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Abstract In this paper, the transverse vibrations in a

homogenous, transversely isotropic, thermoelastic

thin beams due to time varying patch loads have been

investigated. The governing equations of motion for

classical elasticity and heat conduction for non-

Fourier (non-classical) process have been integrated

to model the transverse vibrations in a homogenous,

transversely isotropic thin beam in closed form by

employing Euler–Bernoulli beam theory. The axial

ends of the beam are assumed to be at either clamped–

clamped or clamped-free/cantilever conditions. The

model equation governing transverse vibrations in a

thermoelastic thin beam has been solved analytically

by employing Laplace transform technique with

respect to space and time variables. In order to obtain

deflection and other quantities in the physical domain,

the inversion of Laplace transform in the time domain

has been performed by using the calculus of residues.

The variational iteration method along with Durbin

technique has also been employed to solve the model

equation for comparison and validation purpose. The

expressions for deflection and response ratio in the

physical domain have been computed numerically

with the help of MATLAB software for a silicon

carbide micro-beam. The computed results have been

presented graphically. The obtained analytic results

are envisioned to be easy to implement for engineering

analysis and designs of resonators (sensors), modula-

tors, actuators and radio frequency filters.

Keywords Durbin method � Euler–Bernoulli beam �
Laplace transformation �MEMS �Variational iteration

method

1 Introduction

Micro-and nano- machined devices have attracted

considerable attention due to their technological

applications [1]. Micro-scaled mechanical resonators

are the critical components used as sensors, gyro-

meters, charge detectors and radio frequency (RF)

filters [2]. The scaling property, low energy consump-

tion, low cost, low driving power, large deflection

capacity, relative ease of fabrication, etc. make

microelectromechanical systems (MEMS) compo-

nents commercialization attractive [3]. The micro-

beams have been widely studied by the MEMS

community [4–6] due to their applications ranging

from signal filtering to chemical filtering and mass

sensing.

Lifshitz and Roukes [7] studied the thermoelastic

damping of a beam and found that beyond the Debye

peaks, the thermoelastic attenuation get weakened
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with increasing size. Guo and Rogerson [8] examined

the thermoelastic coupling effect on micro-machined

beam resonators. Sun et al. [9] presented 2-D analysis

of frequency shifts by considering sinusoidal temper-

ature gradients across the thickness of the beam.

Sharma [10] derived governing equations of flexural

vibrations in a transversely isotropic, thermoelastic

beam in closed form based on Euler–Bernoulli theory

to study thermoelastic damping (TED) and frequency

shift (FS) of vibrations in clamped and simply

supported beam structures. Altus [11] calculated the

statistical characteristics of heterogeneous micro-

beams by using probability density and correlation

functions to conclude that deflection is load depen-

dent. Abu-Hilal [12] determined the dynamic response

of Euler–Bernoulli beams subjected to distributed and

concentrated loads. Fang et al. [13] investigated the

vibration phenomenon due to laser heating of micro-

beams. The frequency spectrum of laser induced

vibrations of microbeam resonator has also been

analysed. Sun et al. [14] used Laplace transform

technique to study the vibration phenomena due to

pulsed laser heating of a microbeam under different

boundary conditions. Liu et al. [15] studied the

mechanical behaviour of a silicon micro-cantilever

beam to evaluate the dimension effects on the flexural

strength, Young’s modulus and failure strain of

MEMS devices. Jia et al. [16] presented an analytical

study on the forced vibration of micro-switches under

the influence of combined electrostatic and intermo-

lecular forces as well as axial residual stress. Zang and

Fu [17] developed a new beam model for a viscoelastic

mico-beam based on a modified couple stress theory.

Tryland et al. [18] studied the influence of geometry

and material variations on the structural response of a

beam under patch loading. According to Akgöz and

Civalek [19], the classical elasticity theory sufficiently

captures accurate response for many engineering

problems except where the size effects are prominent

in the structure. They explored the bending analysis of

micro-sized beams based on Euler–Bernoulli beam

theory by using strain gradient elasticity theory.

Civalek [20] gave a comparative study of the buckling

of thin isotropic plates and elastic columns by using

differential quadrature (DQ) and harmonic differential

quadrature (HDQ) techniques. Akgöz and Civalek

[21] studied the longitudinal free vibrations of strain

gradient bars made of functionally graded materials.

Belardinelli et al. [22] investigated the dynamic

behaviour of an electrically actuated clamped

microbeam.

The numerical solutions of engineering and math-

ematical problems are also possible in a reasonable

accuracy with the help of meshless methods developed

by researchers [23, 24]. The variational iteration

method (VIM) developed by He [23], as a modifica-

tion of a general Lagrange multiplier method [24], is a

powerful technique to obtain approximate solutions of

linear as well as non-linear problems. Liu and Gurram

[25] employed VIM to solve free vibration problems

for elastic Euler–Bernoulli beams. Rezazadeh et al.

[26] studied the parametric oscillation of an electro-

statically actuated micro-beam by using VIM. Shi-

ekhlou et al. [27] investigated the torsional vibrations

and stability of a micro-shaft subjected to an electro-

static parametric excitation with the help of VIM.

Unlike the non-classical (non-Fourier) solution, the

classical (Fourier) solution of heat conduction equa-

tion shows no distinct wave front and temperature

increase starts at the initial time [28]. The difference in

the predicted temperature between two theories,

Fourier and non-Fourier, is small and only apparent

for very small time scales, of the order of picoseconds

(ps). However, in certain applications such as non-

destructive evaluation (NDE), the time scales are large

enough for the solution to be numerically undistin-

guishable. Moreover, the choice of a specific value for

the heat propagation speed in non-Fourier process

does not affect the results. However, from the practical

point of view, the choice of a value for the heat

propagation speed equal to the speed of longitudinal

waves in non-classical formulation, presents some

numerical advantages. Sharma and Kaur [29] modeled

and analysed the forced vibrations in micro-scale

anisotropic thermoelastic beams due to time harmonic

point load. As per knowledge of the authors, no

systematic study on transverse vibrations in a homo-

geneous, transversely isotropic thin thermoelastic

beam under the action of time varying (anharmonic)

patch load is available in the literature in the context of

generalized (non-Fourier) theory of thermoelasticity.

