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Abstract The aim of the present work is to inves-

tigate the influence of magnetic field on wave

propagation within a fiber-reinforced medium under

the three-phase-lag theory and Green–Naghdi theory

without energy dissipation. The modulus of the

elasticity is given as a linear function of the reference

temperature. The exact expression for the displace-

ment components, temperature, and stress components

are obtained by using normal mode analysis. Numer-

ical results for the field quantities are given in the

physical domain and illustrated graphically in the

absence and presence of magnetic field. Comparisons

are made between the results for the two different

theories with and without temperature dependent

properties as well as reinforcement. The results are a

valuable contribution to the problem of practical

design of such structures, for example to design

stiffness, damping and so on into the right place of a

structure by selecting the appropriate material

properties.

Keywords Fiber-reinforced � Green–Naghdi

theory �Magnetic field � Normal mode analysis �
Three-phase-lag theory

1 Introduction

Generalized thermoelasticity theories have been devel-

oped with the objective of removing the paradox of

infinite speed of thermal signals inherent in the

conventional coupled dynamical theory of thermoelas-

ticity in which parabolic type heat conduction equation

is considered, contradict physical facts. During the last

three decades, generalized theories involving finite

speed of heat transportation (hyperbolic heat transport

equation) in elastic solids have been developed to

remove this paradox. The first generalization is pro-

posed by Lord and Shulman [1] and is known as

extended thermoelasticity theory (ETE), which

involves one thermal relaxation time parameter (sin-

gle-phase-lag model). The second generalization to the

coupled thermoelasticity theory is developed by Green

and Lindsay [2], which involving two relaxation times

is known as temperature rate dependent thermoelastic-

ity (TRDTE). Experimental studies indicate that the

relaxation times can be of relevance in the cases

involving a rapidly propagating crack tip, shock waves

propagation, laser technique etc. Because of the

experimental evidence in support of finiteness of heat

propagation speed, the generalized thermoelasticity

theories are considered to be more realistic than the

conventional theory in dealing with practical problems

involving very large heat fluxes at short intervals like

those occurring in laser units and energy channels. The

third generalization is known as low-temperature

thermoelasticity introduced by Hetnarski and Ignaczak
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[3] called H–I theory. Most engineering materials such

as metals possess a relatively high rate of thermal

damping and thus are not suitable for use in experi-

ments concerning second sound propagation. But,

given the state of recent advances in material science,

it may be possible in the foreseeable future to identify

(or even manufacture for laboratory purposes) an

idealized material for the purpose of studying the

propagation of thermal waves at finite speed. The

thermoelasticity without energy dissipation (TEW-

OED) and thermoelasticity with energy dissipation

(TEWED) introduced by Green and Naghdi [4–6] and

Fig. 1 Horizontal

displacement distribution

u in the absence and

presence of magnetic field

Fig. 2 Vertical

displacement distribution

v in the absence and

presence of magnetic field

Fig. 3 Temperature

distribution h in the absence

and presence of magnetic

field
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provides sufficient basic modifications in the constitu-

tive equations that permit treatment of a much wider

class of heat flow problems, labeled as types I, II, III.

The natures of these three types of constitutive

equations are such that when the respective theories

are linearized, type-I is the same as the classical heat

equation (based on Fourier’s law) whereas the

linearized versions of type-II and type-III theories

permit propagation of thermal waves at finite speed.

The entropy flux vector in type II and III (i.e. TEWOED

and TEWED) models are determined in terms of the

potential that also determines stresses. When Fourier

conductivity is dominant the temperature equation

reduces to classical Fourier’s law of heat conduction

Fig. 4 Distribution of

stress component rxx in the

absence and presence of

magnetic field

Fig. 5 Distribution of

stress component rxy in the

absence and presence of

magnetic field

Fig. 6 Distribution of

stress component ryy in the

absence and presence of

magnetic field
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and when the effect of conductivity is negligible the

equation has undamped thermal wave solutions without

energy dissipation. Applying the above theories of

generalized thermoelasticity, several problems have

been solved by Othman et al. [7, 8], Othman and Atwa

[9–11], Roychoudhury and Bandyopadhyay [12],

Chandrasekharaiah [13] etc. The fifth generalization

to the thermoelasticity theory is known as the dual-

phase-lag thermoelasticity developed by Tzou [14] and

Chandrasekhariah [15]. Tzou considered micro-struc-

tural effects into the delayed response in time in the

macroscopic formulation by taking into account that

increase of the lattice temperature is delayed due to

photon-electron interactions on the macroscopic level.

