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Abstract A self-similar solution for the flow behind

a strong shock wave propagating in a mixture of a non-

ideal gas and small solid particles in which the density

remains constant and radiation flux is important, has

been obtained. The solid particles are considered as a

pseudo-fluid and it is assumed that the equilibrium

flow condition is maintained. The radiative flux is

calculated from the conservation equations without

applying any restriction on optical properties of the

medium. The effects of the non-idealness of gas b, the

mass concentration of solid particles kp and the ratio of

density of solid particles to the initial density of gas G1

on the shock and on the flow-field behind it are

investigated. It is shown that the effects of the non-

idealness of the gas on the shock strength and on the

flow-profiles in the flow-field behind the shock are

reduced by the presence of solid particles in the gas.

Keywords Self-similar solutions � Adiabatic flow �
Dusty gas � Non-ideal gas � Radiation heat flux

1 Introduction

The study of shock waves in a mixture of a gas and

small solid particles is of great importance due to its

applications to nozzle flow, lunar ash flow, bomb blast,

coal-mine blast, under-ground, volcanic and cosmic

explosions, metallized propellant rocket, supersonic

flight in polluted air, collision of coma with a planet

and many other engineering problems (see [1–11]).

Shock waves often arise in nature because of a balance

between wave breaking non-linear and wave damping

dissipative forces [12]. Collisional and collisionless

shock waves can appear because of friction between

the particles and wave–particle interaction [13, 14],

respectively. Miura and Glass [15] obtained an ana-

lytical solution of a planar dusty gas flow with constant

velocities of the shock and the piston moving behind

it. As they neglected the volume occupied by the solid

particles mixed into the perfect gas, the dust virtually

has a mass fraction but no volume fraction. Their

results reflect the influence of the additional inertia of

the dust upon the shock propagation. Pai et al. [1]

generalized the well known solution of a strong

explosion due to an instantaneous release of energy in

gas [16, 17]) to the case of two-phase flow of a mixture

of perfect gas and small solid particles, and brought

out the essential effects due to presence of dusty

particles on such a strong shock wave. As they

considered non-zero volume fraction of solid particles

in the mixture, their results reflect the influence of both

the decrease of mixture compressibility and the
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increase of mixture’s inertia on the shock propaga-

tion [18, 19].

In extreme conditions that prevail in most of the

problems associated with shock waves, the assump-

tion that the gas is ideal is no longer valid. Anisimov

and Spiner [20] have taken an equation of state for

non-ideal gases in a simplified form, and investigated

the effect of the parameter of non-idealness on the

problem of a strong point explosion. Recently, Vish-

wakarma and Nath [6] obtained the similarity solution

for the propagation of a strong shock wave in a mixture

of a non-ideal gas and small solid particle driven out

by a piston moving according to power law, in both the

cases when the flow was isothermal or adiabatic.

The influence of radiation on a strong shock wave

and on the flow-field behind the shock front has always

been of great interest, for instance, in the field of

nuclear power and space research. Consequently,

similarity models for classical blast wave problems

have been extended, taking radiation into account [21–

27]. Elliot [21] considered the explosion problem by

introducing the radiation flux in its diffusion approx-

imation. Wang [22] has discussed the piston problem

with radiative heat transfer in the thin and thick limits

and also in the general case with the idealized two

direction approximation. Ashraf and Sachdev [24]

have not explicitly used the radiation transfer equa-

tions, but have evaluated the radiation flux from

conservation equations. Their solutions, therefore,

hold without any restriction on the optical properties

of the medium. Vishwakarma and Vishwakarma [28]

have extended the problem considered by Ashraf and

Sachdev [24] by taking the medium a mixture of

perfect gas and small solid particles in place of perfect

gas.

In the present work, we generalize the work of

Vishwakarma and Vishwakarma [28] by taking the

medium a mixture of a non-ideal gas and small solid

particles in place of a mixture of a perfect gas and

small solid particles. We, therefore, derive an exact

similarity solution for the adiabatic flow behind a

strong cylindrical or spherical shock propagating in a

mixture of a non-ideal gas and small solid particles in

which density remains constant and radiation flux is

important.

