility problems in

the case of a point-like spherical particle provides a

linear relation between the assigned velocity and the

drag force, which is the only force acting on the point-

like spherical particle. The situation is remarkably

different when dealing with flat or elongated rigid

bodies. Whereas in resistance problems the prescrip-

tion of the velocity of an immersed body automatically

includes the rigidity constraint, the same constraint can

be imposed in mobility problems only by assigning as

force density the sum of the drag force and the reactive
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forces that are generated within an immersed body as a

consequence of the assumption that it is rigid. We

comment further on this in Sect. 5.

3 Green’s function for Stokes flow

The basic tool used to construct solutions to the Stokes

problem is the Stokeslet, that is the Green’s function for

the Stokes operator in R
3: Its classical expression is

given by

psðx� x0Þ ¼ h � ðx� x0Þ
4pjx� x0j3

;

sðx� x0Þ ¼ Sðx� x0Þh

¼ h

8pljx� x0j þ
½h � ðx� x0Þ�ðx� x0Þ

8pljx� x0j3
;

where h 2 R
3 is any fixed vector and S is the Oseen

tensor, with Cartesian components

Sijðx� x0Þ :¼ dij

8pljx� x0j þ
ðxi � x0iÞðxj � x0jÞ

8pljx� x0j3
;

where dij is Kronecker’s symbol.

To compute the regularized Stokeslet, we first need

a Green’s function solution g of the fourth-order

elliptic equation

lL2DDg� lDg ¼ dðx� x0Þ:
Using the Fourier transform, we easily obtain

gðx� x0Þ ¼ 1

ð2pÞ3
Z

R
3

eik�ðx�x0Þ

ljkj2ðL2jkj2 þ 1Þ
dL3ðkÞ:

We choose a basis for the momentum space in such

a way that x� x0 is along the k3-direction, set R ¼
jx� x0j; switch to polar coordinates (k, h, /), and use

the calculus of residues to obtain

gðx� x0Þ ¼ 2p

ð2pÞ3lL2

Zþ1

0

Z1

�1

eikR cos h

k2 þ 1=L2
dðcos hÞdk

¼ 2

ð2pÞ2lL2R

Zþ1

0

sin kR

kðk2 þ 1=L2Þ dk

¼ 1

ð2pÞ2lL2R
Im

Zþ1

�1

eikR

kðk2 þ 1=L2Þ dk

2

4

3

5

¼ 1

ð2pÞ2lR
p� pe�

R
L

� �
:

Hence, the desired Green’s function is

gðx� x0Þ ¼ 1

4pljx� x0j 1� exp �jx� x0j
L

� �� �

: ð4Þ

Notice that, in the limit L?0, (4) reduces to the

Green’s function

g1ðx� x0Þ ¼ 1

4pljx� x0j ð5Þ

for the Laplace equation.

3.1 Regularized Stokeslet

We now proceed to construct the regularized Stokeslet,

that is a pressure field pz and a velocity field z satisfying

div z ¼ 0;
rpz þAz ¼ hdðx� x0Þ;

�

ð6Þ

with h 2 R
3 and A ¼ lL2DD� lD:

Let / satisfy A/ ¼ dðx� x0Þ: Then, since A
commutes with r; a solution for (6) is given by

pz ¼ �A#;
z ¼ h/þr#:

The scalar field # entering this solution is chosen to

satisfy the divergence-free constraint and turns out to

have the explicit form

# ¼ ð�DÞ�1ðh � r/Þ ¼ g1 � ðh � r/Þ;

where g1 is as defined in (5).

Now, exploiting the properties of the convolution

and of the operator A; and using the Green’s function

g given by Eq. (4), we find that

�ðg1 � Aðh � rgÞÞ ¼ �ðg1 � divðAðghÞÞÞ
¼ �divðg1 � AðghÞÞ ¼ �h � rg1

and, with a procedure similar to that leading to (4),

g1 � ðh � rgÞ ¼ 1

ð2pÞ3
Z

iðh � kÞ bg1bgeik�~xdL3ðkÞ

¼ 1

ð2pÞ3
Z

iðh � kÞeik�~x

ljkj4ðL2jkj2 þ 1Þ
dL3ðkÞ

¼ h � ~x
4p2lL2j~xj

Zþ1

0

Z1

�1

i cos heikj~xj cos h

kðk2 þ 1=L2Þ dðcos hÞdk

¼ �h � ~x
4p2lL2j~xj

Z1

�1

s
Zþ1

0

sinðkj~xjsÞ
kðk2 þ 1=L2Þ dkds
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¼ �h � ~x
8plj~xj

Z1

�1

jsj 1� e�
j ~xj
L
jsj

� �
ds

¼ � h � ~x
8plj~xj 1þ 2L

j~xj e
�j ~xj

L þ 2L2

j~xj2
e�
j ~xj
L � 1

� �
" #

;

where we used the notation ~x ¼ x� x0:
Defining now, for r 2 R; the functions

R1ðrÞ :¼ 1� 2e�r � 2

r
e�r � 2

r2
e�r � 1ð Þ

and

R2ðrÞ :¼ 1þ 2e�r þ 6

r
e�r þ 6

r2
e�r � 1ð Þ;

we can write our regularized Stokeslet as

pzð~xÞ ¼
h � ~x

4pj~xj3
;

zð~xÞ ¼ h

8plj~xjR1ðj~xj=LÞ þ ðh � ~xÞ~x
8plj~xj3

R2ðj~xj=LÞ:

Notice that the regularization does not alter the

pressure field. Moreover, the velocity field z is well-

defined for any ~x 2 R
3; as is the Green’s function g, at

variance with the classical expression for s; which is

singular at the origin.