Fig. 7 Horizontal

displacement distribution

u for dependent and

independent temperature

Fig. 8 Vertical

displacement distribution

v for dependent and

independent temperature

Fig. 9 Temperature

distribution h for dependent

and independent

temperature
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Tzou [14] introduced two-phase-lag to both the heat

flux vector and the temperature gradient. According to

this model, classical Fourier’s law q ¼ �KrT has

been replaced by q(P,t þ sqÞ ¼ �KrT(P,t þ sT),

where the temperature gradient rT at a point P of

the material at time tþ sT corresponds to the heat flux

vector q at the same point at time t þ sq. Here K is the

thermal conductivity of the material. The delay time

sT is interpreted as that caused by the micro-structural

interactions and is called the phase-lag of the temper-

ature gradient. The other delay time sq is interpreted as

the relaxation time due to the fast transient effects of

Fig. 10 Distribution of

stress component rxx for

dependent and independent

temperature

Fig. 11 Distribution of

stress component rxy for

dependent and independent

temperature

Fig. 12 Distribution of

stress component ryy for

dependent and independent

temperature
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thermal inertia and is called the phase-lag of the heat

flux. For sq ¼ sT ¼ 0; the Fourier’s law in two-phase-

lag model is identical with classical Fourier’s law. If

sq ¼ s and sT ¼ 0; Tzou [14] refers to the model as

single-phase-lag model. The generalization is known

as three-phase-lag thermoelasticity which is due to

Roychoudhuri [16]. According to this model

q P,t þ sq

� �
¼ � KrT P,t þ sTð Þ þ K�rm½ P,t þð

smÞ�, where rm ð _m ¼ TÞ is the thermal displacement

gradient and K� is the additional material constant and

sm is the phase-lag for thermal displacement gradient.

To study some practical relevant problems and have

found that in heat transfer problems involving very

short time intervals and in the problems of very high

heat fluxes, the hyperbolic equation gives significantly

different results than the parabolic equation. Accord-

ing to this phenomenon the lagging behavior in the

heat conduction in solid should not be ignored

particularly when the elapsed times during a transient

process are very small, say about 10�7 s or the heat

flux is very much high. Three-phase-lag model is very

useful in the problems of nuclear boiling, exothermic

catalytic reactions, phonon-electron interactions, pho-

non-scattering etc., where the delay time sq captures

the thermal wave behavior (a small scale response in

time), the phase-lag sT captures the effect of phonon-

electron interactions (a microscopic response in

space), the other delay time sm is effective since, in

the three-phase-lag model, the thermal displacement

gradient is considered as a constitutive variable

whereas in the conventional thermoelasticity theory

temperature gradient is considered as a constitutive

variable. There are materials which have natural

anisotropy such as zinc, magnesium, sapphire, wood,

some rocks and crystals, and also there are artificially

manufactured materials such as fiber-reinforced com-

posite materials, which exhibit anisotropic character.

The advantage of composite materials over the

traditional materials lies on their valuable strength,

elastic and other properties [17]. A reinforced material

may be regarded to some order of approximation, as

homogeneous and anisotropic elastic medium having

a certain kind of elastic symmetry depending on the

symmetry of reinforcement. Some glass fiber rein-

forced plastics may be regarded as transversely

isotropic. Thus problems of solid mechanics should

not be restricted to the isotropic medium only.

Increasing use of anisotropic media demands that the

study of elastic problems should be extended to

anisotropic medium also.

Fiber-reinforced composites are widely used in

engineering structures, due to their superiority over the

structural materials in applications requiring high

strength and stiffness in lightweight components. A

continuum model is used to explain the mechanical

properties of such materials. A reinforced concrete

member should be designed for all conditions of

stresses that may occur and in accordance with

principles of mechanics. The characteristic property

of a reinforced concrete member is that its compo-

nents, namely concrete and steel, act together as a

single unit as long as they remain in the elastic

condition i.e. the two components are bounded

together so that there can be no relative displacement

between them. In the case of an elastic solid reinforced

by a series of parallel fibers, it is usual to assume

Fig. 13 Horizontal

displacement distribution

u in the absence and

presence of reinforcement
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transverse isotropy. In the linear case, the associated

constitutive relations, relating infinitesimal stress and

strain components have five material constants. In the

last three decades, the analysis of stress and deforma-

tion of fiber-reinforced composite materials has been

an important research area of solid mechanics. Belfield

et al. [18] has introduced the idea of continuous self-

reinforcement at every point of an elastic solid. One

can find some work on transversely isotropic elasticity

in the literature [19–22].

The normal mode analysis gives exact solutions

without any assumed restrictions on temperature,

displacement and stress distributions. It is applied to

a wide range of problems in different branches

(Othman and Singh [23]). It can be applied to

boundary-layer problems, which are described by the

linearized Navier–Stokes equations in electro hydro-

dynamics (Othman [24]; Othman and Sweilam [25]).

The normal mode analysis is, in fact, to look for the

solution in the Fourier transformed domain. Assume

that all the field quantities are sufficiently smooth on

the real line such that normal mode analysis of these

functions exists.

The present paper is to investigate the influence of

the magnetic field and the temperature properties

dependent on the plane waves in a linearly fiber-

reinforced thermoelastic isotropic medium in the

context of the three-phase-lag theory. The problem

has been solved numerically using the normal mode

analysis. Numerical results for the temperature,

displacement components and the stresses are repre-

sented graphically and the results are analyzed. The

graphical results indicate that the effect of the

magnetic field, the dependent and independent of

temperature and the reinforcement on the plane waves

in the fiber-reinforced thermoelastic medium are very

pronounced. Comparisons are made with the results in

the absence of the magnetic field and the reinforce-

ment. Such problems are very important in many

dynamical systems.

