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Abstract This paper carries out the elasto-dynamic

analysis of a novel 2 degrees-of-freedom (DoF)

rotational parallel mechanism (RPM) with an articu-

lated travelling platform by means of kineto-elasto

dynamic method. The architecture of the proposed

2-DoF RPM is firstly described, and then its kinematic

analysis is carried out by closed-loop vector method.

On the basis of finite element analysis, the elasto-

dynamic models of movable components are estab-

lished before assembling to formulate the elasto-

dynamic equations of the whole mechanism in the

light of deformation compatibility conditions. The free

vibration equation is then achieved to evaluate the

natural frequency of the novel 2-DoF RPM. Finally, an

example is illustrated and the results are verified by

finite element software. It shows that the relatively

high natural frequencies and good dynamic perfor-

mance make the novel 2-DoF RPM a promising

solution for pose-adjusting module of 5-DoF machine

centre.

Keywords Rotational parallel mechanism �
Elasto-dynamics � Finite element analysis �
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1 Introduction

With the increasing demand for orientation capacity in

the machining of aerospace components with large

size, thin wall and complex surface, 5 degree-of-

freedom (DoF) hybrid mechanisms consisting of

3-DoF parallel mechanism and 2-DoF pose-adjusting

mechanism have been accepted as an effective

substitution of the traditional serial NC machines

[1], in terms of higher dynamic performance, better

accuracy and larger load-weight ratio. The famous

Tricept mechanism [2–6] is a successful example of

5-DoF hybrid mechanism who wisely combines the

advantages of parallel and serial mechanisms. How-

ever, it should be pointed out that the 2-DoF pose-

adjusting module attached to Tricept mechanism is

open-loop serial structure, and it would be designed

inevitably towards large scale and huge weight in

order to meet the requirements of high stiffness of the

whole mechanism, which makes it a major obstacle to

application. With the merit of good rigidity and

compact structure, 2-DoF rotational parallel mecha-

nism (RPM) is superior to the serial counterpart as an

integration of 5-DoF hybrid mechanism.

As far as 2-DoF RPM is concerned, extensive

researches [7–15] have been carried out over the

decades. Spherical 5R mechanism is the earliest and

simplest parallel mechanism to achieve the two

rotational DoFs, whose kinematics was thoroughly

discussed by Kong and Liu [7–9]. Herein, R denotes

the revolute joint. By introducing parallelogram
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linkage to the mechanism, Baumann [10] proposed a

2-DoF RPM named PantoScope and applied it to the

micro-invasive surgery. In order to deal with large

orientation workspace problem of the laser detection

in aerospace, Ross–Hime Designs [12] developed the

famous Omni-Wrist III, whose kinematics is investi-

gated by Sofka [13] while the rigid dynamics is

analyzed by Chen [14]. It is believed that Omni-Wrist

III has the advantage of good rotational capacities

without singularity. In addition, several decoupled

2-DoF RPM are proposed by Liu [15].

It is found out that kinematic capacities are the main

concern of the above-mentioned 2-DoF RPMs. How-

ever, it comes to the application for pose-adjusting

module of 5-DoF machine center, stiffness and elastic

dynamic performance need to be taken into account,

which might be the shortcomings of some 2-DoF

RPMs above.

Driven by the demands for pose-adjusting module

with high stiffness and good dynamic performance in

machining aerospace components, a novel 2-DoF RPM

[16] with an articulated travelling platform is proposed

and its elasto-dynamic analysis is investigated in this

paper. The proposed 2-DoF RPM is believed to be

without parasiticmotion, good rotational capability and

can be designed potentially as a compact module with

large ratio of stiffness toweight. The organization of the

paper is as follows: after introducing the underlying

architecture of the proposed 2-DoF RPM in Sects. 2, 3

carries out the inverse kinematics by closed-loop vector

method. In Sect. 4, the elasto-dynamic modeling of

components is formulated and that of the whole

mechanism is achieved. The natural frequencies of

the 2-DoF RPM are then analyzed through an example

and verified by the finite element software in Sect. 5.

