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Abstract The three-dimensional free vibration and

static analysis of the laminated plates with function-

ally graded (FG) carbon nanotube reinforced compos-

ite (CNTRC) layers is presented using a semi-

analytical approach. The individual layers are

assumed to be made from a mixture of aligned and

straight single-walled carbon nanotubes (CNTs) with

volume fractions graded in the thickness direction, and

an isotropic matrix. The effective material properties

of the resulting FG-CNTRC layers are estimated

through a micromechanical model. The through-the-

thickness variations of the displacement components

are accurately modeled using a layerwise-differential

quadrature method, and their in-plane variations are

approximated using the trigonometric series. After

demonstrating the convergence and accuracy of the

method, the effects of geometrical parameters, type of

CNTs distribution and volume fractions, and also

lamination scheme on the natural frequencies, dis-

placement and stress components of the FG-CNTRC

layered plates are investigated.

Keywords Three-dimensional � Free vibration and

static analysis � Laminated plates � Carbon nanotube

reinforced composites � Layerwise-differential

quadrature method

1 Introduction

Due to high strength and stiffness to weight ratios and

other improved mechanical properties, reinforced

composite materials have been increasingly used in

many modern industries like automobile, aeronautic

and astronautic technology. Usually micro-fibers such

as micro-sized glass, Kevlar and carbon fibers have

been used as reinforcement phases in a matrix medium

to build up the conventional reinforced composite

materials. But the exceptional mechanical and phys-

ical properties of carbon nanotubes (CNTs) over the

micro-sized carbon fibers [1, 2] have stimulated a

great deal of interest in replacing the conventional

micro-sized carbon fibers with CNTs to produce

carbon nanotube reinforced polymer composites with

low density, high strength and elastic modulus, in

recent years [1–9].

It is evident that the production of nanocomposites

with either uniformly or randomly distributed CNTs

through the matrix is easier than those with function-

ally graded (FG) distribution. However, the previous

studies showed that the uniform distribution of CNTs

as the reinforcements in the matrix can only achieve
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moderate improvement of the mechanical properties

[8, 9]. On the other hand, since only a low percentage

of the CNTs (2–5 % by weight) is used in making

these advanced composites [1–9], effective use of the

CNTs becomes essential. In this regards, Shen [10]

introduced the idea of using functionally graded

nanotube reinforced composite (FG-CNTRC) materi-

als. He showed that by using the graded distribution

through the matrix of CNTs, the nonlinear bending

behavior of CNTs reinforced composite plates can be

considerably improved [10].

For the purpose of their engineering design and

manufacture, accurate prediction of the global behav-

iors of structural elements made of FG-CNTRC

materials such as buckling, static response and vibra-

tional characteristics is essential. In this regards, some

studies were conducted by researchers in recent years;

see for example [10–30]. However, there exist only

few studies that concerned with the vibration and static

analysis of FG-CNTRC plates [13–20], which are

briefly reviewed in the following.

Wang and Shen [13] examined the large amplitude

vibration of single layered CNTRC plates reinforced

by SWCNTs resting on an elastic foundation in

thermal environments. In another work, they studied

the large amplitude vibration and the nonlinear

bending of a sandwich plate with carbon nanotube-

reinforced composite (CNTRC) face sheets resting on

an elastic foundation in thermal environments [14].

Also, they presented the nonlinear dynamic response

of single layered CNTRC plates resting on elastic

foundations in thermal environments [15]. Shen and

Zhang [16, 17] investigated the large amplitude

vibration, non-linear bending and postbuckling behav-

iors of FG-CNTRC cross-ply and/or antisymmetric

angle-ply laminated plates resting on Pasternak elastic

foundations under different hygrothermal environ-

ments conditions. In all of these interesting works, the

governing differential equations were obtained using

the higher-order shear deformation plate theory, which

were solved for simply supported plates using a two-

step perturbation technique.

Zhu et al. [18] analyzed the bending and free

vibration of thin-to-moderately thick single layered

FG-CNTRC plates based on the first order shear

deformation plate theory (FSDT) and using the finite

element method (FEM). Lei et al. [19–21] employed

the element-free kp-Ritz method in conjunction with

the FSDT to study the linear free vibration, the

nonlinear bending and the buckling characteristics of

single layered FG-CNTRC plates. More recently,

Liew and coauthors applied the element-free kp-Ritz

method to investigate the linear and nonlinear

mechanical behaviors of carbon nanotube-reinforced

functionally graded cylindrical panels [22–26]. It

should be mentioned that this method can abolish

mesh distortion due to large deformation, avoid the

need for remeshing, smooth and continuous shape

functions and evaluate more accurate stress in com-

parison with the conventional finite element method

[19–30].