2 Formulation of the problem and basic equations

We consider the problem of a thermoelastic half-space

ðx� 0Þ. A magnetic field with a constant intensity

H ¼ ð0; 0;H0Þ, acting parallel to the boundary plane

(taken as the direction of the z-axis). The surface of a

half-space is subjected to a thermal shock which is a

function of y, and t: Thus, all quantities considered

will be functions of the time variable t, and the

coordinates x and y. The field equations and consti-

tutive relations for a fiber-reinforced linearly thermo-

elastic isotropic medium with respect to the reinforce-

ment direction a in the three-phase-lag theory without

body forces, body couples and heat sources are

(i) The stress–strain relation may be written as [18]

rij ¼ kekkdij þ 2lT eij þ aðakamekmdij þ aiajekkÞ
þ 2ðlL � lTÞðaiakekj þ ajakekiÞ
þ b akamekmaiaj � c T̂ dij ; ð1Þ

where rij’s are the components of stress, eij’s are the

components of strain, k, lT ’s are elastic constants,

a; b; lL � lTð Þ and c are reinforcement parameters, dij

is the Kronecker delta, T̂ ¼ T � T0; where T is the

temperature above reference temperature T0; and a �
ða1; a2; a3Þ; a2

1 þ a2
2 þ a2

3 ¼ 1: We choose the fiber-

direction as a � ð1; 0; 0Þ: The strains can be expressed

in terms of the displacement ui as

Fig. 14 Vertical

displacement distribution

v in the absence and

presence of reinforcement
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eij ¼
1

2
ðui; j þ uj; iÞ: ð2Þ

(ii) The dynamical equations of a fiber-reinforced

magneto-thermoelastic medium

q€ui ¼ rij;j þ Fi; i; j ¼ 1; 2; 3; . . . ð3Þ

where Fi is the Lorentz force and is given in the form,

Fi ¼ l0 ðJ x H Þi ð4Þ

The variation of the magnetic and electric fields are

perfectly conducting slowly moving medium and are

given by Maxwell’s equation [9]

J ¼ curl h� e0
_E, ð5Þ

curl E ¼ �l0
_h; ð6Þ

E ¼ �l0ð _u�HÞ; ð7Þ
r:h ¼ 0; ð8Þ

where l0 is the magnetic permeability, e0 is the

electric permeability, J is the current density vector, _u

is the particle velocity of the medium and the small

effect of temperature gradient on J is also ignored. The

dynamic displacement vector is actually measured

from a steady state deformed position and the defor-

mation is supposed to be small. Due to the application

of the initial magnetic field H, there are an induced

magnetic field h ¼ ð0; 0; hÞ and an induced electric

field E, as well as the simplified equations of

electrodynamics of slowly moving medium for a

homogeneous, thermal and electrically conducting

elastic solid. Expressing the components of the vector

J ¼ ðJ1 ; J2 ; J3Þ in terms of displacement by

eliminating the quantities h and E from Eq. (5), thus

yields, where

J1 ¼ Ho �
oe

oy
þ l0e0€v

� �
;

J2 ¼ Ho �
oe

ox
þ l0e0 €u

� �
; J3 ¼ 0;

ð9Þ

Substituting from Eq. (9) into Eq. (4), we get

F1 ¼ �l0H0

oh

ox
� e0l

2
0H2

0

o2u

ot2
;

F2 ¼ �l0H0

oh

oy
� e0l

2
0H2

0

o2v

ot2
; F3 ¼ 0:

ð10Þ

(iii) The generalized heat conduction equation in the

three-phase-lag theory is given by [17]

K�r2T þ s�mr2 _T þ KsTr2 €T

¼ 1þ sq

o

ot
þ 1

2
s2

q

o2

ot2

� �
qCE

€T þ cT0€e
� �

; ð11Þ

where K� is the coefficient of thermal conductivity, K

is the additional material constant, q is the mass

density, CE is the specific heat at constant strain, sT

and sq are the phase-lag of temperature gradient and

the phase-lag of heat flux respectively. Also

s�m ¼ K þ sm K�, where sm is the phase-lag of thermal

displacement gradient. Equations (3) and (11), when

K ¼ sT ¼ sq ¼ sm ¼ 0; reduce to the equations of

TEWOED (GN-II) theory. In the above equations a

dot denotes differentiation with respect to time, and a

comma followed by a subscript denotes partial differ-

entiation with respect to the corresponding

coordinates.