Finally, conclusions are drawn in Sect. 6.

2 Underlying architecture

As shown in Fig. 1, the novel 2-DoF RPM is

composed of a fixed base, an articulated travelling

platform and two parallelogram-based limbs. The

articulated travelling platform includes sub-plate I and

sub-plate II, which are articulated to each other by one

R joint, in which sub-plate I is regarded as the output

link that connects rigidly to the end-effector. Each

parallelogram-based limb contains one actuated com-

ponent (represented by A or B) and two identical

driven components. The actuated component A or B is

adjacent to the fixed base by R joint. And the driven

component connects to the actuated component and

sub-plate by R joint and S joint, respectively. Herein, S

represents spherical joint.

As is shown Fig. 2, Ai and Bi (i = 1–4) denote the

centers of the ith S joint and the ith R joint in the

actuated components. O denotes the intersection point

of B1B3 and B2B4, P represents the center of the

articulated R joint, andCj (j = 1, 2) is the center of the

R joint in actuated component A or B. The axes of the

R joints atC1, B1, and B3 are parallel to each other, and

Fig. 1 Conceptual design of the novel 2-DoF RPM with an

articulated travelling platform

Fig. 2 Schematic diagram of the novel parallel mechanism
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parallel axes also exist in R joints atC2, B2 and B4. The

axes of R joints in actuated component A and those in

actuated component B are perpendicular. It is noticed

that the axis of articulated R joint is normal to the

plane of sub-plate I. Moreover, the lengths of the

driven components are all equal to lab.

In what follows, the two rotations produced by the

novel parallel mechanism will be described. As shown

in Fig. 2, A1A3B3B1 and A2A4B4B2 are two parallelo-

grams, and the point P is a fixed point on the z axis due

to the constraint of the revolute joints at Bi. As a result,

the pose of B1B3 can be determined by actuating the

revolute joint at C1 with h1, and then A1A3 can rotate

about the x axis with h1. Similarly, the pose of B2B4

can be determined by actuating the revolute joint at C2

with h2, which leads that A2A4 can rotate about the

y axis with h2, and then A1A3 can rotate about the

v axis. Therefore, the novel parallel mechanism has

two DoFs actuated by the revolute joints at C1 and C2.

For the sake of describing themotion of the proposed

2-DoF RPM, several coordinate systems are established

as follows. As shown in Fig. 2, a fixed coordinate

system designated as O� xyz is fixed at point O with

the x and y axis pointing to point C1 and C2,

respectively. A moving coordinate system P� uvw

is assigned to point P with the v axis pointing to point

A3 and the w axis perpendicular to the sub-plate I.

Then the orientation matrix R of the frame P� uvw

with respect to the frame O� xyz can be expressed as

R ¼ RaRb ¼
1 0 0

0 ca �sa

0 sa ca

2
64

3
75

cb 0 sb

0 1 0

�sb 0 cb

2
64

3
75

¼
cb 0 sb

sasb ca �sacb

�casb sa cacb

2
64

3
75 ¼ u v w½ �

ð1Þ

where c and s denote cosine and sine, respectively; a
and b represent the angles about the x and the v axis,

respectively; u, v, w denote the unit vectors of the u, v,

w axes in the coordinate system O� xyz, respectively.

3 Kinematic analysis

After the architecture of the novel 2-DoF RPM is

outlined in Sect. 2, it is necessary to carry out the

kinematic analysis including inverse position, velocity

and acceleration before formulating elastic-dynamic

model of mechanism.

3.1 Constraint equations

As shown in Fig. 2, the closed-loop vector equation of

the novel 2-DoF RPM can be expressed as

r ¼ bi þ labwi � Ra0i ð2Þ

where r ¼ xp yp zp½ �T and bi denote the position

vectors of point P and Bi in the coordinate system

O� xyz, respectively. a0i represents the position

vector of point Ai in the coordinate system P� uvw.

wi represents the unit vector of AiBi (i = 1–4), and

a01 ¼ �a03 ¼ r1 0 �1 0½ �T. In addition

b1 ¼ �b3 ¼ r1 0 �ch1 �sh1½ �T

b2 ¼ �b4 ¼ r2 �ch2 0 sh2½ �T

Herein, r1 and r2 denote the lengths of PA1 and PA2,

respectively.