In order to get some essential features of the

shock propagation, small solid particles are consid-

ered as a pseudo-fluid, and the mixture at a velocity

and temperature equilibrium with a constant ratio of

specific heats [29]. For this gas-particle mixture to

be treated as a so-called idealized equilibrium

gas [30], it is necessary to consider the particle

diameter much smaller than a characteristic length

of the flow-field and their number density is small in

relation to that of the gas particles. The Brownian

motion of the solid particles in negligible small. No

deformation and no phase changes of the solid

particles occur. Gas and solid particles are chemi-

cally inert. In this case, we may assume that the

viscous stress and heat conduction of the medium

are negligible [1, 2, 6, 18]. Effects of a change in

the value of the parameter of non-idealness of the

gas in the mixture b, the mass concentration of solid

particles in the mixture kp, the ratio of the density of

solid particles to the initial density of gas G1 on the

strength of the shock and on the flow-field behind it are

obtained.

2 Fundamental equations and boundary

conditions

The basic conservation equations of mass, momentum

and energy for one-dimensional unsteady flow of a

mixture of non-ideal gas and small solid particles in

which the effect of radiation heat-flux may be

significant, can be written (c.f. [1, 24]) as

oq
ot
þ u

oq
or
þ q

rj

o

or
urj
� �

¼ 0; ð2:1Þ

ou

ot
þ u

ou

or
þ 1

q
op

or
¼ 0; ð2:2Þ

oUm

ot
þ u

oUm

or
� p

q2

oq
ot
þ u

oq
or

� �
þ 1

qrj

o

or
Frj
� �

¼ 0;

ð2:3Þ

where, q, u, p, Um, F, r, t are the density of mixture,

flow velocity, pressure, internal energy per unit mass

of the mixture,radiation heat-flux per unit mass, radial

distance and time, and j = 1, 2 correspond to the

cylindrical and spherical symmetries, respectively.

We consider the medium to be a dusty gas (a

mixture of small solid particles and non-ideal gas).

The equation of state of the non-ideal gas in the

mixture is taken to be [6, 20, 31]
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pg ¼ R�qg 1þ bqg

� �
T; ð2:4Þ

where R� is the gas constant, pg and qg are the partial

pressure and density of the gas in the mixture, T is the

temperature of the gas (and of the solid particles as the

equilibrium flow condition is maintained), and b the

internal volume of the molecules of the gas. In this

equation the deviations of an actual gas from the ideal

state are taken into account which result from the

interaction between its component molecules. It is

assumed that the gas is still so rarefied that triple,

quadruple, etc. collisions between molecules are

negligible, and their interaction is assumed to occur

only through binary collisions. The specific volume of

solid particles is assumed to remain unchanged by

variations in temperature and pressure. Therefore, the

equation of state of the solid particle in the mixture is

simply

qsp ¼ constant; ð2:5Þ

where qsp is the species density of the solid particles.

Proceeding on the same lines as Pai [29], we obtain the

equation of state of the mixture as

p ¼
1� kp

� �

1� zð Þ 1þ bq 1� kp

� �� �
qR�T; ð2:6Þ

where z is the volume fraction of solid particles in the

mixture and kp the mass concentration of solid

particles.

The relation between kp and z is given by [29]

kp ¼
zqsp

q
: ð2:7Þ

In equilibrium flow, kp is constant in whole flow-

field. Therefore from (2.7)

z

q
¼ constant ¼ z1

q1

; ð2:7aÞ

where z1 and q1 are the initial values of z and q,

respectively.

The internal energy per unit mass of the mixture

may be written as

Um ¼ kpCsp þ 1� kp

� �
Cv

� �
T ¼ CvmT ; ð2:8Þ

where Csp is the specific heat of the solid particles, Cv

specific heat of the gas at constant volume and Cvm the

specific heat of the mixture at constant volume.