Keeping in view the above stated facts, the non-

Fourier (hyperbolic) model of governing equations

developed by Dhaliwal and Sherief [30] has been used

to model and study the instant transient problem of

dynamic patch load acting on a homogeneous, trans-

versely isotropic thin beam. The double Laplace

transform with respect to space and time variables
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along with calculus of residues has been used to find

the analytical solution in the physical domain. The

deflection and response ratio in clamped–clamped

(CC) and clamped-free (CF) beams have been

obtained as functions of axial coordinate and time.

The problem has also been solved by employing VIM,

being generic and computer friendly, for comparison

and validation of the solutions. The expressions for

deflection and response ratio have been computed

numerically for silicon carbide (SiC) micro-beams by

using MATLAB software. The considered material is

anisotropic in nature by crystallographic

classifications.

2 Mathematical model

We consider a homogenous, transversely isotropic,

thermoelastic thin beam with dimensions: length

Lð0� x� LÞ, width bð� b
2
� y� b

2
Þ and thickness

h ð� h
2
� z� h

2
Þ in a Cartesian coordinate system Oxyz.

The beam is assumed to be transversely isotropic in the

sense that its mechanical and thermal properties are

different along the thickness to that in a plane

transverse to it. We take x -axis along the length of

the beam, y -axis along the width and z -axis along the

thickness direction, being also the axis of material

symmetry. In equilibrium, the beam is unstrained,

unstressed and at uniform temperature T0. It is

assumed that there is no flow of heat across the upper

and lower surfaces of the beam. Ignoring the shear

deformation and rotary inertia effect, the governing

equations of motion and heat conduction equation for

transverse vibrations of a homogeneous, transversely

isotropic, thermoelastic uniform Euler–Bernoulli

beam leads to the beam equation [29]:

c11 I
o4w

ox4
þ b1

o2MT

ox2
þ qA

o2w

ot2
¼ qðx; tÞ ð1Þ

where w(x,t) is the transverse deflection at distance x

along the length of the beam at time t, c11 I, I ¼ bh3

12
, q

and A are the flexural rigidity, moment of inertia of the

cross-section, density of the material and the cross-

sectional area of the beam respectively. b1 ¼ ðc11 þ
c12Þa1 þ c13a3 is the thermoelastic coupling parame-

ter, ci j are the elastic constants, a1 6¼ a3, in general, are

the coefficients of linear thermal expansion along and

perpendicular to the plane of isotropy, MT ¼ b
R

h
2

� h
2

Tzdz

is the thermal moment of inertia of the beam and b1MT

being the thermal moment of the beam, q(x,t) is the

load acting in the transverse direction.

We neglect the heat conduction along y-direction

[7, 31, 32] and hence the heat conduction equation in

this situation takes the form [29]

K1

o2T

ox2
þ K3

o2T

oz2
� q Ceð

oT

ot
þ t0

o2T

ot2
Þ

þ b1T0zð o
ot
þ t0

o2

ot2
Þ o

2w

ox2
¼ 0 ð2Þ

where Tðx; y; z; tÞ ¼ T1ðx; y; z; tÞ � TO is the tempera-

ture change, Ce is the specific heat at constant strain,

K1 and K3 are the thermal conductivities along and

perpendicular to the plane of isotropy and t0 is the

thermal relaxation time. Here, the thermoelastic

coupling parameter b3 ¼ 2c13a1 þ c33a3 along z-axis

does not appear due to Euler–Bernoulli hypothesis.

For mathematical convenience, we define the

following non-dimensional quantities:

X ¼ x

L
; Z ¼ z

h
; W ¼ w

h
; s ¼ vt

L
; h ¼ T

T0

;

aR ¼
L

h
; Mh ¼

MT

T0Ah
; K� ¼ K3

K1

;

X� ¼ L x�

v
; s0 ¼

vt0

L
; b�1 ¼

T0 b1

c11

;

e1 ¼
b2

1T0

q Cec11

; q1ðX; sÞ ¼
L2

c11Ah
qðx; tÞ

ð3Þ

where x� ¼ Cec11

K1
and v ¼

ffiffiffiffiffi
c11

q

q
are the thermoelastic

characteristic frequency and velocity of longitudinal

wave in the beam, respectively.

Upon introducing quantities (3) in Eqs. (1) and (2),

we get

1

12 a2
R

o4W

oX4
þ b�1

o2Mh

oX2
þ o2W

os2
¼ q1ðX; sÞ ð4Þ

1

K� a2
R

o2h
oX2
þ o2h

oZ2
� X�

K� a2
R

oh
os
þ s0

o2h
os2

� �

þ e1X
�Z

K�b�1a4
R

o

os
þ s0

o2

os2

� �
o2W

oX2
¼ 0 ð5Þ
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where Mh ¼
R

1
2

� 1
2

hðX ; Z; sÞ ZdZ

Because the thermal gradients in the plane of cross-

section along the thickness direction of the beam are

much larger than those along its axis, that is oT
ox

�
�
�
�\ oT

oz

�
�
�
�

[7, 31, 32]. Consequently, 1
a2

R

o2h
oX2

�
�
�

�
�
�\\ o2h

oZ2

�
�
�
�
�
� and thus

the Eq. (5) becomes

o2h
oZ2
� X�

K� a2
R

oh
os
þ s0

o2h
os2

� �

þ e1X
�Z

K�b�1a4
R

o

os
þ s0

o2

os2

� �
o2W

oX2

¼ 0 ð6Þ

3 Initial and boundary conditions

Initially, the beam has been assumed to be at rest,

undeformed and undisturbed mechanically as well as

thermally and at uniform temperature T0. Thus, the

initial conditions are given by:

WðX; 0Þ ¼ 0 ¼ _WðX; 0Þ; hðX; Z; 0Þ ¼ 0 ¼ _hðX; Z; 0Þ
ð7Þ

where superposed dot denotes time differentiation.