All of these valuable studies are based on the two-

dimensional theories. To the authors’ best of knowl-

edge, the three-dimensional behavior of laminated

plates with FG-CNTRC layers is not investigated yet.

In this study, the three-dimensional static and free

vibration analysis of multi-layered plates with FG-

CNTRC layers are presented. It is assumed that the

individual layers are composed of the aligned and

straight SWCNTs, which are graded in the thickness

direction, and an isotropic matrix. The extended rule of

mixture as a simple and convenient micromechanical

model for predicting the overall properties of the

CNTRC materials [10–17, 31–34] is employed to

estimate the effective material properties of the CNTRC

layers. Due to the intrinsic complexity of the three-

dimensional formulation of laminated plates with FG-

CNTRC layers, the layerwise-differential quadrature

method (LW-DQM) as an efficient and accurate

numerical tool [33–39] is applied to approximate the

variations of the displacement fields in the thickness

direction. The governing differential equations of the

layers, the related external boundary conditions and the

compatibility conditions at the interface of two adjacent

layers are clearly stated. Using the DQM enables one to

accurately and efficiently discretize the governing

differential equations along the graded direction and

also implement the related boundary and compatibility

conditions. Also, the in-plane variations of the dis-

placement components are approximated using the

trigonometric series. The present formulation and

method of solution are validated through the conver-

gence and accuracy studies. Then, a detailed parametric

study is carried out to investigate the effects of types of

CNTs distributions, CNTs volume fractions and also the

lamination scheme on the natural frequencies, displace-

ment and stress components of the FG-CNTRC layered

plates.
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2 Mathematical modeling

Consider a multi-layered plate composed of NL

perfectly bonded FG-CNTRC layers (Fig. 1). The

distribution of CNTs is graded along the thickness

direction of the layers. The material properties and

thickness of each layer of the plate are assumed to be

arbitrary. The rectangular plate has the length a, width

b and total thickness h as shown in Fig. 1. Also, the

Cartesian coordinate system with coordinate variables

x; y; zð Þ, which are shown in Fig. 1, is used to label the

material points of the laminated plate in the unde-

formed reference configuration. The displacement

components of an arbitrary material point of the plate

are denoted as u, v and w along the x, y and

z-directions, respectively.

2.1 Effective material properties and the 3D

constitutive relations

It is assumed that the individual layers are made of a

mixture of SWCNTs and an isotropic matrix. On the

other hand, the behavior of CNTs strongly influences

the overall properties of the resulting materials.

Hence, the layers become two-phase composite

materials. Consequently, the micromechanical models

usually used for the two-phase composite materials

such as the Mori–Tanaka model [9] and the Voigt

model as the rule of the mixture [3, 4] can be employed

to evaluate their effective material properties. How-

ever, these models should be extended to include the

small scale effect of SWCNTs to become applicable at

the nanoscale [3, 4, 9]. In this work, the extended rule

of mixture as a simple and convenient micromechanic

model [10–17, 31–34], which includes the small scale

effect by introducing the CNT efficiency parameters,

is used.

The volume fractions of the CNTs are assumed to

vary continuously and smoothly in the thickness

direction of the individual layers. Therefore, the

effective material properties of layers become graded

in their thickness direction, i.e. z-direction. According

to the extended rule of mixture, the effective Young’s

modulus and shear modulus of the kth physical FG-

CNTRC layer in its principal material coordinate

directions can be estimated as [32],

E
kð Þ

11 ¼ g1V
kð Þ

CNECN
11 þ V

kð Þ
M EM;

g2

E
kð Þ

22

¼ V
kð Þ

CN

ECN
22

þ V
kð Þ

M

EM
;

g3

G
kð Þ

12

¼ V
kð Þ

CN

GCN
12

þ V
kð Þ

M

GM

ð1a� cÞ

where ECN
11 , ECN

22 and GCN
12 are the Young’s and shear

moduli of the CNTs, EM and GM are the corresponding

properties for the matrix, and gj j ¼ 1; 2; 3ð Þ are the

CNTs efficiency parameters, respectively. In addition,

V
kð Þ

CN and V
kð Þ

M are the volume fractions of the CNTs and

the matrix of the kth physical layer, which satisfy the

relationship of V
kð Þ

CN þ V
kð Þ

M ¼ 1.