The specific heat of the mixture at constant pressure

is

Cpm ¼ kpCsp þ 1� kp

� �
Cp; ð2:9Þ

where Cp is the specific heat of the gas at constant

pressure.

The ratio of the specific heats of the mixture is

given by [1, 29]

C ¼ Cpm

Cvm

¼ c
1þ db0

c

� 	

1þ db0ð Þ ;
ð2:10Þ

where

c ¼ Cp

Cv

; d ¼ kp

1� kp

and b0 ¼ Csp

Cv

:

Now

Cpm � Cvm ¼ 1� kp

� �
Cp � Cv

� �
¼ 1� kp

� �
R�;

ð2:11Þ

neglecting the term containing b2q2 [20].

The internal energy per unit mass of the mixture is,

therefore, given by

Um ¼
p 1� zð Þ

q C� 1ð Þ 1þ bq 1� kp

� �� � : ð2:12Þ

We consider that a strong shock wave is propagated

into the mixture of the non-ideal gas and small solid

particles of constant density q1, which is at rest

(u1 ¼ 0) and with negligibly small counter pressure

(p1 ’ 0). We assume the shock surface to be trans-

parent, therefore the radiative heat-flux is continuous

across it.

The boundary conditions at the strong shock are as

follows [6]

u2 ¼ 1� bð Þ _R ð2:13Þ

q2 ¼
q1

b
; ð2:14Þ

z2 ¼
z1

b
; ð2:15Þ

p2 ¼ 1� bð Þq1
_R2 ð2:16Þ

where b is given by
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Cþ 1ð Þb2 þ 1� kp

� �
b� 1


 �
C� 1ð Þ � 2z1

� �

� b� b C� 1ð Þ 1� kp

� �
¼ 0: ð2:17Þ

Here, R is shock radius, b ¼ bq1 is the parameter of

non-idealness of the gas in the mixture and dot denotes

the differentiation with respect to time t. A quantity

with suffix ‘2’ denotes the value of that quantity just

behind the shock front.

The relation between kp and z1 is given by [32]

z1 ¼
kp

G1 1� kp

� �
þ kp

; ð2:18Þ

where G1 is the ratio of the density of solid particles to

the initial density of gas. This shows that z1 is a

constant. Hence, from relation (2.7a), q1 should also

be a constant. This is the reason why q1 has already

been assumed constant.

The shock radius is assumed to be given by [24]

_R2 ¼ A2R�a; ð2:19Þ

where A and a are constants.

3 Similarity solutions

Let the solution of the problem exist in the following

similarity form

u ¼ _R u xð Þ; q ¼ q1q xð Þ; p ¼ q1
_R2 p xð Þ;

Um ¼ _R2 Um xð Þ;F ¼ q1
_R3F xð Þ; z ¼ z1 q xð Þ;

ð3:1Þ

where x ¼ r
R

is a dimensionless quantity.

Using (3.1), the equations of motion (2.1), (2.2) and

(2.3) transform into the following form

u� xð Þ q
0

q
¼ � u0 þ j

u

x

� �
; ð3:2Þ

u� xð Þu0 � a
2

u ¼ p0

q
; ð3:3Þ

u� xð ÞU0m � aUm þ
p

q
u0 þ j

u

x

� �
þ 1

qxj

d

dx
xjF
� �

¼ 0:

ð3:4Þ

Also, the strong shock conditions (2.11), (2.12) and

(2.14) change into the form

u 1ð Þ ¼ 1� bð Þ; ð3:5Þ

z 1ð Þ ¼ q 1ð Þ ¼ 1

b
; ð3:6Þ

p 1ð Þ ¼ 1� bð Þ: ð3:7Þ

We assume the ‘Product Solution’ of the progres-

sive wave given by Mc Vittie [33] in the form

u ¼ a tð Þ
t

r; ð3:8Þ

q ¼ kþ 1ð Þf tð Þt�2a0gk�2; ð3:9Þ

p ¼ a02f tð Þt�2b0 tð Þgk; ð3:10Þ

where g ¼ rt�a and k and a0 are some constants. Also

‘a’ and ‘b0’ are some functions of t and are given by

a tð Þ ¼
ka0 � tf 0

�
t

k
; ð3:11Þ

b0 tð Þ ¼ kþ 1

ka02
�a2 þ a� ta0
� �

: ð3:12Þ

It can be easily seen that these equations satisfy the

Eqs. (2.1) and (2.2) identically.

After changing this solution to similarity form

which requires ‘a’ to be a constant (equal to
2 1� bð Þ
aþ 2

),

we apply boundary conditions (3.5), (3.6) and (3.7)

and finally obtain

u xð Þ ¼ 1� bð Þx; ð3:13Þ

z xð Þ ¼ q xð Þ ¼ 1

b
xk�2; ð3:14Þ

p xð Þ ¼ 1� bð Þxk: ð3:15Þ

Using Eq. (2.10) in Eq. (3.4), we get

u� xð Þ p0

p
� q0

q 1� zð Þ �
q0b 1� kp

� �

1þ bq 1� kp

� �

" #

� aþ 1þ bq 1� kp

� �� �
� C� 1ð Þ

1� zð Þ j
u

x
þ u0

� �

þ 1þ bqð1� kpÞ
� ��C� 1

1� z

	 1

pxj

d

dx
ðFxjÞ ¼ 0:

ð3:16Þ

Using Eqs. (3.13) and (3.15) in (3.2), we obtain
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k ¼ 1þ bð Þ þ 1� bð Þj
b

: ð3:17Þ

Using Eqs. (3.13), (3.14) and (3.15) in equation

(3.3), we obtain

a ¼ 2 1� bð Þjþ 1½ �: ð3:18Þ

Relations (3.17) and (3.18) are the same as derived

in [28].

From Eqs. (3.13), (3.14), (3.15) and (3.16), we

obtain

d

dx
xjF
� �

¼
1� bð Þ b� z1xk�2

� �

b C� 1ð Þ

� k� bðk� 2Þ
b� z1xk�2

� bðk� 2Þð1� kpÞ
bx2�k þ bð1� kpÞ

( )"

� b2

bþ bð1� kpÞ xk�2
þ ab

bþ b 1� kp

� �
xk�2

� b 1� bð Þ C� 1ð Þ jþ 1ð Þ
b� z1xk�2


xkþj: ð3:19Þ

We also have the relations

u

u2

¼ u xð Þ
u 1ð Þ ;

q
q2

¼ q xð Þ
q 1ð Þ ;

p

p2

¼ p xð Þ
p 1ð Þ ;

F

F2

¼ F xð Þ
F 1ð Þ

;
z

z2

¼ q
q2

and

T

T2

¼ p

p2

� �
1� z1

b
q
q2

� �.
1� z1

b

� �

�
bþ b 1� kp

� �

bþ b 1� kp

� �
xk�2

" #
. q

q2

� �
:

ð3:20Þ

Equations (3.13), (3.14), (3.15) and (3.19) give the

solution of our problem.

This solution is an example of exact solutions for

the flows of mixture of a non-ideal gas and small solid

particles corresponding to exact solution in ordinary

gas dynamics by Mc Vittie [33] and Sedov [16], in

radiation gas dynamics by Ashraf and Sachdev [24],

and in the mixture of a perfect gas and small solid

particles by Vishwakarma and Vishwakarma [28].

4 Results and discussion

For the density to remain finite at the centre and for the

radiation flux not be negative anywhere, we have from

Eqs. (3.14) and (3.19),

b\1; ð4:1Þ

and

k� b k� 2ð Þ
b� z1xk�2

�
b k� 2ð Þ 1� kp

� �

bx2�k þ b 1� kp

� �

( )"

� b2

bþ b 1� kp

� �
xk�2
þ ab

bþ b 1� kp

� �
xk�2

� b 1� bð Þ C� 1ð Þ jþ 1ð Þ
b� z1xk�2


[ 0: ð4:2Þ

Inequality (4.1) is not only a necessary condition for

density to remain finite at the centre, but it must also be

satisfied for existence of the shock wave.