For a thin beam whose ends X = 0 and X = 1 are

held either at clamped–clamped (CC) or clamped-free/

cantilever (CF) mechanical conditions, the following

sets of boundary conditions are satisfied:

Set I: Clamped–Clamped (CC) beam

W ¼ 0;
dW

dX
¼ 0; at X ¼ 0; 1 ð8Þ

Set II: Clamped-free/Cantilever (CF) beam

W ¼ 0;
dW

dX
¼ 0; at X ¼ 0

d2W

dX2
¼ 0 ;

d3W

dX3
¼ 0; at X ¼ 1 ð9Þ

It is assumed that there is no flow of heat across the

upper and lower surfaces of the beam, therefore the

following thermal boundary conditions are satisfied on

these surfaces:

oh
oZ
¼ 0; at Z ¼ � 1

2
: ð10Þ

4 Temperature field

The Laplace transform with respect to time ‘s’ has

been defined as [33]

�WðX; SÞ ¼
Z1

0

e�SsWðX; sÞ ds; s [ 0 ð11Þ

where S ¼ Ls
v

is non-dimensional Laplace transform

parameter. Here ‘s’ is dimensional Laplace transform

parameter with respect to time s, which may be real or

complex.

Applying Laplace transform (11) to Eq. (6) and

using initial conditions (7), we get

o2 �h
oZ2
þ p2 �h� e1p2Z

b�1a2
R

o2 �W

oX2
¼ 0 ð12Þ

where

p2 ¼ �X�s�0S

K� a2
R

; s�0 ¼ 1þ s0S; �Mh

¼
Z

1
2

� 1
2

�hðX; Z; SÞZ dZ

ð13Þ

The solution of Eq. (12) that satisfies the conditions

(10) is obtained as

�hðX; Z; SÞ ¼ e1

b�1a2
R

Z � sin pZ

p cos p
2

� �
o2 �W

oX2
ð14Þ

Using (14) in Eq. (13), the thermal moment of

inertia has been obtained as:

�Mh ¼
e1

12a2
Rb�1

1þ f ðpÞ½ � o
2 �W

oX2
ð15Þ

where f ðpÞ ¼ 24

p3

p

2
� tan

p

2

� �
ð16Þ

Applying Laplace transform (11) to Eq. (4) and

using initial conditions (7), we get

1

12 a2
R

o4 �W

oX4
þ b�1

o2 �Mh

oX2
þ S2 �W ¼ �q1ðX; SÞ ð17Þ

Eliminating �Mh from Eq. (17) with the help of

Eq. (15), we get

o4 �W

oX4
� g4 �W ¼ 1

Dp

�q1ðX; SÞ ð18Þ

where g4 ¼ �S2

Dp
,
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Dp ¼
1

12a2
R

½1þ e1ð1þ f ðpÞÞ� ð19Þ

Here Dp is the effective flexural rigidity of the

beam.

It is assumed that either of the continuous and

exponential decaying patch loads are acting on a

segment AB of the beam, where A and B are the points

on the axial axis distant a and a* from the origin,

respectively. Here 0� a\a� � L so that 0� â\b̂� 1,

where â ¼ a
L

and b̂ ¼ a�

L
. Thus following cases of patch

loads in the instant study have been considered:

Case I: Continuous patch load

q1ðX; sÞ ¼ �q�0½HðX � âÞ � HðX � b̂Þ�Hðs� ŝÞ

Case II: Exponential decaying patch load

q1ðX; sÞ ¼ �q�0½HðX � âÞ � HðX � b̂Þ� ½1
� expð�XsÞ� ð20Þ

where q�0 and X are the magnitude and excitation

frequency of the applied patch load, respectively and

the quantity H(�) denotes Heaviside function. Here ŝ is

the time at which the continuous load q1ðX; sÞ has just

been applied to the beam.

Applying Laplace transform (11) to Eq. (20), one gets

Case I : �q1ðX; SÞ

¼ �q�0½HðX � âÞ � HðX � b̂Þ� expð�ŝSÞ
S

� 	

Case II : �q1ðX; SÞ

¼ �q�0½HðX � âÞ � HðX � b̂Þ� X
SðSþ XÞ

� 	

ð21Þ

The boundary conditions (8) and (9) in the trans-

formed domain became

Set I : �WðX; SÞ ¼ 0 ¼ d �WðX; SÞ
dX

; at X ¼ 0; 1 ð22Þ

Set II : �WðX; SÞ ¼ 0 ¼ d �WðX; SÞ
dX

; at X ¼ 0

d2 �WðX; SÞ
dX2

¼ 0 ¼ d3 �WðX; SÞ
dX3

; at X ¼ 1 ð23Þ

The Eq. (18) along conditions (21)–(23) constitutes a

mathematical model for the computation of deflection of

the thermoelastic thin beam under considered transverse

patch loads in cases I and II. The temperature and thermal

moment in the transformed domain can also be obtained

from Eqs. (14) and (15) with the help of �WðX; SÞ.

5 Solution of the model

In order to solve the model Eq. (18), we again employ

Laplace transform with respect to X as defined by [33]:

~�Wðn; SÞ ¼
Z1

0

e�nX �WðX; SÞ dX ð24Þ

where n ¼ L1 is non-dimensional Laplace transform

parameter. Here ‘1’ is dimensional Laplace parameter

with respect to X, which may be real or complex. The

solution of the model in the light of boundary

conditions stated in Set I and Set II will be derived

under static and dynamic situations of the thin beam in

the following subsections.

5.1 Static analysis

In the static case, the disturbance and load are

independent of time. Thus, the load acting on the

beam in Case I and II in Eq. (20) becomes

q1ðXÞ ¼ �q�0½HðX � âÞ � HðX � b̂Þ� ð25Þ

Adopting the similar analysis, the model Eq. (18) in

this case is replaced by:

o4WstatðXÞ
oX4

¼ �q�0
D
½HðX � âÞ � HðX � b̂Þ� ð26Þ

where D ¼ 1
12a2

R

is the flexural rigidity of the elastic

beam at isothermal conditions and WstatðXÞ denotes

the corresponding static deflection of the beam.

Applying Laplace transform (24) to Eq. (26) and

using the transformed boundary conditions (22)–(23),

the solution WstatðXÞ, after inversion of the transform,

is given by:

Set I : WstatðXÞ ¼ �q�0a2
R

�

P1X3 þ Q1X2

þ ðX � âÞ4

2
HðX � âÞ � ðX � b̂Þ4

2
HðX � b̂Þ

	

ð27Þ

Set II : WstatðXÞ ¼ �q�0a2
R

�

3Q2X2 � 2P2X3 þ ðX � âÞ4

2

� HðX � âÞ � ðX � b̂Þ4

2
HðX � b̂Þ

	

ð28Þ
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where P1 ¼ ð1� b̂Þ3ð1þ b̂Þ � ð1� âÞ3ð1þ âÞ

Q1 ¼
1

2
ð1� âÞ3ð1þ 3âÞ � ð1� b̂Þ3ð1þ 3b̂Þ
h i

P2 ¼ b̂� â; Q2 ¼ b̂2 � â2 ð29Þ

It may be noted here that at adiabatic conditions, the

flexural rigidity D becomes D ¼ 1þe1

12 a2
R

and conse-

quently, the deflections at adiabatic conditions can

be written from Eqs. (27) and (28) by replacing a2
R

with
a2

R

1þe1
. This completes the solution of the model

equation at static situation and under considered

boundary and loading conditions.