In order to study the effect of different CNTs

distributions on the vibration and static behavior of the

FG-CNTRC layered plates, in addition to uniformly

distributed (UD) CNTs (Fig. 2a), three other types of

material profiles through the layer thickness is

considered. In this work, only linear distribution of

the CNTs volume fraction that can readily be achieved

in practice is considered [18],FG-V (Fig. 2b):

V
kð Þ

CN ¼
2z kð Þ þ h kð Þ

h kð Þ

� �
V�CN

� � kð Þ ð2Þ

FG-K (Fig. 2i):

V
kð Þ

CN ¼ �
2z kð Þ � h kð Þ

h kð Þ

� �
V�CN

� � kð Þ ð3Þ

FG-X (Fig. 2d):

V
kð Þ

CN ¼
4 z kð Þ�� ��

h kð Þ

 !
V�CN

� � kð Þ ð4Þ

Fig. 1 The geometry of the laminated plate with FG-CNTRC

layers
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in which,

z kð Þ ¼ z� h kð Þ

2
�
Xk�1

i¼1

h ið Þ;

V�CN

� � kð Þ¼ w
kð Þ

CN

w
kð Þ

CN þ
qCN

qM � qCN

qM

� �
w

kð Þ
CN

ð5a; bÞ

where h kð Þ is the kth layer thickness and w
kð Þ

CN is the

mass fraction of CNTs in the kth physical layer;

also,qCN and qM are the densities of CNTs and matrix,

respectively. Note that V
kð Þ

CN ¼ V�CN

� � kð Þ
corresponds to

the CNTRC layer with uniformly distributed CNTs

(UD-CNTRC). It is assumed that in all cases the

FG-CNTRC layers have the same CNTs mass

fraction.

According to the rule of mixture, Poisson’s ratio

m kð Þ
ij i; j ¼ 1; 2; 3; i 6¼ jð Þ and the mass density q kð Þ of

the kth layer can be calculated as [32], respectively,

m kð Þ
ij ¼ V

kð Þ
CNmCN

ij þ V
kð Þ

M mM ; q kð Þ ¼ V
kð Þ

CNqCN þ V
kð Þ

M qM

ð6a; bÞ

where mCN
ij andmM are Poisson’s ratios of CNTs and

matrix, respectively.

Based on the 3D linear theory of elasticity, the

constitutive relations at an arbitrary material point of

thekth physical layer can be summarized as [40],

where r kð Þ
ij i; j ¼ x; y; zð Þ are the stress tensor compo-

nents and C
kð Þ

ij are the material elastic coefficients at an

arbitrary material point of the kth physical layer [40].

(b) FG-V(a) UD

(d) FG-X(c) FG- Λ

Fig. 2 a–d Different types

of CNTs distributions

through the CNTRC layer
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2.2 Three-dimensional semi-analytical modeling

In order to accurately represent the variation of the

field variables across the thickness of the laminated

plates based on the three-dimensional elasticity

theory, the plate is divided into Nm �NLð Þ mathe-

matical layers in the thickness direction. In the

following, the governing differential equations of the

eth mathematical layer together with the related

external boundary conditions and also the compatibil-

ity conditions at the interface of layers (e) and (e ? 1)

are presented.

The boundary conditions at the top and bottom

surfaces of the laminated plates are as follows,

Atz ¼ �h=2 : r eð Þ
xz ¼ 0; r eð Þ

yz ¼ 0; r eð Þ
zz ¼ 0;

for e ¼ 1

ð8a� cÞ

At z ¼ h=2 : r eð Þ
xz ¼ 0; r eð Þ

yz ¼ 0;

r eð Þ
zz ¼

� q x; yð Þ

0

(
; for e ¼ Nm

ð9a� cÞ

Hereafter, the superscript ‘e’ is used to denote the

material properties and field variables of the eth

mathematical layer.

In the present study, simply supported boundary

conditions at the edges of the laminated rectangular

plate is assumed,

At x ¼ 0; a : r eð Þ
xx x; y; z; tð Þ ¼ 0; v eð Þ x; y; z; tð Þ

¼ 0; w eð Þ x; y; z; tð Þ ¼ 0

ð10a� cÞ

At y ¼ 0; b : r eð Þ
yy x; y; z; tð Þ ¼ 0; u eð Þ x; y; z; tð Þ

¼ 0; w eð Þ x; y; z; tð Þ ¼ 0

ð11a� cÞ

where e ¼ 1; 2; . . .; Nm.