Fig. 15 Temperature

distribution h in the absence

and presence of

reinforcement
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We assume that [26]

k ¼ k1ð1� a�T0Þ; a ¼ a1ð1� a�T0Þ;
l ¼ l1ð1� a�T0Þ; lL ¼ lL1ð1� a�T0Þ;
c ¼ c1ð1� a�T0Þ; lT ¼ lT1ð1� a�T0Þ;
b ¼ b1ð1� a�T0Þ;

ð12Þ

where k1; a1; l1; lL1; lT1; c1; b1 are constants

of the material and a� is the linear temperature

coefficient.

For plane strain deformation in the x � y plane with

displacement components u ¼ uðx; y; t), v ¼ vðx; y; t),
w ¼ 0. Using Eq. (12) in Eq. (1), we get

Fig. 16 Distribution of

stress component rxx in the

absence and presence of

reinforcement

Fig. 17 Distribution of

stress component rxy in the

absence and presence of

reinforcement

Fig. 18 Distribution of

stress component ryy in the

absence and presence of

reinforcement
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Fig. 19 3D horizontal

component of displacement

against both components of

distance based on three-

phase-lag theory in the

presence of magnetic field

with temperature dependent

Fig. 20 3D vertical

component of displacement

against both components of

distance based on three-

phase-lag theory in the

presence of magnetic field

with temperature dependent

Fig. 21 3D temperature

distribution against both

components of distance

based on three-phase-lag

theory in the presence of

magnetic field with

temperature dependent
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Fig. 22 3D distribution of

stress component rxx against

both components of distance

based on three-phase-lag

theory in the presence of

magnetic field with

temperature dependent

Fig. 23 3D distribution of

stress component rxy against

both components of distance

based on three-phase-lag

theory in the presence of

magnetic field with

temperature dependent

Fig. 24 3D distribution of

stress component ryy against

both components of distance

based on three-phase-lag

theory in the presence of

magnetic field with

temperature dependent
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rxx ¼
1

a0

B11u;x þ B12v;y � c1T̂
� �

; ð13Þ

ryy ¼
1

a0

B12u;x þ B22v;y � c1T̂
� �

; ð14Þ

rzz ¼
1

a0

B12u;x þ k1v;y � c1T̂
� �

; ð15Þ

rxy ¼
lL1

a0

u;y þ v;x
� �

; rxz ¼ ryz ¼ 0; ð16Þ

where B11 ¼ k1 þ 2ða1 þ lT1Þ þ 4ðlL1 � lT1Þ þ b1,

B12 ¼ k1 þ a1, B22 ¼ k1 þ 2lT1.

By substituting from Eqs. (13)–(16) and (10) in Eq.

(3) and using the summation convection, we note that

the third equation of motion in (3) is identically

satisfied and first two equations become

q
o2u

ot2
¼ 1

a0

B11

o2u

ox2
þ E2

o2v

oxoy
þ E1

o2u

oy2
� c1

oT̂

ox

� �

� l0H0

oh

ox
� e0l

2
0H2

0

o2u

ot2
;

ð17Þ

q
o2v

ot2
¼ 1

a0

B22

o2v

oy2
þ E2

o2u

oxoy
þ E1

o2v

ox2
� c1

oT̂

oy

� �

� l0H0

oh

oy
� e0l

2
0H2

0

o2v

ot2
;

ð18Þ

where E1 ¼ lL1; E2 ¼ a1 þ k1 þ lL1:

Employing Eq. (12) and using Eq. (11), this yields

K�r2T þ s�mr2 _T þ KsTr2 €T

¼ 1þ sq

o

ot
þ 1

2
s2

q

o2

ot2

� �
qCE

€T þ c1

a0

T0€e

� �
;

ð19Þ
Introducing the following dimensionless quantities:

x0; y0; u0; v0ð Þ ¼ c1gðx; y; u; vÞ;

t0; s0q; s
0
m; s
0
T

� 	
¼ c2

1gðt; sq; sm; sTÞ;

h0 ¼ h

H0

; h ¼ c1T̂

ðk1 þ 2lT1Þ
; r0ij ¼

rij

lT1

; i; j ¼ 1; 2

ð20Þ

where a0 ¼ 1
ð1�a�T0Þ, g ¼ qCE

K� , c2
1 ¼

ðk1þ2lT1Þ
q :

Using the above non-dimensional variables then

employing h ¼ �H0 e, Eqs. (17)–(19) take the fol-

lowing form (dropping the primes for convenience)

a2

o2u

ot2
¼ L11

o2u

ox2
þ L2

o2v

oxoy
þ h1

o2u

oy2
� oh

ox
; ð21Þ

a2

o2v

ot2
¼ L22

o2v

oy2
þ L2

o2u

oxoy
þ h1

o2v

ox2
� oh

oy
; ð22Þ

CKh;ii þ Cm
_h;ii þ CT

€h;ii ¼ 1þ sq

o

ot
þ 1

2
s2

q

o2

ot2

� �

€hþ e€e
� 	

; ð23Þ

where, L11 ¼ h11 þ a0h0H0; L22 ¼ h22 þ a0h0H0;