The driven components A2B2 and A4B4 are con-

strained by the R joints of the same parallelogram-

based link to move within the plane y = 0. By taking

dot product with ey ¼ 0 1 0½ �T on both sides of

Eq. (2) when i = 2, 4, the constraint equation is

yielded as follows

yp ¼ 0 ð3Þ

Similarly, the driven components A1B1 and A3B3

are constrained by the R joints of the same parallel-

ogram-based link to move within the plane x = 0,

which yields

xp ¼ 0 ð4Þ

Furthermore, wi (i = 1–4) is parallel to r. Hence,

wi ¼ 0 0 1½ �T and

zp ¼ lab ð5Þ

3.2 Inverse position analysis

The input parameters are represented by h1 and h2,
which are the rotational angles about x and y-axis.

Substitute Eq. (3)–(5) into Eq. (2) when i = 1 and

i = 2, respectively, yields Ra02 = b2, and

h1 ¼ a ð6Þ
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w¼ Ra02� v

Ra02� vk k

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2h1s2h2

p ch1sh2 �sh1ch2 ch1ch2½ �T ð7Þ

Noticing that w ¼ sb �sacb cacb½ �T, h2 can be
calculated as

h2 ¼ arctan
tan b
cos a

� �
ð8Þ

3.3 Velocity analysis

Taking the derivatives of Eq. (2) with respect to time

yields

_h1ex � b1 � x� Ra01 ¼ 0 ð9Þ

_h2ey � b2 � ðx� _hwÞ � Ra02 ¼ 0 ð10Þ

where x represents the angular velocity of the sub-

plate I, _h denotes the angular velocity of the sub-plate

II with respect to the sub-plate I, and _h1, _h2 are

the angular velocities of the actuated component

A and B.

Taking dot product with ey and w on both sides of

Eq. (9) and Eq. (10), yields

_h1 ¼ eTxx ð11Þ

_h2 ¼
Ra02 � wð ÞT

eTy ðb2 � wÞ x ð12Þ

Rewriting Eq. (11) and (12) in matrix form as

_h1
_h2

� �
¼

eTx
Ra02 � wð ÞT

eTy ðb2 � wÞ

2
64

3
75x ¼ Jx ð13Þ

where J is the Jocobian matrix that represents the

mapping relationships between the joint velocity and

the operated velocity.

3.4 Acceleration analysis

Taking the derivatives of Eq. (9) and Eq. (10) with

respect to time yields

€h1 ¼ eTx e ð14Þ

€h2 ¼
Ra02 � wð ÞT

eTy ðb2 � wÞ eþ fx ð15Þ

where e presents the angular acceleration of the sub-

plate I, €h1, €h2 denotes the angular acceleration of the

actuated component A and B, respectively. And

f ¼

_h1
sh2ch2
c2h1

þ _h2 c2h2 � s2h2
� �

tan h1

0

_h1
c2h2
c2h1

� 2 _h2 tan h1ch2sh2

2
6664

3
7775

T

4 Elasto-dynamic modeling

In the light of kineto-elasto dynamic (KED)method, the

elasto-dynamic modeling of the novel 2-DoF RPM is

established on the basis of inverse kinematic analysis.

The elastic-dynamic model of components (actuated

component, driven component and articulated travel-

ling platform) need to be firstly considered before

formulating the elastic-dynamic equation of the whole

mechanism by deformation compatibility condition.

Considering the geometry of the mechanism and

the requirements of KEDmethod, several assumptions

are made as follows:

(1) Fixed base and articulated travelling platform are

regarded as rigid bodies due to their relatively

high rigidity, while the other components are

treated as the Euler–Bernoulli spatial beams.

Frictions among contact surface are negligible.