We also define the tensor field Z the regularized

Oseen tensor, such that, using Cartesian components,

Zijð~xÞ :¼ dij

8plj~xjR1ðj~xj=LÞ þ ~xi~xj

8plj~xj3
R2ðj~xj=LÞ; ð7Þ

whereby it follows that zð~xÞ ¼ Zð~xÞh: The Stokes-

let allows us to obtain an integral representation for

the solution of (1), with vanishing condition at infinity,

in the form of a convolution:

uðxÞ :¼ q
Z

R
3

Zðx� x0Þbðx0ÞdL3ðx0Þ: ð8Þ

Due to the regularity of the tensor Z at the origin and

the properties of convolution, u as determined by (8) is

bounded and continuous on all of space, even if the

force density qb is localized on a set of zero Lebesgue

measure—for example, if b is a measure concentrated

on a lower-dimensional subset of R3; (8) determines a

well-behaved velocity field. This makes it possible to

model interactions between the fluid and lower-

dimensional objects by assigning force distributions

concentrated on them, and thereby to turn the

approximate singularity solutions of the classical

theory into exact solutions of an approximate model.

Notice that although (8) readily offers a solution for

mobility problems, the force density b must represent

the interactions taking place in all of space, not only in

the fluid region; knowledge of both the drag force

applied on the rigid body and the reactive forces

generated within the body is therefore required.

4 Flows generated by point-like spherical particles

4.1 A single point-like spherical particle

The mobility problem for a point-like spherical particle

subjected to a drag force density ddðxÞ (viewed in a

reference frame in which the point-like spherical

particle is at rest) can be readily solved on applying

formula (8), and doing so gives the velocity field

uðxÞ ¼ ZðxÞd� Zð0Þd ¼ ZðxÞd� ð6plLÞ�1d: ð9Þ
The resistance problem requires a bit more of work.

Recall that the disturbance field generated by a sphere

rigidly translating with constant velocity U in a Newto-

nian liquid is given by (see e.g. Kim and Karilla [18])

usðxÞ ¼ �a
U

jxj � b
U

jxj3
� a
ðU � xÞx
jxj3

þ b
3ðU � xÞx
jxj5

;

ð10Þ

where the constants a and b can be determined by

imposing the no-slip condition us ¼ U on the surface

of any sphere of finite radius. However, since us is

divergent at the origin, we cannot impose the no-slip

condition on a point-like spherical particle, namely a

sphere with vanishing radius.

For a hyperviscous liquid, we seek the divergence-

free disturbance field u produced by a translating

sphere. It satisfies the equation

rp� lDðu� L2DuÞ ¼ 0: ð11Þ
Since, given a velocity field us defined on all of

space, it is always possible to find a pressure field ps

such that rps � lDus ¼ 0; any solution of

u� L2Du ¼ us ð12Þ

provides a solution for (11), with pressure ps. It is

readily checked that ug ¼ us þ L2Dus is a particular

Meccanica (2014) 49:2153–2167 2157

123



solution of (12). We write the general solution of the

associated homogeneous equation, using spherical

coordinates (r, h, /), as

uo ¼
Xþ1

n¼0

Xn

l¼�n

cn;lhð1Þn ðir=LÞYl
nðh;/Þ;

where cn;l are vectors of coefficients, hn
(1) are spherical

Hankel functions of the first kind, and Yn
l are spherical

harmonics. Any solution of (11) is then of the form

u ¼ ug þ uo; and the boundary conditions determine

the coefficients.

We now wish to show that it is possible to obtain a

disturbance field that is bounded at the origin and

satisfies the no-slip condition on a sphere with

vanishing radius. We assume without loss of gener-

ality that U ¼ U3e3; and we write the Cartesian

components of u in spherical coordinates (the angular

dependence of Yn
l being understood), obtaining:

u1ðr; h;/Þ ¼ U3

3bþ 6aL2

r3
� a

r

� � ffiffiffiffiffiffi
2p
15

r

Y�1
2 � Y1

2


 �

þ
Xþ1

n¼0

Xn

l¼�n

c
n;l
1 hð1Þn ðir=LÞYl

n;

u2ðr; h;/Þ ¼ iU3

3bþ 6aL2

r3
� a

r

� � ffiffiffiffiffiffi
2p
15

r

Y�1
2 þ Y1

2


 �

þ
Xþ1

n¼0

Xn

l¼�n

c
n;l
2 hð1Þn ðir=LÞYl

n;

u3ðr; h;/Þ ¼
U3

3

3bþ 6aL2

r3
� a

r

� � ffiffiffiffiffiffiffiffi
16p

5

r

Y0
2

� U32a
ffiffiffiffiffiffiffiffi
16p
p

3r
Y0

0

þ
Xþ1

n¼0

Xn

l¼�n

c
n;l
3 hð1Þn ðir=LÞYl

n:

Thanks to the orthogonality of the spherical har-

monics and the properties of the spherical Hankel

functions, imposing u1(0, h, /) = u2(0, h, /) = 0,

we find, for any value of a, that b = 0 and that the

other non-vanishing coefficients are given by

c
2;1
1 ¼ �c

2;�1
1 ¼ ic

2;�1
2 ¼ ic

2;1
2 ¼

2U3a

L

ffiffiffiffiffiffi
2p
15

r

:

The third condition, namely u3(0, h, /) = U3,

implies that c
0;0
3 ¼ U3

ffiffiffiffiffiffi
4p
p

; c
2;0
3 ¼ U3

ffiffiffiffiffiffiffiffiffiffi
4p=5

p
; and

a = - 3L/4, while all the remaining c3
n,l vanish.