In Figs. 1, 2, 3 and 4, we have plotted the values of

q
q2

¼ z

z2

� �
,

p

p2

;
T

T2

and
F

F2

for [6, 31, 32] c ¼

1:4; b ¼ 0; 0:05; 0:1; kp ¼ 0; 0:2; 0:4; G1 ¼ 1; 100;

b0 ¼ 1 and j ¼ 2 as x ¼ r

R
varies from 0 to 1. Here

b ¼ 0 corresponds to the case of mixture of a perfect

gas and small solid particles [28]; kp ¼ 0 to the dust-

free case, and j = 2 to the spherical shock.

Fig. 1 Variation of density with distance in a region behind the

shock front
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Values of
q
q2

;
p

p2

;
T

T2

are calculated from

Eqs. (3.14), (3.15) and (3.20). Values of
F

F2

are

obtained by numerical integration of the differential

equation (3.19). If b ¼ 0 (the case mixture of perfect

gas and small solid particles), we can obtain the exact

integral of the Eq. (3.19) which gives F ¼ 0 at x = 0.

Therefore, for the purpose of numerical integration of

Eq. (3.19), we start from F ¼ 0 at x = 0 and move

forward up to x = 1. Actually, since the shock is

transparent and the radiative heat transfer equations

are not used explicitly, we do not have the value of F at

the shock (x = 1) to use as the boundary conditions for

the purpose of numerical integration of the differential

equation (3.19).

This solution predicts the velocity, the density, the

pressure, the temperature and the radiation flux to tend

to zero as the centre of symmetry is approached. The

values of velocity, density and pressure decrease from

highest at the shock to zero at the centre of symmetry.

The radiation flux also decreases from highest at the

shock to zero at the centre in the cases when the gas is

dust-free or when the value of G1 (the ratio of density

Fig. 2 Variation of pressure with distance in a region behind the

shock front

Fig. 3 Variation of temperature with distance in a region

behind the shock front

Fig. 4 Variation of radiation flux with distance in a region

behind the shock front
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of solid particles to the initial density of gas) is much

higher (G1 ¼ 100). In the cases where G1 ¼ 1, the

radiation flux at first increases from the shock front,

and after attaining a maximum stats to decrease to zero

towards the centre. The temperature decreases from

highest at the shock to zero at the centre in the cases

when the medium is a perfect gas or when it is mixture

of a perfect gas and small solid particles with much

higher values of G1(=100). In almost all other cases,

the temperature at first increases behind the shock and

after attaining a maximum decreases to zero at the

centre.

Since
u

u2

¼ x, it does not vary with any variation in

kp; G1 and b.

Effects of an increase in the value of kp are

1. to increase the value of b ¼ q1=q2ð Þ significantly

when G1 ¼ 1, and to decrease it when G1 ¼ 100

(Table 1), i.e. to decrease the shock strength

significantly when G1 ¼ 1 and to increase it when

G1 ¼ 100;

2. to increase the density q=q2, the pressure p=p2,

and the radiation flux F=F2 at any point in the

flow-field behind the shock when G1 ¼ 1 and to

decrease these flow variables when G1 ¼ 100; and

3. to increase the temperature T=T2 at any point in

the flow-field behind the shock.

Thus, the effects of an increase in kp are significant when

G1 ¼ 1. Actually, when G1 ¼ 1, the volume fraction

of solid particle in the initial medium z1 is equal to kp

and when kp is increased from 0.2 to 0.4, z1 also

increases from 0.2 to 0.4, on the other hand when G1 ¼
100, the corresponding increase in z1 is very small.