5.2 Dynamic analysis

This subsection is devoted to explore the response of

the beam under the action of time varying patch loads

as under:

Case I: Continuous Patch Load

Upon applying Laplace transform (24) to Eq. (18),

along with boundary conditions (22)–(23) at X ¼ 0

and load �q1ðX; SÞ in Eq. (21) and simplifying, one get

Set I:

~�Wðn; SÞ ¼ c1

2g2

n

n2 � g2
� n

n2 þ g2

� �

þ c2

2g2

1

n2 � g2
� 1

n2 þ g2

� �

þ q�0e�ŝS

S3
e�ân � e�b̂n
� �h

� 1

n
þ 1

2

n

n2 þ g2

� �

þ 1

2

n

n2 � g2

� �
 �	

ð30Þ

where c1 ¼ �W
00 ð0; SÞ; c2 ¼ �W

0000 ð0; SÞ
Set II:

~�Wðn; SÞ ¼ c1

2g2

n

n2 � g2
� n

n2 þ g2

� �

þ c2

2g2

1

n2 � g2
� 1

n2 þ g2

� �

þ q�0e�ŝS

S3
e�ân � e�b̂n
� �h

� 1

n
þ 1

2

n

n2 þ g2

� �

þ 1

2

n

n2 � g2

� �
 �	

ð31Þ

Taking inverse of Laplace transforms in Eqs. (30)

and (31) with respect to n and employing the boundary

conditions (22)–(23) at the end X = 1 of the beam, the

constants cj, (j = 1, 2) can be evaluated and used in

Eqs. (30) and (31) to obtain the expressions for

deflection in the beam. We have

Set I:

�WðX; SÞ ¼ q�0e�ŝS

2S3D1

½A1CðgXÞ � B1S�ðgXÞ

þ 2D1fCðX � âÞHðX � âÞ
� CðX � b̂ÞHðX � b̂Þg�

ð32Þ

Set II:

�WðX; SÞ ¼ q�0e�ŝS

2S3D2

½A2CðgXÞ � B2S�ðgXÞ

þ 2D2fCðX � âÞHðX � âÞ
� CðX � b̂ÞHðX � b̂Þg� ð33Þ

where

D1 ¼ 1� cos g cosh g,D2 ¼ 1þ cos g cosh g

Cðg XÞ ¼ cosh g X � cos g X; S�ðg XÞ
¼ sinh g X � sin g X

CðX � âÞ ¼ �1þ 1

2
cos g ðX � âÞ þ 1

2
cosh g ðX

� âÞ

CðX � b̂Þ ¼ �1þ 1

2
cos g ðX � b̂Þ þ 1

2
cosh g ðX

� b̂Þ
ð34Þ

The quantities Ai and Bi (i = 1,2) have been defined

by equations (76)–(79) in the Appendix.

6 Deflection in the physical domain

In order to obtain deflection in the physical domain,

we employed the Laplace inversion formula defined

by [33]:

WðX; sÞ ¼ 1

2pi

Zcþi1

c�i1

eSs �WðX; SÞdS ð35Þ

where c is a constant greater than the real parts of all

the singularities of �WðX; SÞ. Upon using formula (35)

in Eqs. (32)–(33), we get
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Set I : WðX; sÞ ¼ 1

2pi

Zcþi1

c�i1

q�0eSðs�ŝÞ

2S3

F1ðgÞ
D1

dS

ð36Þ

Set II : WðX; sÞ ¼ 1

2pi

Zcþi1

c�i1

q�0eSðs�ŝÞ

2S3

F2ðgÞ
D2

dS

ð37Þ

where

F1ðgÞ ¼ A1CðgXÞ � B1S�ðgXÞ
þ 2D1 ½CðX � âÞHðX � âÞ
� CðX � b̂ÞHðX � b̂Þ� ð38Þ

F2ðgÞ ¼ A2CðgXÞ � B2S�ðgXÞ
þ 2D2 ½CðX � âÞHðX � âÞ
� CðX � b̂ÞHðX � b̂Þ�

ð39Þ

The integrals (36)–(37) will be evaluated by using

calculus of residues, the procedure of which is

described below:

The singular points of the integrand in expressions

(36) and (37) are given by

S ¼ 0 ;D1 ¼ 0;

S ¼ 0 ; D2 ¼ 0 ð40Þ

respectively. These singular points are simple poles of

the integrands for Set I and Set II, respectively.

The roots of the equations D1 ¼ 0 and D2 ¼ 0 are

given as [34]:

gn ¼ 4:73; 7:8532; nþ 1

2

� �

p; n	 3 ð41Þ

gn ¼ 1:8751; 4:6941; n� 1

2

� �

p; n	 3 ð42Þ

respectively. Using Cauchy residue theorem [33], we

get

WðX; sÞ ¼
X

Residues at the isolated singularities

of eSs �WðX; SÞfor Set I and Set II. The residue at S = 0

is given by

Res½eSs �WðX; SÞ; S ¼ 0� ¼ Wstat ð44Þ

Now, the Eq. (19) provides us

Sn ¼ i
ffiffiffiffiffiffi
Dp

p
g2

n ð45Þ

where g2
n is given by Eqs. (41)–(42) in the respective

cases. Using the expression (13) for p2 and adopting

the procedure of Sharma and Kaur [29], the expression

(45) for Sn can be written as

Sn ¼ i S�n½1þ
e1

2
ð1þ f ðp1ÞÞ� ð46Þ

where S�n ¼
g2

nffiffiffiffiffi
12
p

aR

; f ðp1Þ ¼
�12

p�2
þ 24

p�3
tanh

p�

2

� �

;

p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�S�nð1þ s0S�nÞ

K�a2
R

s

ð47Þ

Therefore, the residues of the integrands at S = Sn

are given by

Set I : Res½eSs �WðX; SÞ; S ¼ Sn�

¼ q�0 expfSnðs� ŝÞg
2S3

n

F1ðgnÞ
dD1

dS S¼Sn
j

; n

¼ 1; 2; 3; . . .. . .. . . ð48Þ

Set II : Res½eSs �WðX; SÞ; S ¼ Sn�

¼ q�0 expfSnðs� ŝÞg
2S3

n

F2ðgnÞ
dD2

dS S¼Sn
j

; n

¼ 1; 2; 3; . . .. . .. . . ð49Þ

The expression (43) with the help of Eqs. (44), (48)

and (49) becomes:

Set I : WdynðX; sÞ

¼ Wstat þ
X1

n¼1

q�0 expfSnðs� ŝÞg
2S3

n

F1ðgnÞ
dD1

dS S¼Sn
j

ð50Þ

Set II : WdynðX; sÞ

¼ Wstat þ
X1

n¼1

q�0 expfSnðs� ŝÞg
2S3

n

F2ðgnÞ
dD2

dS S¼Sn
j

ð51Þ

The expressions (50) and (51) give us the dynamic

deflection in clamped–clamped and cantilever ther-

moelastic thin beams due to continuous patch load

(Case I).

Case II: Exponential-decaying patch load

Proceeding in a similar manner, the expressions for

deflection in case of exponential decaying patch load

can be obtained and are given below:
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Set I: Clamped–Clamped (CC) Beam

WdynðX; sÞ ¼ Wstat

þ q�0
2

X1

n¼1

X expðSnsÞ
S3

nðSn þ XÞ
F1ðgnÞ

dD1

dS S¼Sn
j

� expð�XsÞ
X2

F1ðg2Þ
D1ðg2Þ

" #

ð52Þ

Set II: Clamped-Free (CF) Beam

WdynðX; sÞ ¼ Wstat

þ q�0
2

X1

n¼1

X expðSnsÞ
S3

nðSn þ XÞ
F2ðgnÞ

dD2

dS S¼Sn
j

� expð�XsÞ
X2

F2ðg2Þ
D2ðg2Þ

" #

ð53Þ

where g2 ¼
ffiffiffi
3

4
p
ð1þ iÞ

ffiffiffiffiffiffiffiffiffi
aRX

p
½1� e1

4
ð1þ f ðp2ÞÞ�; p2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XX�ð1� s0XÞ

K�a2
R

s

ð54Þ

This determines the solution of the model equation

in dynamic situation under considered boundary and

loading conditions.

7 Response and frequency ratios

Here we can also explore the response and frequency

ratios of the clamped–clamped (CC) and clamped-free

(CF) beams. The response and frequency ratios of the

beam have been defined as [35]:

RðsÞ ¼ Wdyn

Wstat

ð55Þ

and

C ¼ X
S�n

ð56Þ

respectively. Here the quantities Wstat, Wdyn, S�n have

been defined in Eqs. (27)–(28), (50)–(53), (47) and X
is the excitation frequency of the applied load.

This completes the analytical study of the trans-

verse vibrations in clamped–clamped and cantilever

thermoelastic thin beam under the action of a time

varying patch loads acting within the region AB of the

beam.

8 Variational iteration method (VIM)

This section is devoted to study the transverse

deflection of thermoelastic thin beam under consid-

ered transverse patch loads in cases I and II by using

variational iteration method (VIM). The basic concept

of He’s variational iteration method [23] is briefly

introduced as under:Consider a non-linear differential

equation

L ½uðxÞ� þ N½uðxÞ� ¼ gðxÞ ð57Þ

where L is a linear operator, N is a non-linear operator

and g(x) is a source inhomogeneous term.

According to VIM, a correction functional can be

written as:

unþ1ðxÞ ¼ unðxÞ þ
Zx

0

kðfÞfLunðfÞ þ N ~unðfÞ

� gðfÞgdf; n	 0 ð58Þ

where k is a Lagrange multiplier that can be

determined optimally via variational theory. The

subscript n indicates the nth approximation and ~un is

considered as a restricted variation (dð~unÞ ¼ 0).

The successive approximations unþ1ðxÞ of the

solution uðxÞ are obtained with the help of Lagrange

multiplier k and the trial function u0. Consequently,

the solution u(x) is given by

uðxÞ ¼ lim
n!1

unþ1ðxÞ ð59Þ

The convergence of the variational iteration method

has been investigated by the authors [36, 37].

Employing variational iteration technique to model

Eq. (18) along with boundary conditions (22)–(23),

the correctional functional is given by

�Wnþ1ðX; SÞ ¼ �WnðX; SÞ þ
ZX

0

kðfÞ
"

d4 �Wnðf; SÞ
df4

� g4 ~�Wnðf; SÞ �
1

Dp

�q1ðf; SÞ
#

df

ð60Þ

where �q1ðf; SÞ can be written from Eq. (20) for Case I

and Case II and ~�Wn is a restricted variation.

Taking variation on both sides of Eq. (60) with

respect to �Wn and integrating by parts, one can obtain
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d �Wnþ1ðX; SÞ ¼ d �WnðX; SÞ þ kðXÞd �W
000

n ðX; SÞ
� k

0 ðXÞd �W
00

nðX; SÞ þ k
00 ðXÞd �W

0

nðX; SÞ

� k
000 ðXÞd �WnðX; SÞ þ

ZX

0

k
0000 ðfÞdf

ð61Þ

For stationary conditions (dð �Wnþ1Þ ¼ 0), the

Eq. (61) provides us

kðfÞjf¼X¼ 0

k
0 ðfÞ
�
�
�
f¼X
¼ 0

k
00 ðfÞ

�
�
�
f¼X
¼ 0

1� k
000 ðfÞ

�
�
f¼X
¼ 0

k
0000 ¼ 0 ð62Þ

Upon solving Eq. (62), the Lagrange multiplier k is

obtained as

k ¼ ðf� XÞ3

6
ð63Þ

Substituting k from Eq. (63), the iteration formula

(60) becomes:

�Wnþ1ðX; SÞ ¼ �WnðX; SÞ þ
ZX

0

ðf� XÞ3

6

"
d4 �Wnðf; SÞ

df4

� g4 �Wnðf; SÞ �
1

Dp

�q1ðf; SÞ
#

df

ð64Þ

The initial solution satisfying the boundary condi-

tions at X = 0 is given by

�W0ðX; SÞ ¼ A fcoshðgXÞ � cosðgXÞg þ B fsinhðgXÞ
� sinðgXÞg

ð65Þ

where A and B are the arbitrary constants to be

determined. Using solution (65) in Eq. (64), the

successive iterative approximations to solution for n ¼
1; 2; 3; . . .; k are obtained as under:

�W1ðX; SÞ ¼ �W0ðX; SÞ þ
ZX

0

ðf� XÞ3

6

"
d4 �W0ðf; SÞ

df4

� g4 �W0ðf; SÞ �
1

Dp

�q1ðf; SÞ
#

df

ð66Þ

Thus the solution of Eq. (18) for transverse deflec-

tion of thin thermoelastic beam under patch load, after

evaluating the unknown constants A and B with the

help of appropriate boundary conditions at X = 1, is

given by

�WðX; SÞ ¼ lim
k!1

�WkðX; SÞ ð69Þ

8.1 Evaluation of the eigenvalues

The eigenvalues are computed by dropping the non-

homogeneous source term, so that the iteration

formula (64) becomes

�Wnþ1ðX; SÞ ¼ �WnðX; SÞ þ
ZX

0

ðf� XÞ3

6

"
d4 �Wnðf; SÞ

df4

� g4 �Wnðf; SÞ
#

df

ð70Þ
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The approximate solution that satisfies the bound-

ary conditions at the end X = 0 will have the general

form

�WnðX; S; gÞ ¼ cgnðX; S; gÞ þ d hnðX; S; gÞ; n [ 0

ð71Þ

The Eq. (71) when subjected to the boundary

conditions at the other end X = 1 of the beam leads

to the following system of equations

cg½k�n ð1; S; gÞ þ d h½k�n ð1; S; gÞ ¼ 0; k 2 N

cg½l�n ð1; S; gÞ þ d h½l�n ð1; S; gÞ ¼ 0; l 2 N; l 6¼ k ð72Þ

For the existence of non-trivial solution of the

system of Eq. (72), one must have

Dðg; SÞ ¼ det
g½k�n ð1; S; gÞ h½k�n ð1; S; gÞ
g½l�n ð1; S; gÞ h½l�n ð1; S; gÞ

 !

¼ 0

ð73Þ

The real roots of Eq. (73) give the eigenvalues of

Eq. (18). Here the number of iterations (n) is decided

by the equation:

gn
i � gn�1

i

�
�

�
�� e ð74Þ

where e is a small value preset according to the desired

accuracy, called tolerance parameter. Once the

Eq. (74) is satisfied then gi will be the ith eigenvalue

of Eq. (18). Substituting gi into Eq. (68), the trans-

formed deflection �WðX; SÞ can be evaluated.

It is difficult to find the inverse Laplace transform

of the expressions representing the transformed

deflection of the thermoelastic thin beam obtained

by using VIM in the Laplace domain analytically, a

numerical inversion technique given by Durbin [38]

based on Fourier series approximations for this

purpose has been used. Adopting the Durbin’s formu-

lation for inverse Laplace transform, the deflection in

the physical domain is given by:

WðX; sÞ ¼ ecs

=

"
1

2
Ref �WðX; cÞg

þ
X1

k¼1

Ref �WðX; cþ i
kp
=Þg cos

kp
= t:

�
X1

k¼0

Imf �WðX; cþ i
kp
=Þg sin

kp
= t

#

ð75Þ

where c[ 0 is arbitrary, but greater than the real parts

of all the singularities of �WðX; SÞ. The Eq. (75) is the

Fourier series representation of the function WðX; sÞ in

the interval ½0;=�. According to Durbin [38], the

Eq. (75) provides us the most suitable value for the

interval 5� c=� 10 and k ranging from 50 to 5,000.

Equation (75) is a required expression in the

physical domain for transverse deflection in the

clamped–clamped and cantilever thermoelastic thin

beams under the action of a time varying patch load.

9 Numerical results and discussion

With the aim to study the effects of dimensions, size

and loadings on the deflection of the thermoelastic

micro-beam at different positions and times during the

vibrations, we present some numerical results in this

section. The material of the beam for this purpose has

been chosen as silicon carbide (SiC), as a represen-

tative of transversely isotropic materials, whose

physical properties are given in Table 1. For the

purpose of computations, a micro-beam having length

L ¼ 60 lm, width b ¼ 5 lm and thickness h ¼ 1 lm

with fixed aspect ratio (aR ¼ 60) has been considered.

A patch load of intensity q�0 ¼ 1� 10�5 has been

assumed to act on the region 0:25L� x� 0:75L of the

beam so that â ¼ 0:25 and b̂ ¼ 0:75.

The non-dimensional values of the characteristic

time in case of CC and CF beams have been estimated

from the relation sc ¼ ðS�nÞ
�1

and are given as

sc = 9.29 and 59.17, respectively. The computations

of non-dimensional dynamic deflections and response

ratios have been carried out for the fundamental mode

of vibrations with the help of MATLAB software. The

Table 1 Physical data of silicon carbide (SiC) [39, 40]

Quantity Unit Value

q kg m-3 3,211

c11 N m-2 5.01 9 1011

c12 N m-2 1.11 9 1011

c13 N m-2 0.52 9 1011

K W m-1 deg-1 490

Ce J kg-1 deg-1 690

a1 deg-1 4.7 9 10-6

a3 deg-1 4.3 9 10-6

T0 �K 300
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deflection-time response history has been performed at

the points X = 0.1, 0.5 on the axial axis. The

numerically computed results in respect of deflection

and response ratio have been presented graphically in

Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 in case of LS

model, s0 ¼ 9:29 for C–C beam and s0 ¼ 59:17 for CF

beam. For CT model, s0 ¼ 0 and the deflection

profiles have been noticed to follow similar trends

and behaviour except some small variations in their

magnitudes. For VIM, we have taken e ¼ 0:0001 and

calculated some of the eigenvalues (gi) for CC and CF

as given in Table 2. Because the authors are interested

to investigate and compare the deflection profiles for

the fundamental mode of vibrations, so only first

eigenvalue has been evaluated. For the CC beam, the

first dimensionless eigenvalue g5
1 is obtained in the

sixth iteration whereas g3
1 for CF beam is achieved in

the third iteration. The other eigenvalues can also be

evaluated with repeated iterations. These eigenvalues

are exactly the same as those obtained in Ref [29] and

those in Eqs. (41) and (42).