Hence, the components of the disturbance field are

given by

u1ðxÞ ¼
3L

4

U3x3x1

jxj3
R2ðjxj=LÞ;

u2ðxÞ ¼
3L

4

U3x3x2

jxj3
R2ðjxj=LÞ;

u3ðxÞ ¼
3L

4

U3

jxj R1ðjxj=LÞ þ 3L

4

U3x2
3

jxj3
R2ðjxj=LÞ:

We thus find that the velocity field, in a reference

frame in which the point-like spherical particle is at

rest, is

uðxÞ ¼ 6plLZðxÞU� U: ð13Þ
Comparing (9) and (13), we conclude that the drag

force d needed to sustain the latter motion is given by

the celebrated Stokes relation d ¼ 6plLU: Finally,

when jxj[ L; the difference between the velocity field

given by (13) and the classical solution of (2), obtained

by (10) with a = - 3L/4 and b = - L3/4, is small and

decays as jxj�3
in the far field.

4.2 Two point-like spherical particles

For the resistance problem related to the motion of two

point-like spherical particles translating with constant

velocity, it is tempting to exploit the correspondence

developed in x4.1, and to solve instead the mobility

problem, using (8) and the superposition principle.

That procedure works only when the two point-like

spheres move with the same velocity, because the flow

produced by the motion of the particles must be

steady.

Let us consider the disturbance field w produced by

the two particles translating with velocity U:We apply

the drag force density

qbðxÞ ¼ d1dðx� y1Þ þ d2dðx� y2Þ

to the system, where y1 and y2 are the positions of the

particles in a co-moving frame. Now the solution of

the mobility problem reads

wðxÞ ¼ Zðx� y1Þd1 þ Zðx� y2Þd2;

and, to find the solution for the resistance problem, we

must be able to choose d1 and d2 in such a way that

wðy1Þ ¼ wðy2Þ ¼ U: We have the conditions
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Zð0Þd1 þ Zðy1 � y2Þd2 ¼ U
¼ Zð0Þd2 þ Zðy1 � y2Þd1;

which readily imply d1 ¼ d2 ¼: d0; with

d0 ¼ ½Zð0Þ þ Zðy1 � y2Þ��1U:

Without loss of generality, we may take one of the

coordinate axes to be parallel to y1 � y2; and we can

easily see that d0 is parallel to U only when the latter is

either parallel or orthogonal to y1 � y2: In any other

case, we find that a component of the force which is

not in the direction of the motion is needed. That an

additional component of force is required to cancel the

hydrodynamic interaction which tends to move the

points away from the desired trajectory, since the

leading point (the one in front with respect to the

direction of U) pulls and is pushed by the other point

with a force directed along y1 � y2:

4.3 Hydrodynamic interaction between point-like

spherical particles

Even though the above techniques cannot provide the

full solution to the unsteady situation in which two

point-like spherical particles move with different

velocities, it is possible to utilize a procedure, known

as method of reflections (see Kim and Karrila [18]), to

approximate the instantaneous flow field and the

instantaneous hydrodynamic interaction between the

particles. So far, we have considered particles moving

in a fluid which is at rest at infinity, but it is easy to

include the effect of more complicated conditions in

the far-field, as described by a field w1: Indeed, the

disturbance field produced by a particle uniformly

translating with velocity U in an ambient flow w1 is

uðxÞ ¼ 6plLZðx� yÞ½U� w1ðyÞ�;

where y is the position of the particle in a co-moving

frame.

The method of reflections for two particles (labelled

1 and 2) consists of an iterative scheme which, at every

step k, takes as ambient field for a particle w1 plus the

field generated by the other particle in the step k - 1.

Now we have i, j = 1, 2, i = j, and

u
ð0Þ
i ðxÞ ¼ 6plLZðx� yiÞ½Ui � w1ðyiÞ�;

u
ðkÞ
i ¼ Zðx� yiÞF

ðkÞ
i ;

where U1 and U2 are the instantaneous velocities of

the two particles, and

F
ðkÞ
i ¼ 6plLðUi � w1ðyiÞ � Zðyi � yjÞF

ðk�1Þ
j Þ:

Next, we wish to express F
ð2kÞ
i and F

ð2kþ1Þ
i in terms of

F
ð0Þ
1 ¼ 6plLðU1 � w1ðy1ÞÞ

and

F
ð0Þ
2 ¼ 6plLðU2 � w1ðy2ÞÞ:

After some manipulations, we obtain

F
ð2kÞ
i ¼ Q2kF

ð0Þ
i þ

Xk�1

n¼0

�
Q2nF

ð0Þ
i þQ2nþ1F

ð0Þ
j

�
ð14Þ

and

F
ð2kþ1Þ
i ¼ F

ð0Þ
i þQ2kþ1F

ð0Þ
i þ

Xk�1

n¼0

�
Q2nþ2F

ð0Þ
i þQ2nþ1F

ð0Þ
j

�
; ð15Þ

where Q :¼ �6plLZðy1 � y2Þ:
Notice that, given the expression (7) of Z, an

additional factor of L=jy1 � y2j appears with every

application of Q. It therefore becomes easy to keep

track of the order of the approximation in terms of that

small parameter: the k-th approximation F
ðkÞ
i is exact

up to the order ðL=jy1 � y2jÞk�1: The same is not true

if we extend the procedure to the case of N point-like

spherical particles, because of the appearance of

corrections to lower-order terms even after many

iterations. Indeed, let N identical point-like spherical

particles be placed at distinct points yi moving with

velocity Ui; i ¼ 1; . . .;N: Taking i; j ¼ 1; . . .;N; we

have

u
ð0Þ
i ðxÞ ¼ 6plLZðx� yiÞ½Ui � w1ðyiÞ�;

F
ð0Þ
i ¼ 6plLðUi � w1ðyiÞÞ;

u
ðkÞ
i ¼ Zðx� yiÞF

ðkÞ
i ;

where we have set

F
ðkÞ
i ¼ 6plL

�
Ui � w1ðyiÞ �

X

j6¼i

Zðyi � yjÞF
ðk�1Þ
j

�
:

Considering now indexes i0; i1; . . . ¼ 1; . . .;N; we

obtain

F
ðkÞ
i0
¼ F

ð0Þ
i0
þ
Xk

n¼1

X

i1;...;in

Yn

m¼1

Qim�1im

 !