L2 ¼ h2 þ a0h0H0; h1; h2; h11; h22ð Þ ¼ E1;E2;B11;B22ð Þ
qc2

1

;

h0 ¼ l0H2
0

qc2
1

; CK ¼ K�

qCEc2
1

; Cm ¼ gK
qCE
þ CKsm; CT ¼ gKsT

qCE
;

e ¼ c2
1
T0

qCEa0ðk1þ2lT1Þ
:

3 Normal mode analysis

The solution of the considered physical variable can be

decomposed in terms of normal modes as the follow-

ing form:

u;v;h;rij

� �
ðx;y; tÞ ¼ u�;v�;h�;r�ij

h i
ðxÞexpðxtþ ibyÞ;

ð24Þ

where x is a complex constant, i¼
ffiffiffiffiffiffiffi
�1
p

, b is the wave

number in the y-direction, and u�ðxÞ; v�ðxÞ; h�ðxÞ, and

r�ijðxÞ are the amplitudes of the field quantities.

Subsisting from Eq. (24) in Eqs. (21)–(23), we get

L11D2 � A1

� �
u� þ ibL2Dv� ¼ Dh�; ð25Þ

ibL2Du� þ ½h1D2 � A2�v� ¼ ibh�; ð26Þ

A3Du� þ ibA3v� ¼ A4D2 � A5

� �
h�; ð27Þ

where A1 ¼ a2x2 þ h1b2; A2 ¼ a2x2 þ L22b2; A3 ¼

ex2 1þ sqxþ 1
2
s2

qx
2

� 	
; A4 ¼ CK þ Cmxþ CTx2;

A5 ¼ CKb2 þ Cmxb2 þ CTx2b2

þx2 1þ sqxþ 1
2
s2

qx
2

� 	
; D ¼ d

dx
:

Eliminating v�ðxÞ and h�ðxÞ between Eqs. (25)–

(27), we obtain the sixth order ordinary differential

equation satisfied with u�ðxÞ;

D6 � AD4 þ BD2 � C
� �

u�ðxÞ ¼ 0; ð28Þ

1236 Meccanica (2014) 49:1225–1241
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where

A ¼ 1

h1L11A4

h1A3 � b2L2
2A4 þ h1A1A4

�

þ h1L11A5 þ L11A2A4g;
ð29Þ

B ¼ 1

h1L11A4

fA3A2 � 2b2L2A3 � b2L2
2A5 þ h1A1A5

þ A1A2A4 þ L11b2A3 þ L11A2A5g; ð30Þ

C ¼ 1

h1L11A4

fb2A1A3 þ A1A2A5g ð31Þ

In a similar manner, we can show that v�ðxÞ and

h�ðxÞ satisfy the equation,

D6 � AD4 þ B D2 � C
� �

v�ðxÞ; h�ðxÞf g ¼ 0: ð32Þ

Equation (28) can be factorized as

D2 � k2
1

� �
D2 � k2

2

� �
D2 � k2

3

� �
u�ðxÞ ¼ 0; ð33Þ

where k2
nðn ¼ 1; 2; 3Þ are the roots of the characteristic

equation of Eq. (28):

The solution of Eq. (28), which is bounded as x!
1; is given by

u�ðxÞ ¼
X3

n¼1

Mnexp(� knxÞ: ð34Þ

Similarly,

v�ðxÞ ¼
X3

n¼1

R1nMnexp(� knxÞ; ð35Þ

h�ðxÞ ¼
X3

n¼1

R2nMnexp(� knxÞ; ð36Þ

whereR1n ¼ ibA1þðibL2�ibL11Þk2
n

h1k3
n�ðA2�b2L2Þkn

; R2n ¼ �L11k2
nþA1þibL2knR1n

kn
:

Using Eqs. (20) and (24) in Eqs. (13)–(16), we

obtain

r�xx ¼
1

a0lT1

B11Du� þ ibB12v� � k1 þ 2lT1ð Þh�½ �;

ð37Þ

r�yy ¼
1

a0lT1

B12Du� þ ibB22v� � k1 þ 2lT1ð Þh�½ �;

ð38Þ

r�zz ¼
1

a0lT1

B12Du� þ ibk1v� � k1 þ 2lT1ð Þh�½ �;

ð39Þ

r�xy ¼
lL1

a0lT1

ibu� þ Dv�½ �; ð40Þ

Introducing Eqs. (34)–(36) in Eqs. (37)–(40), this

yields

r�xx ¼
X3

n¼1

R3nMnexp �knxð Þ; ð41Þ

r�yy ¼
X3

n¼1

R4nMnexp �knxð Þ; ð42Þ

r�zz ¼
X3

n¼1

R5nMn exp �knxð Þ; ð43Þ

r�xy ¼
X3

n¼1

R6nMn exp �knxð Þ; ð44Þ

where

R3n ¼
1

a0lT1

�B11kn þ ibB12R1n � ðk1 þ 2lT1ÞR2n½ �;

R4n ¼
1

a0lT1

�B12kn þ ibB22R1n � ðk1 þ 2lT1ÞR2n½ �;