The effect of temperature change and thermal

parameters on the deflection profiles of CC and CF

micro-beams at their characteristic times under con-

tinuous and exponential decaying patch loads is

clearly visible from the computed data presented in

Table 3. It is observed that the magnitude of deflection

of thermoelastic micro-beam is greater than that of

elastic micro-beam. This is attributed to the fact that in

the presence of thermal variations, the molecular

bonds get loose and material particles are sparsely

distributed in comparison to that in the absence of

temperature change. Therefore, heating or cooling

significantly affects the flexural vibration characteris-

tics of the thin beams under study.

Case I: Continuous patch load

Figures 1, 2, 3, 4, 5, 6 depict the variations of

normalised dynamic deflection of micro-beam with X

and time (s) due to continuous patch load. Figure 1

-9
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0
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τ=9.29

τ=15

Fig. 1 Deflection (W) of CC micro-beam versus X (Case I)

Table 2 Eigen values for

CC and CF beam
i CC beam CF beam

g1 g2 g3 g4 g1 g2

1 – – – – 1.8866 3.8830

2 4.7778 6.1930 – – 1.8751 4.5363

3 4.7311 7.3282 – – 1.8751 4.6897

4 4.7311 7.8081 – – 1.8751 4.6941

5 4.7300 7.8514 – – – –

6 4.7300 7.8532 11.0856 12.0215 – –

Table 3 Deflection of elastic (E) and thermoelastic (TE) micro-beams

X CC (Case I) CF (Case I) CC (Case II) CF (Case II)

E (10� 4) TE (10� 4) E (10� 3) TE ( 10� 3) E (10� 4) TE (10� 4) E (10� 3) TE ( 10� 3)

0 0 0 0 0 0 0 0 0

0.2 -2.014221 -2.016855 -1.210314 -1.211480 -2.940678 -2.941470 -1.505488 -1.506129

0.4 -4.856337 -4.862525 -3.963574 -3.967769 -6.989280 -6.991251 -5.166742 -5.168693

0.6 -4.856337 -4.862525 -7.156888 -7.165304 -6.989280 -6.991251 -9.855281 -9.858471

0.8 -2.014221 -2.016855 -10.259259 -10.272499 -2.940678 -2.941470 -14.863408 -14.867519

1 0 0 -13.265290 -13.283540 0 0 -19.925760 -19.930632
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shows the dimensionless deflection of CC beam, as a

function of X for s ¼ 1; 5; 9:29 and 15 at ŝ ¼ 0. It is

observed that the deflection profiles of the micro-beam

decreases with the increasing time under the given

load. Strong reactions have been noticed at the

constrained ends of the beam. It is also noticed that

the deflection profiles are symmetrical about the mid-

point (X = 0.5) of the beam. Figure 2 is the deflection

of CC micro-beam at time s ¼ 1 and ŝ ¼ 0 obtained

by Laplace transform (analytical) and VIM—Durbin

(numerical) techniques. The value of c= is chosen as 5

with the summation of 1,000 terms in the later method.

Numerical computations for both the approaches have

almost the same values, which indicate that both

analytical and numerical solutions exhibit good

agreement and provide us accurate results.

Figure 3 displays the deflection of CC beam with

time at X = 0.5 for ŝ ¼ 0; 50; 100. It is noticed that as

the value of ŝ increases, the peaks and dips of

vibrations shift towards the left. Figure 4 depicts the

dimensionless deflection of CF beam versus X for

different values of time (s ¼ 1; 30; 59:17; 70) at

ŝ ¼ 0. It is seen that the transverse deflection of

cantilever beam decreases as time increases. The

effect of the conditions prevailing at both axial ends is

clearly visible from the profiles. Figure 5 illustrates

the deflection of CF beam with time at X = 0.5 for

various values of delay time (ŝ). It is noticed that the

peaks and dips of vibrations shift towards the right as

the value of ŝ increases. Figure 6 demonstrates the

deflection-time response history of CC and CF micro-

beams at ŝ ¼ 0. Here the profiles of CF (X = 0.5) have

been extrapolated (0.2 times) in magnitude to have

variations of deflection on the same scale. It is

observed that the deflection profiles of CC beam

follow oscillatory behaviour with dimensionless time

in contrast to CF beam for which it follows sinusoidal

trends of variations. The magnitude of deflection is

noticed to be maximum at the mid of the beam which

decreases as one moves away from this point. The

deflection profiles are seen to be symmetrical about the
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Fig. 3 Deflection (W) of

CC micro-beam versus time

(s) for given delay time (ŝ)

(Case I)
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Fig. 2 Analytical and numerical solution profiles of deflection

(W) in CC micro-beam (Case I)
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Fig. 4 Deflection (W) of CF micro-beam versus X (Case I)
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mid-point of the beam. It is also noticed that the

magnitude of deflection in case of CF beam is larger

than that of CC beam under same loading conditions.

Figure 7 demonstrates the dynamic response ratio of

CC and CF micro-beams due to continuous patch load.

It is observed that the response ratio follows

oscillatory behaviour for CC beam and sinusoidal

behaviour for CF beam with time (s) under continuous

patch loading. It is also noticed that the magnitude of

response ratio is almost same for both CC and CF

micro-beams.
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Fig. 6 Deflection-time

history of micro-beams for

given X (Case I)
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Fig. 7 Response ratio (RðsÞ) versus time (s) (Case I)
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Fig. 8 Maximum deflection (Wmax) of CF micro-beam versus

X (Case II)
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From the comparison of Figs. 1, 2, 3, 4, 5, 6, 7, it is

noticed that the deflection with respect to axial distance

(X) in the CC beam is small as compared to that in CF

(cantilever) beam. The time period of oscillation of

cantilever beam has been noticed to be twice in

magnitude as compared to that in CC beam. Both the

micro-beams, CC and CF observe oscillatory behaviour

of variations, though the beam under CF conditions

obeys sinusoidal trends. The peaks and dips of vibra-

tions shift towards the left for CF micro-beam with

increasing values of ŝ in contrast to that CC beam in

which case these shift towards the right. The magni-

tude of response ratio has been noticed to be almost

equal for both the micro-beams. Results obtained both

by Laplace transform and VIM techniques are found to

be in good agreement with each other.