F
ð0Þ
in

" #

; ð16Þ

where Qkj ¼ Qjk :¼ �djk6plLZðyj � ykÞ; and the
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product in the above formula is the standard one

arising in matrix multiplication. Though somewhat

complicated, expressions (14), (15), and (16) can be

used to approximate the hydrodynamic interactions in

dilute suspensions of point-like spherical particles,

that is suspensions in which the average separation

between particles is much greater than L.

5 Approximating a rigid rod

We now consider the case of a rigid straight rod,

represented by a line segment of length 2a, lying on

the x1-axis in the interval [- a, a], when viewed in a

co-moving frame. We are interested in the steady

disturbance field produced by a constant rigid motion

of the rod, represented by the rigid velocity field

wðxÞ ¼ Xxþ U;

where X is the skew-symmetric spin (namely, a

constant and uniform spin tensor), and where U is a

constant translational velocity. We work in a co-

moving frame and, as a consequence, the flow at

infinity matches �w: In this setting, we may assume

that the steady Stokes flow has the form u� w; where

u represents the disturbance flow, and is such that u ¼
w on the rod and u ¼ 0 at infinity.

We are again facing a resistance problem; however,

we first attempt to solve a mobility problem, intro-

ducing a force density concentrated on the rod K :¼
½�a; a� � fð0; 0Þg in the form

qbðxÞ ¼ fðx1ÞdKðxÞ ¼ fðx1Þv½�a;a�ðx1Þdðx2Þdðx3Þ;

where v½�a;a�ðx1Þ is the characteristic function of

[-a, a], and dK represents a uniform probability

measure supported on K: Using the convolution (8),

we have

uiðxÞ ¼
Z

R
3

X

j

Zijðx� x0Þfjðx01Þv½�a;a�ðx01Þdðx02Þdðx03Þdx0

¼
Za

�a

fiðx01Þ
8plM

R1ðM=LÞdx01

þ
X

j

Za

�a

ðxi � d1ix
0
iÞðxj � d1jx

0
jÞfjðx01Þ

8plM3
R2ðM=LÞdx01;

where we introduced

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x01Þ
2 þ x2

2 þ x2
3

q

¼: M:

We evaluate the previous expression at x2 = x3 = 0,

giving

uiðx1; 0; 0Þ ¼
Zx1þa

x1�a

fiðx1 � yÞ
8pljyj R1ðjyj=LÞdy

þ d1i

Zx1þa

x1�a

f1ðx1 � yÞ
8pljyj R2ðjyj=LÞdy:

Since we are interested in the solution for |x1| B a,

to impose the matching with wi on K; we may split the

integral into two parts, ui
? and ui

-, accordingly

evaluating |y|:

uþi ðx1Þ ¼
Zx1þa

0

fiðx1 � yÞ
8ply

R1ðy=LÞdy

þ d1i

Zx1þa

0

f1ðx1 � yÞ
8ply

R2ðy=LÞdy;

u�i ðx1Þ ¼
Z0

x1�a

�fiðx1 � yÞ
8ply

R1ð�y=LÞdy

þ d1i

Z0

x1�a

�f1ðx1 � yÞ
8ply

R2ð�y=LÞdy:

In agreement with classical slender-body theory,

proposed, for instance, by Batchelor [3], we make the

following Ansatz on the concentrated force field:

fiðsÞ ¼ sisþ ci; with si; ci 2 R; for i ¼ 1; 2; 3: ð17Þ

In the sequel, we will need the following indefinite

integrals, for a 2 R and n 2 N :

Z
1

yn
eaydy ¼ �eay

Xn�1

k¼1

ðn� 1� kÞ!
ðn� 1Þ!

ak�1

yn�k

þ an�1

ðn� 1Þ! EiðayÞ

where Ei denotes the exponential integral function,

whose series expansion around y = 0 has the form

EiðyÞ ¼ cþ log jyj þ
Xþ1

k¼1

yk

k!k
;

with c being the Euler–Mascheroni constant.
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We next evaluate ui
? and ui

- for a force of the form

(17) and find that they are given by

uþi ðx1Þ ¼
ci þ six1

8pl
I x1þa

0 þ d1iÎ x1þa
0


 �

� si

8pl
J x1þa

0 þ d1iĴ x1þa
0


 �

and

u�i ðx1Þ ¼ �ðciþsix1Þ
8pl Y0

x1�a þ d1iŶ0
x1�a

� �

þ si

8pl K
0
x1�a þ d1iK̂0

x1�a

� �
;

with

I x1þa
0 ¼ logy�Ei

h�y

L

i
þL

y
e�

y
LþL2

y2
e�

y
L�1

� �� �x1þa

0

;

Î x1þa
0 ¼ logy�Ei

h�y

L

i
�3L

y
e�

y
L�3L2

y2

�
e�

y
L�1

�� �x1þa

0

;

J x1þa
0 ¼ yþ 2Le�

y
L þ 2L2

y
e�

y
L � 1

� �� �x1þa

0

;

Ĵ x1þa
0 ¼ y� 2Le�

y
L � 6L2

y
e�

y
L � 1

� �� �x1þa

0

;

Y0
x1�a ¼ log jyj � Eiðy=LÞ � L

y
e

y
L þ L2

y2
e

y
L � 1

� �� �0

x1�a

;

Ŷ0
x1�a¼ log jyj�Eiðy=LÞþ3L

y
e

y
L�3L2

y2
e

y
L�1

� �� �0

x1�a

;

K0
x1�a ¼ y� 2Le

y
L þ 2L2

y
e

y
L � 1

� �� �0

x1�a

;

K̂0
x1�a ¼ yþ 2Le

y
L � 6L2

y
e

y
L � 1

� �� �0

x1�a

;

where evaluation at 0 stands for the limit, as necessary.