This fact causes the above significant effects on the

shock strength and on the flow variables, when G1 ¼ 1.

Effects of an increase in the value of G1 from 1 to

100 are

1. to increase the shock strength (to decrease the

value of b (Table 1);

2. to decrease the flow variables q=q2; p=p2; T=T2

and F=F2 at any point in the flow-field behind the

shock. When G1 ¼ 100 and kp is higher (=0.4), the

profiles of these flow-variables become closer to

the corresponding profiles in the dust-free case;

3. to decrease the tendency of maxima formation in

the profiles of temperature T=T2 and radiation flux

F=F2. This shows that when G1 ¼ 100 the

transport of energy by radiation is faster in

comparison to that when G1 ¼ 1, causing the

removal of maxima formation in the profiles of

temperature and radiation. Actually, when G1 ¼ 1

the volume occupied by solid particles in the

mixture is much higher which prevents the faster

transport of energy.

Table 1 Variation of the

density ratio b across the

shock-front for different

values of kp and b with b0 ¼
1 and c ¼ 1:4 (cases of b ¼
0 are the results of [28])

kp C G1 z1 b b a

1 0 1.4 – 0 0 0.166667 5.333332

2 0 1.4 – 0 0.05 0.200000 5.200000

3 0 1.4 – 0 0.1 0.224304 5.102784

4 0.2 1.32 1 0.2 0 0.310345 4.758620

5 0.2 1.32 1 0.2 0.05 0.321964 4.712144

6 0.2 1.32 1 0.2 0.1 0.332497 4.670012

7 0.2 1.32 100 0.0024937 0 0.140081 5.439676

8 0.2 1.32 100 0.0024937 0.05 0.167502 5.329992

9 0.2 1.32 100 0.0024937 0.1 0.187802 5.248792

10 0.4 1.24 1 0.4 0 0.464286 4.142856

11 0.4 1.24 1 0.4 0.05 0.467940 4.128240

12 0.4 1.24 1 0.4 0.1 0.471492 4.114032

13 0.4 1.24 100 0.00662 0 0.113056 5.547760

14 0.4 1.24 100 0.00662 0.05 0.133855 5.464580

15 0.4 1.24 100 0.00662 0.1 0.149599 5.401604
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Effects of an increase in the value of b are

1. to decrease the shock strength (to increase the

value of b);

2. to increase the flow variables q=q2 and p=p2 at any

point in the flow-field behind the shock front (see

Figs. 1, 2);

3. to increase the flow variables T=T2 and F=F2 at

any point in the flow-field behind the shock front

except for near the shock front in the case of

G1 ¼ 1.

These effects are significant when G1 is much larger

(G1 ¼ 100) in the dusty gas or when the gas is dust-

free. This show that the effects of non-idealness of the

gas on the shock propagation is reduced due to

presence of dust particles.

5 Conclusion

The present work investigates the self-similar solution

for the flow behind a strong shock wave propagating in

a mixture of a non-ideal gas and small solid particles

with radiation heat-flux. On the basis of this work, one

may draw the following conclusions:

1. An increase in mass concentration of solid particle

in the mixture kp, increases the volume fraction of

solid particles significantly when G1 ¼ 1. This

increase in volume fraction of solid particle

results in significant decrease of the shock

strength and significant change in profiles of flow

variables in the flow-field behind the shock.

2. When G1 ¼ 100 and kp is higher, the profiles of

the flow-variables in the flow-field behind the

shock become closer to the corresponding profiles

in the dust-free case.

3. An increase in the value of G1 reduces the

tendency of maxima formation in the profiles of

temperature and radiation flux. In fact, for higher

values of G1 (i.e. for lower volume fraction of

solid particles) the transport of energy by radiation

is faster which causes the above behavior of

temperature and radiation flux profiles.

4. The effects of the non-idealness of the gas on the

shock strength and on the flow-profiles in the

flow-field behind the shock are reduced by the

presence of solid particles in the gas.
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