(2) Deformations of components satisfy linear

superposition principle. The transverse dis-

placements of the spatial beam follow the cubic

polynomial distribution and the longitudinal

ones follow the linear distribution.

(3) Orientation matrixes remain constant during the

coordinate transformations according to the

instantaneous structure hypothesis.

Some basic theory ofKEDmethod [17] is set forth as

follow. In order to dealwith component elastic-dynamic

problem, element coordinate system Ei � �x�y�z is estab-
lished as shown in Fig. 3. Elastic deformation dj of any

point on spatial beam element can be described as

dj ¼ Nu; _dj ¼ N_u
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where u denotes the generalized coordinate vector of

the element in the coordinate system Ei � �x�y�z and

u ¼ u1 u2 . . . u12½ �T, N represents the type-

function matrix [18].

Therefore, the kinetic energy equation of the spatial

beam element are formulated as

T ¼ 1

2

Z l

0

qAc _u
T _ud�x ð16Þ

where q, Ac, l represent the density, cross section area

and the length of the element.

Then the potential energy equation of the spatial

beam element can be formulated

U ¼ 1

2

Z l

0

EAc U0ð Þ2þEI�z V 00ð Þ2þEI�y W 00ð Þ2
h

þGJ h0ð Þ2
i
d�x�

Z l

0

qAcg
TrQd�x

ð17Þ

where E, Iy, Iz represent the Young’s modulus, flexural

section modulus of the element. U
0
, h

0
denote the first

derivation of the longitudinal displacements of any

point Q in the element with axis �x. V
0 0
, W

0 0
denote the

second derivation of the transverse displacements of

point Q with axes �y and �z, respectively. g is the

acceleration vector of gravity. rQ denotes the position

vector of Q in the coordinate system Ei � �x�y�z.

The motion differential equation of the spatial

beam element can be formulated based on the

Lagrange equation.

m€uþ ku ¼ f þ q ð18Þ

where m, k, f and q represent mass matrix, stiffness

matrix, interactive force vector and external force

vector in the coordinate system Ei � �x�y�z.

When calculated in the fixed coordinate system

O� xyz, Eq. (18) can be rewritten as

M €U þ KU ¼ Fþ Q ð19Þ

where M = TTmT, K = TTkT, F = TTf, Q = TTq,

T ¼ diag RT
e RT

e RT
e RT

e

� �
, Re is the transforma-

tion matrix of the coordinate system Ei � �x�y�z with

respect to the frame O� xyz.

4.1 Elasto-dynamic modeling of components

4.1.1 The actuated component A

Considering the geometry of the actuated component

A, 7 elastic-elements connected by 8 nodes are applied

to describe the elastic-dynamic model as shown in

Fig. 4. The corresponding coordinate system of each

element is then established.

The boundary condition of actuated component A is

analyzed. Node 11 of actuated component A coincides

with point C1 of the fixed base, resulting in the elastic

deformations of Node 11 becoming 0 according to the

instantaneous structure hypothesis. Affected by R joint,

elastic angle about �yA4-axis of Node 15 is released and

the other deformations are 0. Hence the generalized

coordinate vectorU1 of component A can be written as

U1 ¼ UA1 UA2 . . . UA37½ �T in the fixed coordi-

nate system O� xyz. Herein, UA1 �UA18,

UA20 �UA37 represent the elastic deformations of

Node 12–14, Node 16–18 in sequence, and UA19

denotes the elastic angle of Node 15. Then the

differential motion equation of the actuated compo-

nent A can be formulated as follows.

M1
€U1 þ K1U1 ¼ F1 þ Q1 ð20Þ

where M1, K1, F1, Q1 represent the mass matrix, the

stiffness matrix, the interactive force vector and the

external force vector of the actuated component A in

the coordinate system O� xyz. Herein,

M1 ¼
X7
i¼1

JTAiMAiJAi; K1 ¼
X7
i¼1

JTAiKAiJAi

F1 ¼
X7
i¼1

JTAiFAi; Q1 ¼
X7
i¼1

JTAiQAi

where MAi, KAi, FAi, QAi denote the mass matrix,

the stiffness matrix, the interactive force vector and

the external force vector of the element in the

Fig. 3 The spatial beam element
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coordinate system O� xyz. JAi is the mapping matrix

between the generalized coordinate vector of the

element i and U1.