Now, we have

uiðx1; 0; 0Þ ¼ uþi ðx1Þ þ u�i ðx1Þ ¼
ci þ six1

8pl

I x1þa
0 þ d1iÎ x1þa

0 � Y0
x1�a � d1iŶ0

x1�a

� �

� si

8pl
J x1þa

0 þ d1iĴ x1þa
0 �K0

x1�a � d1iK̂0
x1�a

� �
:

ð18Þ
We next take si = 0, as classical procedures would

suggest, to analyse the case of rigid translations. We

compute the velocity in the middle of the rod, equate it

to U; and thereby arrive at the following approxima-

tion for the constant force densities, valid to any order

in e ¼ L=2a:

f1ðx01Þ ¼ c1 �
2plU1

logðe�1Þ þ c� 1=4þ e2
;

f2ðx01Þ ¼ c2 �
4plU2

logðe�1Þ þ cþ 2� e2
;

f3ðx01Þ ¼ c3 �
4plU3

logðe�1Þ þ cþ 2� e2
:

8
>>>>>>><

>>>>>>>:

ð19Þ

These expressions agree with results obtained by

Batchelor [3], but, unfortunately, the disturbance field

given by (18) is not constant on K; and hence u 6¼ U;

except at the midpoint of the rod!

Indeed, such a solution is nearly constant in a

neighbourhood of the origin, and it would still be

possible to impose a genuinely constant velocity on

the boundary of a slender body of non-vanishing

breadth, when K lies well within it. This justifies the

classical approximation for slender bodies, but, since

the object under consideration is one-dimensional, we

actually need to obtain a velocity field which is exactly

constant on the whole of K: As already mentioned, the

previous discrepancy arises from the fact that we must

include in the force density f the reactive force which

guarantees the rigidity of the rod. An analogous result

is obtained if we set ci = 0, to study a rigid rotation.

We might extract some insight regarding the form of

such forces by actually solving the resistance problem

for a rigidly translating rod, applying the procedure of

x4.1. Indeed, with K being the degenerate fundamental

ellipse of a family of prolate spheroids, we may view it

also as a degenerate prolate spheroid. The solution of

this problem using prolate spheroidal coordinates and

external spheroidal wave functions is provided in

Appendix A, but that solution provides an expression

for the disturbance field which is not readily expressed

as a convolution. To determine the reactive forces, we

therefore rely on a different method.

For a fixed N 2 N; we approximate the rod by a

sequence of equidistant points with first components

fxk
1g

2Nþ1
k¼1 ; chosen in ½�a; a� so that x1

1 ¼ �a and

x2Nþ1
1 ¼ a: We then find the second component

qb2ðxÞ ¼ dðx2Þdðx3Þ
X2
Nþ1

k¼1

f k
2 dðxk

1Þ

of the force density required to make all the points

move with equal velocity U ¼ U2e2: (The same
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procedure produces analogous results for a velocity

U ¼ U1e1:) The coefficients f k
2 ; k ¼ 1; 2; . . .; 2N þ 1;

can be found by solving the Toeplitz system

a0 a1 a2 a3
. .

. . .
.

a2N

a1 a0 a1 a2
. .

. . .
. . .

.

a2 a1 a0 a1
. .

. . .
. . .

.

a3 a2 a1 a0
. .

. . .
. . .

.

. .
. . .

. . .
. . .

. . .
. . .

. . .
.

. .
. . .

. . .
. . .

. . .
. . .

.
a1

a2N
. .

. . .
. . .

. . .
.

a1 a0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

f 1
2

f 2
2

..

.

..

.

..

.

..

.

f 2Nþ1
2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

U2

U2

..

.

..

.

..

.

..

.

U2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

with ai ¼ Z22ðia=2N�1;0;0Þ; for i¼ 0;1; . . .;2N ;which

generalizes the technique used in x4.2 for two point-

like spherical particles.

We solved the system for N ¼ 1; 2; . . .; 13; fixing

a ¼ 1 cm; L=2a ¼ 0:005; U2 ¼ 1 cm=s; and l ¼
4 Pa s: Plots of the maximum and minimum

coefficients, f 1
2 and f 2N�1þ1

2 ; versus N are provided in

Fig. 1, to show that the result approaches an asymptote

for N sufficiently large. The profile of the force density

distributed on the rod, calculated for a;U2; and l as

above and different values of L/2a by using 8193

points (N = 13), is shown in Fig. 2. It is much larger

(by two orders of magnitude) towards the ends of the

rod, and rather flat in the middle, as expected, since the

motion of the central points receives the maximum

support from the hydrodynamic force generated by the

motion of the other points, whereas the endpoints

receive the least contribution from such interactions.

In accordance with the interpretation of L as an

effective thickness, we observe that the magnitude of

the force needed to sustain the motion increases with

L.

6 Summary and perspectives

We have presented a new slender-body theory, which, in

contrast to previously developed alternatives, might be

6
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viewed as a modeling scheme, based on the concepts of

dimensional reduction and hyperviscous regularization.

We propose to approximate the geometry of flat,

elongated, or point-like rigid bodies immersed in a

viscous fluid with lower-dimensional objects, while

adding a hyperviscous term to the flow equation. The

hyperviscosity is given by the product of the ordinary

viscosity with the square of a length that replaces the

characteristic size of the body along the dimensions that

are shrunken to zero in the slender-body limit.