R5n ¼
1

a0lT1

�B12kn þ ibk1R1n � ðk1 þ 2lT1ÞR2n½ �;

R6n ¼
lL1

a0lT1

ib� knR1n½ �:

4 Boundary condition

We consider the problem of a fiber-reinforced ther-

moelastic half-space under the effect of magnetic field

which fills the region X defined as follows:

X ¼ ðx; y; zÞ : 0	 x\1; 0\y\1;�1\z\1f g:

In order to determine the parameter Mnðn ¼ 1; 2; 3Þ,
we need to consider the boundary conditions at x ¼ 0

(after making dimensionless) as follows:

oh
ox
þ hh

����
x¼0

¼ 0; rxx ¼ f ð0:y; tÞ

¼ �f �ex tþiby; rxyð0; y; tÞ ¼ 0; ð45Þ

f ðy; tÞ is an arbitrary function of y, t, and f � is a

constant. In Eq. (45) when h! 0 the problem

corresponds to a thermal insulated boundary, and

when h!1 corresponds to an isothermal boundary

(Singh et al. [27]). In the present article we consider

the case h! 0. Substituting the expressions of the
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variables considered into the above boundary condi-

tions, we can obtain the following equations satisfied

by the parameters:

�
X3

n¼1

knR2nMn ¼ 0;
X3

n¼1

R3nMn ¼ �f �;
X3

n¼1

R6nMn

¼ 0:

ð46Þ
Solving the above system of equations in (46), we

get the parameter Mn ðn ¼ 1; 2; 3Þ defined as follows:

M1 ¼
D1

D
; M2 ¼

D2

D
; M3 ¼

D3

D
; ð47Þ

where D¼k1R21ðR32R63�R33R62Þ�k2R22ðR31R63�
R61R33Þþk3R23ðR31R62�R32R61Þ; D1¼f �ðk2R22R63�
k3R23R62Þ; D2¼�f �ðk1R21R63�k3R23R61Þ; D2¼f �ðk1

R21R62�k2R22R61Þ:

5 Special cases of thermoelastic theory

and particular cases

(1) The corresponding equations for a fiber-rein-

forced linearly thermoelastic isotropic medium

with temperature dependent and without mag-

netic field from the above mentioned cases by

taking H0 ¼ 0:

(2) The corresponding equations for a fiber-rein-

forced linearly thermoelastic isotropic medium

with magnetic field and without temperature

dependent from the above mentioned cases by

taking a� ¼ 0:

(3) The corresponding equations for an isotropic

generalized thermoelastic medium with the

magnetic field and with temperature dependent

from the above mentioned cases by taking

reinforcement parameters a; b; lL � lTð Þ vanish.

(4) The corresponding equations for isotropic gen-

eralized thermoelastic medium with temperature

dependent and without the magnetic field from

the above mentioned cases by taking a; b;
lL � lTð Þ; H0 vanish.

(5) The corresponding equations for isotropic gen-

eralized thermoelastic medium with the mag-

netic field and without temperature dependent

from the above mentioned cases by taking

a;b; lL � lTð Þ; a� vanish.

(6) Equations of the three-phase-lag theory when,

K; sT ; sq; sm [ 0:

(7) Equations of the TEWOED (GN-II) theory

when, K ¼ sT ¼ sq ¼ sm ¼ 0:

6 Numerical calculation and discussion

In order to illustrate the theoretical results obtained in

preceding section and to compare these in the context

of three-phase-lag theory and the TEWOED (GN-II)

theory. We now present some numerical results for the

physical constants as [28].

k1 ¼ 7:59� 108 N:m�2; lT1 ¼ 1:89� 1010 N:m�2;

lL1 ¼ 2:45� 1010 N:m�2; q ¼ 8954 kg:m�3;

b ¼ 0:8; a1 ¼ �1:28� 1010 N:m�2;

b1 ¼ 0:32� 1010 N:m�2; T0 ¼ 300 K;

CE ¼ 383:1 J:kg�1:K�1;

sT ¼ 0:9 s; a� ¼ 0:005 K�1; sq ¼ 0:9 s;

sm ¼ 0:9 s; at ¼ 1:78� 10�4 K�1;

K� ¼ 386 w:m�1:K�1;

l1 ¼ 3:86� 1010kg:m�1:s�2; f � ¼ 0:5;

l0 ¼ 1:9; e0 ¼ 0:7; K ¼ 0; 30 w:m�1:K�1;

x ¼ x0 þ in; x0 ¼ �1; n ¼ 0:3:

The computations were carried out for a value of

time t ¼ 0:9: The variation of the thermal temperature

h, the displacement components u; v, and the stress

components rxx; ryy, and rxy with distancex in the

plane y ¼ 0:9 for the problem under consideration

based on the three-phase-lag theory and the TEWOED

(G-N II) theory. The results are shown in Figs. 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18.

The graphs show the four curves predicted by two

different theories of thermoelasticity. In these figures,

the solid lines represent the solution in the three-

phase-lag theory and the dashed lines represent the

solution derived using the TEWOED (G-N II) theory.