4.1.2 The actuated component B

As shown in Fig. 5, the actuated component B can be

divided into eight elastic-elements with eight nodes.

And the coordinate system of each element is

established.

Similar to component A, boundary conditions of

actuated component B need to be considered. Node

21 is in correspondence with point C2 of the fixed

base, and Node 25 is influenced by R joint. The

generalized coordinate vector U2 of component B

can be written as U2 ¼ UB1 UB2 . . . UB37½ �T in

the fixed coordinate system O� xyz. Herein,

UB1 �UB18, UB20 �UB37 represent the elastic defor-

mations of Node 22–24, Node 26–28 in sequence, and

UB19 denotes the elastic angle of Node 25. Then the

differential motion equation of the actuated compo-

nent B can be derived as follows.

M2
€U2 þ K2U2 ¼ F2 þ Q2 ð21Þ

where M2, K2, F2, Q2 represent the mass matrix, the

stiffness matrix, the interactive force vector and the

external force vector of the actuated component B in

the frame O� xyz. Herein,

M2 ¼
X8
i¼1

JTBiMBiJBi; K2 ¼
X8
i¼1

JTBiKBiJBi

F2 ¼
X8
i¼1

JTBiFBi; Q2 ¼
X8
i¼1

JTBiQBi

where MBi, KBi, FBi, QBi represent the mass matrix,

the stiffness matrix, the interactive force vector and

the external force vector of the element in the

Fig. 4 The model of actuated component A. a The virtual

prototype. b The finite element model

Fig. 5 The model of actuated component B. a The virtual

prototype. b The finite element model
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coordinate system O� xyz. JBi is the mapping matrix

between the generalized coordinate vector of the

element i and U2.

4.1.3 The driven component

The driven component is with simple structure, thus

can be divided into two elastic-elements with three

nodes as shown in Fig. 6. And the coordinate systems

of the two elements are parallel to each other.

The generalized coordinate vector U2?i of the ith

(i = 1–4) driven component in the fixed coordinate

system O� xyz can be written as U2þi ¼
UCi1 UCi2 . . . UCi18½ �T. Herein, UCi1 �UCi18

represent the elastic deformations of Node i1–i3 in

sequence. Thus the differential motion equation of the

driven component can be written as follows.

M2þi
€U2þi þ K2þiU2þi ¼ F2þi þ Q2þi; i ¼ 1� 4ð Þ

ð22Þ

where M2?i, K2?i, F2?i, Q2?i denote the mass matrix,

the stiffness matrix, the interactive force vector and

the external force vector of the ith driven component

in the coordinate system O� xyz. Herein,

M2þi ¼
X3
j¼1

JTCijMCijJCij; K2þi ¼
X3
j¼1

JTCijKCijJCij

F2þi ¼
X3
j¼1

JTCijFCij; Q2þi ¼
X3
j¼1

JTCijQCij

where MCij, KCij, FCij, QCij represent the mass matrix,

the stiffness matrix, the interactive force vector and

the external force vector of the element in the

coordinate system O� xyz. JCij is the mapping matrix

between the generalized coordinate vector of the

element j and U2?i.