We explicitly solved some simple problems to show

that the proposed method is able to represent with good

approximation both the velocity field and the drag

forces generated by rigid motions of the immersed

bodies, in analogy with classical slender-body theories.

The regularized Stokeslet and the regularized Oseen

tensor were determined. These objects are basic to the

solution of mobility problems, in which the concen-

trated force density acting on the system is prescribed.

We explained the limitations of this kind of solution

technique, which stems from the need to determine the

reactive force arising from the rigidity constraint. That

force can be computed starting from the solution of

resistance problems, in which the velocity of the

immersed objects is prescribed.

The construction of a numerical scheme for the

simulation of slender bodies in viscous fluids is a

necessary step for any realistic application, and will be

the object of a forthcoming paper. Within the present

approach, the computational strategy stands to benefit

from the understanding that the unsteady movement of

the slender bodies is no longer represented by a time-

varying domain, but rather by a time-dependent con-

straint on the function space of admissible velocity fields.

The complexity of the geometry is therefore reduced at

the expense of involving higher-order derivatives of the

velocity field in the flow equation, and a time-dependent

constraint on it. We nevertheless believe that this

approach has the potential to enable more effective

computational techniques, especially when dealing with

suspensions featuring large numbers of particles.

Another important aspect of our approach is that

both the dimensional reduction and the hyperviscous

regularization, combined with suitable numerical

schemes, can be used also in situations where inertia

is not negligible. Indeed, as Giusteri et al. [13] show,

the flow generated by one-dimensional rigid bodies,

moving in a fluid governed by a generalization of the

Navier–Stokes equation with hyperviscosity, can be

uniquely determined. A generalization to deformable

bodies also seems feasible.

G.G.G. would like to express his gratitude to the

Department of Mechanical Engineering of the Uni-

versity of Washington for the hospitality offered

during the development of this research.

Appendix A: Uniform flow past a straight rod

To compute the low-Reynolds-number flow past a

uniformly translating rigid rod, we follow the method

of x4.1. Specifically, we start from the solution ups;

given by Chwang and Wu [5], for the disturbance field

generated by a prolate spheroid with axis along e1 and

foci at x1 = ± a, uniformly translating with velocity

U ¼ U1e1 þ U2e2: In view of the symmetry of the

spheroid, there is no loss of generality in taking

U3 = 0. A particular solution of (12) is u� ¼ ups þ
L2Dups: Setting

r :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
2 þ x2

3

q

; R1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 þ aÞ2 þ r2

q

;

R2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � aÞ2 þ r2

q

;

D0 :¼ R2 � ðx1 � aÞ
R1 � ðx1 þ aÞ ; D1 :¼ 1

R2

� 1

R1

;

D2 :¼ x1 þ a

R1

� x1 � a

R2

;

D3 :¼ 1

R3
2

� 1

R3
1

;

D4 :¼ x1 � R2

R2
2 � R2ðx1 � aÞ �

x1 � R1

R2
1 � R1ðx1 þ aÞ ;

D5 :¼ 1

R2
2 � R2ðx1 � aÞ �

1

R2
1 � R1ðx1 þ aÞ ;

we can express its components as

u�1ðxÞ ¼ � 2ða1 þ b1Þ log D0 � 2b1x1D1

þ 2L2a1x1D3 þ ðb2x2 � 2b1x1ÞD4 þ a1D2

� a2x2D1 þ b2

x2

r2
ðR1 � R2Þ þ 2L2a2

x2

r2
D1

þ x2x1ðx1 þ aÞ
r2

2L2a2

R3
1

� b2

R2

� �

þ x2x1ðx1 � aÞ
r2

b2

R1

� 2L2a2

R3
2

� �

;

u�2ðxÞ ¼ ðb2 � a2Þ log D0 � ða1x2 þ 2b1x2ÞD1

þ 2L2a1x2D3 þ
x1 � a

r2
b2R1 þ

2L2a2

R2

� �
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� x1þa

r2
b2R2þ

2L2a2

R1

� �

þa2x2
2D2

r2
1þ4L2

r2

� �

þ2L2a2x2
2

r2

x1þa

R3
1

� x1�a

R3
2

� �

þb2x2
2

r2
ðx1�aÞ 1

R1

�2R1

r2

� ��

�ðx1þaÞ 1

R2

�2R2

r2

� �

�þ ðb2x2
2�2b1x1x2ÞD5;

u�3ðxÞ ¼ �ða1x3 þ 2b1x3ÞD1 þ 2L2a1x3D3

þ a2x2x3D2

r2
þ b2x2x3

r2

� ðx1 � aÞ 1

R1

� 2R1

r2

� ��

�ðx1 þ aÞ 1

R2

� 2R2

r2

� ��

þ 2L2a2x2x3

r2

ðx1 þ aÞ 1

R3
1

þ 2

R1r2

� ��

�ðx1 � aÞ 1

R3
2

þ 2

R2r2

� ��

þ ðb2x2x3 � 2b1x1x3ÞD5;

where a1, a2, b1, and b2 are constants to be

determined.