Here all the variables are taken in non-dimensional

forms.

Figures 1, 2, 3, 4, 5, and 6 show comparisons

among the displacement components u; v; the temper-

ature h; and the stress components rxx; ryy; and rxy in

the absence ðH0 ¼ 0Þ and presence ðH0 ¼ 85Þ of

magnetic field with temperature dependent.
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Figure 1 shows that the distribution of the horizon-

tal displacement u; in the context of the two theories,

begins from negative values. In the context of the two

theories, u increases to a maximum value in the range

0	 x	 0:9; then decreases, and also moves in a wave

propagation for H0 ¼ 85: However, in the context of

the two theories, u increases to a maximum value in

the range 0	 x	 1:8; then decreases, and also moves

in a wave propagation for H0 ¼ 0: Figure 2 depicts

that the distribution of the vertical displacement v; in

the context of the two theories, begins from negative

values. In the context of the two theories, v increases to

a maximum value in the range 0	 x	 0:8; then

decreases, and also moves in a wave propagation for

H0 ¼ 85: However, in the context of the two theories,

v increases to a maximum value in the range

0	 x	 1:8; then decreases, and also moves in a wave

propagation for H0 ¼ 0: Figures 1 and 2 explain that

H0 has a decreasing effect on u and v: Figure 3 exhibits

the distribution of the temperature h and demonstrates

that it begins from positive values. In the context of the

two theories, h increases to a maximum value in the

range 0	 x	 0:7; then decreases to a minimum value,

and also moves in a wave propagation for H0 ¼ 85:

However, in the context of the two theories, h
increases to a maximum value in the range

0	 x	 0:5; then decreases to a minimum value, and

also moves in a wave propagation for H0 ¼ 0: It is

depicted that H0 has an increasing effect on h: Figure 4

explains that the distribution of the stress component

rxx begins from a negative value and satisfies the

boundary condition at x ¼ 0: In the context of the two

theories, rxx decreases to a minimum value in the

range 0	 x	 0:4; then increases to maximum value,

and also moves in a wave propagation for H0 ¼ 85:

However, in the context of the two theories, rxx

decreases to a minimum value in the range 0	 x	 0:6;

then increases to maximum value, and also moves in a

wave propagation for H0 ¼ 0: Figure 5 shows the

distribution of the stress component rxy and demon-

strates that it reaches a zero value and satisfies the

boundary condition at x ¼ 0: In the context of the two

theories, rxy decreases in the range 0	 x	 0:3; then

increases to a maximum value, and also moves in a

wave propagation for H0 ¼ 0; 85: Figure 6 depicts

that the distribution of the stress component ryy, in the

context of the two theories, begins from positive

values. In the context of the two theories, ryy increases

to a maximum value in the range 0	 x	 0:4; then

decreases to a minimum value, and also moves in a

wave propagation for H0 ¼ 85: However, in the

context of the two theories, ryy increases to a

maximum value in the range 0	 x	 0:6; then

decreases to a minimum value, and also moves in a

wave propagation for H0 ¼ 0:

Figures 7, 8, 9, 10, 11, and 12 show comparisons

among the displacement components u; v; the temper-

ature h; and the stress components rxx; ryy; and rxy for

with (NTD) and without (WTD) temperature depen-

dent in the presence of magnetic field.

Figure 7 shows that the distribution of the horizon-

tal displacement u; begins from negative values for

NTD but it begins from positive values for WTD. In

the context of the two theories, u decreases in the range

0	 x	 1:4; then become constant in the range

1:4	 x	 7 for WTD. Figure 8 depicts that the distri-

bution of the vertical displacement v; in the context of

the two theories, begins from negative values. In the

context of the two theories, v increases in the range

0	 x	 0:8 and then decrease in the range 0:8	 x	 7

for WTD. Figure 9 exhibits the distribution of the

temperature h and demonstrates that it begins from

positive values. In the context of the Green–Naghdi

theory of type II, h decreases in the range 0	 x	 7 for

WTD. However, in the context of the three-phase-lag

theory, h constant in the range 0	 x	 0:2 and then

decreases in the range 0:2	 x	 7 for WTD. Figure 10

explains that the distribution of the stress component

rxx begins from a negative value and satisfies the

boundary condition at x ¼ 0: In the context of the two

theories, rxx increases in the range 0	 x	 7 for WTD.

Figure 11 shows the distribution of the stress compo-

nent rxy and demonstrates that it reaches a zero value

and satisfies the boundary condition at x ¼ 0: In the

context of the two theories, rxy decreases to a

minimum value in the range 0	 x	 0:6 and then

increases in the range 0:6	 x	 7 for WTD. Figure 12

exhibits that the distribution of the stress component

ryy; begins from positive values for all cases except in

the context of the Green–Naghdi theory of type II for

WTD it begins from a negative value. In the context of

the three-phase-lag theory, ryy decreases in the range

0	 x	 0:5; then increases in the range 0:5	 x	 1;

after then become constant in the range 1	 x	 7 for

WTD. However, in the context of the Green–Naghdi

theory of type II, ryy increases in the range 0	 x	 1
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and then become constant in the range 1	 x	 7 for

WTD.