4.1.4 The articulated travelling platform

Although the articulated travelling platform is

assumed to be rigid component, its displacement

would be affected by the deformation of the elastic

components. Therefore, the dynamic equations of the

articulated travelling platform are formulated in the

fixed coordinate system O� xyz as

MPi
€UPi ¼ FPi þ QPi; i ¼ 1; 2 ð23Þ

Fig. 6 The model of the driven component. a The virtual

prototype. b The finite model

Table 1 The parameters of the virtual prototype

Parameter Value

Density q/kg m-3 7,800

Young’s modulus E/Pa 2.06 9 1011

Shear modulus G/Pa 7.94 9 1011

Actuated component A (length/width/height)/m

Element 1/4 0.105/0.014/

0.07

Element 2/3 0.08/0.023/

0.055

Element 5 0.015/0.036/

0.07

Element 6/7 0.06/0.047/0.06

Actuated component B (length/width/height)/m

Element 1/4/5/8 0.0625/0.015/

0.033

Element 2/3/5/6 0.086/0.025/

0.033

Element of driven component (length/

width/height)/m

0.08375/0.019/

0.026

Sub-plate I

Mass/kg 5.4

Iu/kg m2 0.04

Iv/kg m2 0.04

Iw/kg m2 0.06

Sub-plate II

Mass/kg 3.27

Iu/kg m2 0.01

Iv/kg m2 0.01

Iw/kg m2 0.03

Meccanica (2016) 51:1547–1557 1553

123



whereMPi, FPi, QPi andUPi represent the mass matrix,

the interactive force vector, the external force vector

and the elastic deformation vector of the sub-plate I in

the coordinate system O� xyz for i = 1 and those of

the sub-plate II for i = 2. It should be pointed out that

the elastic angles aboutw axis of the two sub-plates are

different. In consequence, elastic deformations of

point P are defined as uPi¼ Dx Dy Dz Da Db D/i½ �T,
where the elastic displacements are measured in the

fixed coordinate system O�xyz while the elastic

angles are measured in the coordinate system P�uvw.

Then Eq. (23) can be rewritten as follows.

Me
Pi €uPi ¼ FPi þ QPi; i ¼ 1; 2ð Þ ð24Þ

where Me
Pi ¼ MPi

E3�3 03�3

03�3 R

� �
.

The dynamic equation of the articulated travelling

platform can be formulated as follows.

M7
€U7 ¼ F7 þ Q7 ð25Þ

Fig. 7 The modal shapes of

FEM when a = 0 and

b = 0. a The 1st order

modal shape. b The 2nd

order modal shape. c The
3rd order modal shape.

d The 4th order modal shape

Table 2 The results of natural frequencies

Frequency KED/Hz FEM/Hz Relative

error (%)

1st 76.69 73.85 3.84

2nd 91.54 87.56 4.55

3rd 111.64 112.75 -0.98

4th 112.73 117.55 -4.10
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where

U7 ¼ Dx Dy Dz Da Db D/1 D/2½ �T, M7,

F7, Q7 represent the mass matrix, the interactive force

vector and the external force vector of the articulated

travelling platform. Herein,

M7 ¼
X2
i¼1

JTPiM
e
PiJPi; F7 ¼

X2
i¼1

JTPiFPi; Q7

¼
X2
i¼1

JTPiQPi

where JPi is the mapping matrix between the general-

ized coordinate vector of the plate and U7.

4.2 Deformation compatibility condition

The deformation compatibility condition is to set

up the relations of generalized coordinates between

different components. Considering the connection

of adjacent components, deformation compatibility

condition between the driven component and the

articulated travelling platform can be formulated as

follows.

UCi13

UCi14

UCi15

2
64

3
75¼ E3�3 �S aið Þ½ �

�
E3�3 03�3

03�3 R

� �
uP1; i¼ 1;3ð Þ

ð26Þ

UCi13

UCi14

UCi15

2
64

3
75¼ E3�3 �S aið Þ½ �

�
E3�3 03�3

03�3 R

� �
uP2; i¼ 2;4ð Þ

ð27Þ

where ai ¼ Ra0i, S aið Þ ¼
0 �aiz aiy
aiz 0 �aix
�aiy aix 0

2
4

3
5.

Similarly, deformation compatibility condition

between the driven component and the actuated

component is expressed as follows.