We introduce prolate spheroidal coordinates

(u, v, /), defined by

x1 ¼ a cosh u cos v;

x2 ¼ a sinh u sin v cos /;

x3 ¼ a sinh u sin v sin /;

with u 2 ½0;þ1Þ; v 2 ½0; p�; and / 2 ½0; 2pÞ: The

surfaces given by u = c, with c [ 0, are confocal

prolate spheroids with foci at x1 = ± a, and u = 0

describes the degenerate spheroid K: Using these

coordinates, we have

r ¼ a sinh u sin v;

R1 ¼ aðcosh uþ cos vÞ;
R2 ¼ aðcosh u� cos vÞ;
R1 � ðx1 þ aÞ ¼ aðcosh u� 1Þð1� cos vÞ;
R2 � ðx1 � aÞ ¼ aðcosh uþ 1Þð1� cos vÞ;

and we can rewrite the components of u� as

u�1ðu; v;/Þ ¼ �2ða1 þ b1Þ log
cosh uþ 1

cosh u� 1

� �

� 4b1

cosh u cos2 v

cosh2 u� cos2 v
þ 2a1

cosh u sin2 v

cosh2 u� cos2 v

þ 4L2a1

a2

cosh u cos2 vð3 cosh2 uþ cos2 vÞ
ðcosh2 u� cos2 vÞ3

� 2a2

cos / sinh u sin v cos v

cosh2 u� cos2 v
þ 2b2

cos / cos v

sinh u sin v

þ 4L2a2

a2

cos / cos v

sinh u sin v cosh2 u� cos2 v

 �

þ cos / cosh u cos vðcosh u cos vþ 1Þ
sinh u sin v

� 2aL2a2

R3
1

� ab2

R2

� �

þ cos / cosh u cos vðcosh u cos v� 1Þ
sinh u sin v

ab2

R1

� 2aL2a2

R3
2

� �

þ aðb2 sinh u sin v cos /

� 2b1 cosh u cos vÞD4;

u�2ðu; v;/Þ ¼ ðb2 � a2Þ log
cosh uþ 1

cosh u� 1

� �

� ð2a1 þ 4b1Þ
cos / sinh u sin v cos v

cosh2 u� cos2 v

þ 4L2a1

a2

cos / sinh u sin v cos vð3 cosh2 uþ cos2 vÞ
ðcosh2 u� cos2 vÞ3

þ cosh u cos v� 1

sinh2 u sin2 v

b2R1

a
þ 2L2a2

aR2

� �

� cosh u cos vþ 1

sinh2 u sin2 v

b2R2

a
þ 2L2a2

aR1

� �

þ 2a2

cos2 / cosh u sin2 v

cosh2 u� cos2 v
1þ 4L2

a2 sinh2 u sin2 v

� �

þ 2L2a2 cos2 /
x1 þ a

R3
1

� x1 � a

R3
2

� �

þ b2 cos2 / ðx1 � aÞ 1

R1

� 2R1

a2 sinh2 u sin2 v

� ��

�ðx1 þ aÞ 1

R2

� 2R2

a2 sinh2 u sin2 v

� ��

þ ðb2a2 cos2 / sinh2 u sin2 v

� 2b1a2 cos / cosh u cos v sinh u sin vÞD5;
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u�3ðu; v;/Þ ¼ �ð2a1 þ 4b1Þ

� sin / sinh u sin v cos v

cosh2 u� cos2 v

þ 4L2a1

a2

sin / sinh u sin v cos vð3 cosh2 uþ cos2 vÞ
ðcosh2 u� cos2 vÞ3

þ 2a2

cos / sin / cosh u sin2 v

cosh2 u� cos2 v

þb2 cos / sin /

�

ðx1 � aÞ 1

R1

� 2R1

a2 sinh2 u sin2 v

� �

� ðx1 þ aÞ 1

R2

� 2R2

a2 sinh2 u sin2 v

� ��

þ 2L2a2 cos / sin /ðx1

þ aÞ 1

R3
1

þ 2

R1a2 sinh2 u sin2 v

� �

� 2L2a2 cos / sin /ðx1

� aÞ 1

R3
2

þ 2

R2a2 sinh2 u sin2 v

� �

þ D5b2a2 cos / sin / sinh2 u sin2 v

� 2D5b1a2 sin / cosh u cos v sinh u sin v:

Notice that, in the limit u! 0; u� is divergent.

Since we wish to impose the velocity of the fluid

precisely on the set K defined by u = 0, we must add a

suitable solution of the homogeneous equation asso-

ciated with (12), thereby canceling the divergent

terms.

We introduce external prolate spheroidal wave

functions (using the notation of Erdélyi et al. [10])

defined for n 2 N and l ¼ 0; . . .; n :

W�l
n ðu; v;/Þ ¼ Slð3Þ

n ðcosh u; j2a2=4Þ
� Psl

nðcos v; j2a2=4Þe�il/:

Those are solutions of DW þ j2W ¼ 0; regular at

infinity but divergent on K: In our problem j = i/L,

and we are interested in the cases n = 0, 1, 2, 3. We

have

W0
0 ðu; v;/Þ ¼ S

0ð3Þ
0 ðcosh u;�a2=4l2Þ

� Ps0
0ðcos v;�a2=4l2Þ ¼ s0

0

X

2r	 0

X

2p	 0

ð�1Þpa0
0;ra

0
0;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

ap cosh u

r

� e�iprK2rþ1
2

a cosh u

L

� �

P0
2pðcos vÞ;

W0
1 ðu;v;/Þ¼S

0ð3Þ
1 ðcoshu;�a2=4l2ÞPs0

1ðcosv;�a2=4l2Þ

¼s0
1

X

2r	�1

X

2p	�1

ð�1Þpa0
1;ra

0
1;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

apcoshu

r

�e�ipðrþ1=2ÞK2rþ3
2

acoshu

L

� �

P0
2pþ1ðcosvÞ;

W�1
1 ðu;v;/Þ ¼ S

1ð3Þ
1 ðcoshu;�a2=4l2Þ

�Ps1
1ðcosv;�a2=4l2Þe�i/ ¼ e�i/ 1� 1

cosh2 u

� �1
2

s�1
1

�
X

2r	0

X

2p	0

ð�1Þpa�1
1;r a1

1;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

apcosh u

r

� e
�ipðrþ1=2Þ
2rþ3

2

acoshu

L

� �

P1
2pþ1ðcosvÞ;