Figures 13, 14, 15, 16, 17, and 18 show compar-

isons among the displacement components u; v; the

temperature h; and the stress components rxx; ryy; and

rxy in the absence (WRF) and presence (NRF) of the

reinforcement with temperature dependent in the

presence of magnetic field.

Figure 13 depicts that the distribution of the hori-

zontal displacement u; begins from negative values. In

the context of the three-phase-lag theory, u decreases

in the range 0	 x	 0:8; then increases to a maximum

value, and also moves in wave propagation for WRF.

However, in the context of the Green–Naghdi theory

of type II, u decreases to a minimum value in the range

0	 x	 0:5; then increases to a maximum value, and

also moves in wave propagation for WRF. Figure 14

shows that the distribution of the vertical displacement

v; in the context of the two theories, begins from

negative values for NRF but from positive values for

WRF. In the context of the three-phase-lag theory, v

increases to a maximum value in the range 0	 x	 0:6;

then decreases to a minimum value, and also moves in

a wave propagation for WRF. However, in the context

of the Green–Naghdi theory of type II, v increases to a

maximum value in the range 0	 x	 0:4; then

decreases to a minimum value, and also moves in

wave propagation for WRF. Figure 15 exhibits the

distribution of the temperature h and demonstrates that

it begins from positive values for NRF but from

negative values for WRF. In the context of the three-

phase-lag theory, h decreases to a minimum value in

the range 0	 x	 0:4; then increases to a maximum

value, and also moves in wave propagation for WRF.

However, in the context of the Green–Naghdi theory

of type II, h decreases to a minimum value in the range

0	 x	 0:2; then increases to a maximum value, and

also moves in wave propagation for WRF. Figure 16

shows that the distribution of the stress component rxx

begins from a negative value and satisfies the bound-

ary condition at x ¼ 0: In the context of the three-

phase-lag theory, rxx decreases to a minimum value in

the range 0	 x	 0:9; then increases to a maximum

value, and also moves in a wave propagation for WRF.

However, in the context of the Green–Naghdi theory

of type II, rxx decreases to a minimum value in the

range 0	 x	 0:7; then increases to a maximum value,

and also moves in wave propagation for WRF.

Figure 17 explains the distribution of the stress

component rxy and demonstrates that it reaches a zero

value and satisfies the boundary condition at x ¼ 0: In

the context of the three-phase-lag theory, rxy decreases

in the range 0	 x	 0:3; then increases to a maximum

value, and also moves in a wave propagation for WRF.

However, in the context of the Green–Naghdi theory

of type II, rxy decreases in the range 0	 x	 0:1; then

increases to a maximum value, and also moves in

wave propagation for WRF. Figure 18 depicts that the

distribution of the stress component ryy; begins from

positive values for NRF but it begins from negative

value for WRF. In the context of the three-phase-lag

theory, ryy decreases to a minimum value in the range

0	 x	 0:4; then increases to a maximum value, and

also moves in wave propagation for WRF. However,

in the context of the Green–Naghdi theory of type II,

ryy decreases to a minimum value in the range

0	 x	 0:2; then increases to a maximum value, and

also moves in wave propagation for WRF.

3D curves in Figs. 19, 20, 21, 22, 23, and 24 are

giving 3D surface curves for the physical quantities

i.e. the horizontal displacement, the vertical displace-

ment, the temperature distribution, and the stress

components rxx; ryy, and rxy for the thermal shock

problem in the presence of magnetic field with

temperature dependent in the context of the three-

phase-lag theory. These figures are very important to

study the dependence of these physical quantities on

the vertical component of distance. The curves

obtained are highly depending on the vertical distance

from origin, all the physical quantities are moving in

wave propagation.

7 Concluding remark

In the present study, the normal mode analysis is

used to study the effect of temperature and magnetic

field on the problem under consideration at the free

surface of a fiber reinforcement thermoelastic half-

space based on the three-phase-lag theory and the

TEWOED (GN-II) theory. We obtain the following

conclusions based on the above analysis: The values

of all the physical quantities converge to zero with

increasing of distance x; and all functions are

continuous.
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1. It is clear that the magnetic field and temperature

have important roles on the distribution of the

field quantities.

2. All the physical quantities satisfy the boundary

conditions.

3. Analytical solutions based upon normal mode

analysis for the thermoelastic problem in solids

have been developed and utilized.

4. The method that was used in the present article is

applicable to a wide range of problems in

hydrodynamics and thermoelasticity.

5. Deformation of the body depends on the nature of

the applied forced as well as the type of boundary

conditions.

6. There are significant differences in the field

quantities under the Green–Naghdi theory of type

II and three-phase-lag theory due to the phase-lag

of temperature gradient and the phase-lag of heat

flux.

7. The physical quantities are very depending on the

vertical distance and horizontal distance.
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