UA26

UA27

UA28

UA30

UA31

2
66664

3
77775
¼

UC11

UC12

UC13

UC15

UC16

2
66664

3
77775
;

UA32

UA33

UA34

UA36

UA37

2
66664

3
77775
¼

UC31

UC32

UC33

UC35

UC36

2
66664

3
77775

ð28Þ

UB7

UB8

UB9

UB10

UB12

2
66664

3
77775
¼

UC21

UC22

UC23

UC24

UC26

2
66664

3
77775
;

UB26

UB27

UB28

UB29

UB31

2
66664

3
77775
¼

UC41

UC42

UC43

UC44

UC46

2
66664

3
77775

ð29Þ

4.3 Elasto-dynamic equations

The elasto-dynamic equation of the novel 2-DoF RPM

can be calculated by elasto-dynamic models of

components with the deformation compatibility con-

ditions as

Ms €uþ KsU ¼ Fs ð30Þ

where U denotes the generalized coordinate vector of

the 2-DoF RPM which contains 121 elements.

Generalized coordinate vector of the whole mecha-

nism and individual components has the following

relation,

Uj ¼ BjUðj ¼ 1� 7Þ

where Bj denotes the coordinate harmonized matrix of

the components in the fixed coordinate system.Ms, Ks

represent the mass matrix and the stiffness matrix of

the novel 2-DoF RPM. Fs denotes the generalized

external force. Herein,

Ms ¼
X

BT
j MjBj; Ks ¼

X
BT
j KjBj

Fs ¼
X

BT
j FjBj

Fig. 8 The results comparison between KED and FEM when

a = 0
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The undamped free vibration equation of the novel

2-DoF RPM can be derived from Eq. (30) as

Ms €uþ KsU ¼ 0 ð31Þ

Then the natural frequencies are calculated

through

det Ks � x2Ms

� �
¼ 0 ð32Þ

5 Example and discussion

Under the guidance of the analysis flow in Sect. 4, an

example is given to illustrate the natural frequencies of

the novel 2-DoF RPM with the parameters shown in

Table 1. As shown in Fig. 7, to verified the theoretical

method, simulation conducted by Ansys Workbench

software [19] is applied when a = 0, b = 0. The

comparisons between the two approaches are illus-

trated in Table 2 and Fig. 8. It is obvious that the

natural frequencies obtained by KED method are

similar to those by finite element software, which may

be resulted from the difference of finite element

models and the real components with irregular shape

and dimension. And the errors are within 5 %,

indicating good consistency of the two methods and

validating the effectiveness of KED method.

After verified the theoretical method, distributions

of natural frequencies in the prescribed workspace are

demonstrated analytically in Fig. 9.wx andwy are used

to represent the projection of the unit vector w on the

x axis and that on the y axis. As shown in Fig. 9, 1st,

Fig. 9 The distributions of frequencies. a The 1st order natural frequency. b The 2nd order natural frequency. c The 3rd order natural
frequency. d The 4th order natural frequency
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2nd, 3rd, 4th natural frequencies are all plane

symmetrical about wy = 0 and approximately sym-

metrical about plane wx = 0. For the 1st and 3rd

natural frequencies, they decrease as the wy goes up

while they remain constant as the change of wx. The

variations of 2nd and 4th natural frequencies are

opposite to each other. 2nd natural frequency gradu-

ally goes up with the increase of wy but drops when wx

becomes bigger. On the contrary, 4th natural fre-

quency slowly decreases as the increment of wy while

it dramatically rises as wx climbs up.

6 Conclusions

Concerning the application for pose-adjusting module

of 5-DoF hybrid machining centre, this paper pro-

posed a novel 2-DoF RPM and carried out its elastic-

dynamic analysis. The following conclusions can be

drawn:

(1) By introducing an articulated travelling plat-

form, high rotational capability without para-

sitic motion is achieved by the novel 2-DoF

RPMwhich possess advantages in terms of high

rigidity, compact structure and good dynamic

performance.

(2) By utilizing the KED method, the elasto-

dynamic model of the novel 2-DoF RPM can

be assembled by those of components in the

light of deformation compatibility condition.

(3) The natural frequencies of the novel 2-DoF

RPM are calculated and verified by finite

element software. The result shows that the

novel 2-DoF parallel mechanism is of good

elasto-dynamic performance.
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