W0
2 ðu;v;/Þ¼S

0ð3Þ
2 ðcoshu;�a2=4l2ÞPs0

2ðcosv;�a2=4l2Þ

¼ s0
2

X

2r	�2

X

2p	�2

ð�1Þpa0
2;ra

0
2;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

apcoshu

r

�e�ipðrþ1ÞK2rþ5
2

acoshu

L

� �

P0
2pþ2ðcosvÞ;

W�1
2 ðu;v;/Þ ¼ S

1ð3Þ
2 ðcoshu;�a2=4l2Þ

�Ps1
2ðcosv;�a2=4l2Þe�i/ ¼ e�i/ 1� 1

cosh2 u

� �1
2

s�1
2

�
X

2r	�1

X

2p	�1

ð�1Þpa�1
2;r a1

2;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

apcosh u

r

� e�ipðrþ1ÞK2rþ5
2

acoshu

L

� �

P1
2pþ2ðcosvÞ;

W�2
2 ðu;v;/Þ¼S

2ð3Þ
2 ðcoshu;�a2=4l2Þ

�Ps2
2ðcosv;�a2=4l2Þe�i2/¼ e�i2/ 1� 1

cosh2 u

� �

s�2
2

�
X

2r	0

X

2p	0

ð�1Þpa�2
2;r a2

2;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

apcoshu

r

�e�ipðrþ1ÞK2rþ5
2

acoshu

L

� �

P2
2pþ2ðcosvÞ;

W0
3 ðu;v;/Þ¼S

0ð3Þ
3 ðcoshu;�a2=4l2ÞPs0

3ðcosv;�a2=4l2Þ

¼s0
3

X

2r	�3

X

2p	�3

ð�1Þpa0
3;ra

0
3;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

apcoshu

r

�e�ipðrþ3=2ÞK2rþ7
2

acoshu

L

� �

P0
2pþ3ðcosvÞ;
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W�1
3 ðu; v;/Þ ¼ S

1ð3Þ
3 ðcosh u;�a2=4l2Þ

� Ps1
3ðcos v;�a2=4l2Þe�i/

¼ e�i/ 1� 1

cosh2 u

� �1
2

s�1
3

�
X

2r	�2

X

2p	�2

ð�1Þpa�1
3;r a1

3;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

ap cosh u

r

� e�ipðrþ3=2ÞK2rþ7
2

a cosh u

L

� �

P1
2pþ3ðcos vÞ;

W�2
3 ðu;v;/Þ ¼ S

2ð3Þ
3 ðcoshu;�a2=4l2Þ

�Ps2
3ðcosv;�a2=4l2Þe�i2/ ¼ e�i2/ 1� 1

cosh2 u

� �

s�2
3

�
X

2r	�1

X

2p	�1

ð�1Þpa�2
3;r a2

3;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

apcosh u

r

� e�ipðrþ3=2ÞK2rþ7
2

acoshu

L

� �

P2
2pþ3ðcosvÞ;

where sn
l and an,m

l are coefficients dependent on j2 a2/

4 = - a2/4l2, Km is a modified Bessel function of the

second kind, and Pm
l is an associated Legendre

function of the first kind.

The divergence of the logarithmic terms in u�1
and u�2 can be cancelled by adding multiples of W0

0. If

U2 ¼ a2 ¼ b2 ¼ 0; which corresponds to a uniform

translation of the rod along its axis, the dependence on

/ and the radial decay of u� suggest that a solution uk

of (12) can be written in the form

u
k
1 ¼ u�1 þ c1W0

0 þ d1W0
1 þ k1W0

2 þ e1W0
3 ;

u
k
2 ¼ u�2 þ c2ðW1

1 þW�1
1 Þ þ d2ðW1

2 þW�1
2 Þ

þ k2ðW1
3 þW�1

3 Þ;
u
k
3 ¼ u�3 þ ic3ðW1

1 �W�1
1 Þ

þ id3ðW1
2 �W�1

2 Þ þ ik3ðW1
3 �W�1

3 Þ:

The no-slip condition on K requires that uð0; v;/Þ ¼
�U;which fixes the value of a1, once the boundedness

of uk is ensured by a suitable choice of the the

coefficients ci; di; ki; and e1 as functions of a1:

On the other hand, in the case U1 = a1 = b1 = 0,

corresponding to a translation of the rod with direction

in the plane orthogonal to e1; we may seek a solution

u? of (12) of the form

u?1 ¼ u�1 þ c1ðW1
1 þW�1

1 Þ þ d1ðW1
2 þW�1

2 Þ
þ k1ðW1

3 þW�1
3 Þ;

u?2 ¼ u�2 þ c2W0
0 þ d2ðW2

2 þW�2
2 þ A2W0

2 þ B2W0
0 Þ

þ k2ðW2
3 þW�2

3 þ A3W0
3 þ B3W0

0 Þ;
u?3 ¼ u�3 þ id3ðW2

2 �W�2
2 Þ þ ik3ðW2

3 �W�2
3 Þ:

As above, the no-slip condition on K fixes the value of

a2, once the boundedness of u? is ensured by a

suitable choice of the coefficients Ai, Bi, ci, di, and

ki. Finally, the disturbance field u for a uniform

translation with generic velocity U ¼ U1e1 þ U2e2 is

given by u ¼ uk þ u?:
Notice that, since we can impose the corresponding

boundary conditions on the surface described by

u = c, for any value c C 0, the previous expressions

provide the general solution for the flow past any

translating spheroid of the family with foci at x1 = ± a.
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