Case II: Exponential decaying patch load

Figures 8 and 9 demonstrate the relation between

Wmax versus X in CF and CC micro-beams. It is

predicted that the maximum deflection increases with

time and becomes steady and stable at large values of

time (s). For CC beam, the deflection profiles are

noticed to be symmetrical about the mid-point of the

beam. The impact of boundary conditions prevailing at

the axial ends is clearly visible from the graphs.

Figure 10 depicts the comparison of the maximum

deflection in CC micro-beam resonator obtained by

Laplace transform (analytical) technique and by VIM-

Durbin (numerical) method. The Durbin’s parameter

c= and k are chosen to be 9 and 1,000, respectively for

the latter technique. From the profiles in this figure,

one can conclude that both analytical and numerical

solutions give close results as anticipated.

Figure 11 demonstrates the deflection-time history

of the CC and CF micro-beam resonators. The profiles

of CF (X = 0.5) have been extrapolated (0.2 times) to

that of CC beam in order to be on the same scale. It is

seen that the deflection profiles of CC beam vary

linearly for 0\s� 60, and follow sinusoidal trend of

variations for s[ 60. However for CF beam, the

deflection profiles vary linearly for 0\s� 120, and

follow sinusoidal trend of variations for s[ 120. The

magnitude of deflection for CF is noticed to be greater

than that of CC beam. The relation between deflection

and frequency ratio (U) for different times has been

presented in Fig. 12 on log-linear scales. The deflec-

tion profiles of CF (X = 0.1) and CF (X = 0.5) have

been extrapolated (0.2 times) to that of C–C beam for

the discussion purpose. It is predicted that the

deflection profiles of both CC and CF micro-beam

resonators remains steady and stable up to the

frequency ratio C� 10�2. The deflection initially

increases for 10�2\C\1, may be due to numerical

approximation in curve fitting, and then decreases

abruptly to reach its peak value in the neighbourhood

of C ¼ 1 (10�1�C\10). This shows the occurrence

of resonance in deflection of the micro-beams. The

deflection in the beams varies linearly in a horizontal

fashion for C	 10. The deflection in CF beam

experiences more deflection than that of CC beam

under same intensity of load. Figure 13 illustrates the

dynamic response ratio of CC and CF beam resonators

due to exponential decaying patch load. It is noticed

that for CC beam the response ratio varies linearly

with time for 0\s� 60 and becomes almost constant

after attaining the values close to RmaxðsÞ ¼ 1 for

s[ 60. However for CF beam, the response ratio
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varies linearly with time for 0\s� 120 and becomes

almost constant after remaining close to RmaxðsÞ ¼ 1

for s[ 120. The aperiodic nature of the load has been

clearly depicted from the dynamic response profiles of

CC and CF beams.

From the comparison of Figs. 8, 9, 10, 11, 12, 13, it is

observed that the maximum deflection (Wmax) increases

with time and becomes steady and asymptotic at large

time. The deflection profiles of CC beam are symmet-

rical about the mid-point of the beam. The impact of

non-periodicity of the load has been clearly observed

on the phenomenon of resonance. The time period of

oscillation of the micro-beam is twice in case of CF

conditions than that for CC one. The magnitude of

response ratio has been noticed to be almost same for

the CC and CF micro-beams. Both the Laplace

transform (analytical) and VIM—Durbin (numerical)

results are found to be close to each other.

10 Conclusions

The transverse vibrations of homogeneous, transversely

isotropic, thermoelastic thin beams subjected to time

varying (anharminic) patch loads have been investi-

gated by using Laplace transform and variational

iteration method (VIM)—Durbin techniques. The

deflection in case of fundamental mode has been

observed to be maximum at the time of application of

the load. For CC micro-beam, the deflection profiles are

noticed to be symmetrical about the midpoint of the

beam. The clamped-free (CF) beam experiences more

deflection than that of clamped–clamped (CC) one. The

time period of oscillations of CF beam is noticed to be

larger than that for CC micro-beam. The time history

suggests that the micro-beam observe oscillatory

behaviour of vibration under CC and CF conditions

though it is sinusoidal in the later one. The phenomenon

of resonance is observed in the micro-beams under both

mechanical conditions (CC and CF) when load and

structural frequencies match each other. The influence

of the dynamic character on the CC and CF micro-

beams has been noticed to be almost same in case of
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considered patch load (Case I and Case II). The

relaxation time (t0) has meagre effect on the deflection

of the micro-beams due to patch loading. The results

obtained by VIM and analytical method compare well

and agree to reasonable accuracy. It is verified that VIM

is accurate, simple and a systematic powerful mathe-

matical tool for solving the vibrations problems of

uniform Euler–Bernoulli beams. The study may find

applications in design and improvement of micro-

devices such as micro-resonators, micro-switches,

micro-gyroscopes and accelerometers under patch

loading.
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Appendix

The values of the coefficients Ai and Bi, i = 1,2 of

expressions (32) and (33) are given by

A1 ¼ A1
1ðcosh g� cos gÞ � A2

1ðsinh g� sin gÞ

A1
1 ¼ sinh g 1� âþ b̂

2

 !

sinh g
â� b̂

2

 !

� sin g 1� âþ b̂

2

 !

sin g
â� b̂

2

 !

A2
1 ¼ cosh g 1� âþ b̂

2

 !

sinh g
â� b̂

2

 !

þ cos g 1� âþ b̂

2

 !

sin g
b̂� â

2

 !

ð76Þ

A2 ¼ A1
2ðcosh gþ cos gÞ � A2

2ðsinh gþ sin gÞ

A1
2 ¼ sinh g 1� âþ b̂

2

 !

sinh g
â� b̂

2

 !

� sin g 1� âþ b̂

2

 !

sin g
b̂� â

2

 !

A2
2 ¼ cosh g 1� âþ b̂

2

 !

sinh g
â� b̂

2

 !

þ cos g 1� âþ b̂

2

 !

sin g
â� b̂

2

 !

ð77Þ

B1 ¼ A1
1ðsinh gþ sin gÞ � A2

1ðcosh g� cos gÞ
ð78Þ

B2 ¼ A1
2ðsinh g� sin gÞ � A2

2ðcosh gþ cos gÞ
ð79Þ
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