For the 3D analysis of plates with simply supported

edges, the displacement components of the eth math-

ematical layer can be expanded in terms of the

trigonometric sin and cosine functions in the x and

y-directions as,

u eð Þ x;y;z;tð Þ¼
X1
m¼1

X1
n¼1

eIxmntU eð Þ
mn zð Þcos amxð Þsin bnyð Þ

v eð Þ x;y;z;tð Þ¼
X1
m¼1

X1
n¼1

eIxmntV eð Þ
mn zð Þsin amxð Þcos bnyð Þ

w eð Þ x;y;z;tð Þ¼
X1
m¼1

X1
n¼1

eIxmntW eð Þ
mn zð Þsin amxð Þsin bnyð Þ

ð12a�cÞ

where am ¼ mp
a

and bn ¼ np
b

; m and n are the half wave

numbers along the x- and y-direction, respectively;

xmn is the natural frequency associated to the half

wave numbers m and n and has a zero value for the

static analysis; also, I ¼
ffiffiffiffiffiffiffi
�1
p� �

is the imaginary unit

number. It should be noted that for the case of static

analysis, one should insert xmn ¼ 0 in Eq. (12).

Using Eqs. (7) and (12), the three-dimensional

equations of motion at an arbitrary material point of

the eth mathematical layer in terms of the displace-

ment components can be obtained as,

C
eð Þ

55

d2U eð Þ
mn

dz2
þ dC

eð Þ
55

dz

dU eð Þ
mn

dz
� a2

mC
eð Þ

11 þ b2
nC

eð Þ
66

� �
U eð Þ

mn

� ambn C
eð Þ

12 þC
eð Þ

66

� �
V eð Þ

mn þ am C
eð Þ

13 þC
eð Þ

55

� �dW eð Þ
mn

dz

þ am

dC
eð Þ

55

dz
W eð Þ

mn þ q eð Þx2
mnU eð Þ

mn ¼ 0 ð13Þ

� ambn C
eð Þ

12 þC
eð Þ

66

� �
U eð Þ

mn þC
eð Þ

44

d2V eð Þ
mn

dz2
þ dC

eð Þ
44

dz

dV eð Þ
mn

dz

� a2
mC

eð Þ
66 þ b2

nC
eð Þ

22

� �
V eð Þ

mn þ bn C
eð Þ

23 þC
eð Þ

44

� �dW eð Þ
mn

dz

þ bn

dC
eð Þ

44

dz
W eð Þ

mn þ q eð Þx2
mnV eð Þ

mn ¼ 0 ð14Þ

� am C
eð Þ

13 þ C
eð Þ

55

� � dU eð Þ
mn

dz
� am

dC
eð Þ

13

dz
U eð Þ

mn

� bn C
eð Þ

23 þ C
eð Þ

44

� � dV eð Þ
mn

dz
� bn

dC
eð Þ

23

dz
V eð Þ

mn

þ C
eð Þ

33

d2W eð Þ
mn

dz2
þ dC

eð Þ
33

dz

dW eð Þ
mn

dz

� a2
mC

eð Þ
55 þ b2

nC
eð Þ

44

� �
W eð Þ

mn þ q eð Þx2
mnW eð Þ

mn ¼ 0

ð15Þ
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where Eqs. (13)–(15) are the equations of motion

along the x, y and z-directions, respectively.

Also, the external boundary conditions on the

lowermost and uppermost surfaces of the laminated

plate i:e:; z ¼ �h=2; h=2ð Þ reduce to,

At z¼�h=2 :
dU eð Þ

mn

dz
þamW eð Þ

mn ¼0;
dV eð Þ

mn

dz
þbnW eð Þ

mn ¼0;

amC
eð Þ

13 U eð Þ
mnþbnC

eð Þ
23 V eð Þ

mn �C
eð Þ

33

dW eð Þ
mn

dz
¼0

ð16a�cÞ

At z ¼ h=2 :
dU eð Þ

mn

dz
þ amW eð Þ

mn ¼ 0;

dV eð Þ
mn

dz
þ bnW eð Þ

mn ¼ 0amC
eð Þ

13 U eð Þ
mn þ bnC

eð Þ
23 V eð Þ

mn

� C
eð Þ

33

dW eð Þ
mn

dz
¼

0 for free vibration analysis

qmn for static analysis

(

ð17a� cÞ

where

qmn ¼ �
4

ab

X1
m¼1

X1
n¼1Z b

0

Z a

0

qðx; yÞ sinðamxÞ sinðbnyÞdxdy

ð18Þ

The geometrical and natural compatibility condi-

tions at the interface of two adjacent mathematical

layers ‘e’ and ‘e ? 1’ of the laminated plate are as

follows,

where z
kð Þ

1 and z
kð Þ

2 k ¼ e; eþ 1ð Þ are the thickness

coordinate of the lower and upper surfaces of the kth

mathematical layer, respectively.

Due to coupling of the obtained system of

equations and also since their coefficients are

variable, it is very difficult to solve the above

system of equations analytically. Hence, an

approximate method should be employed to solve

this system of equations. On the other hand, the

differential quadrature method (DQM) as a simple,

efficient and accurate numerical technique has

been established for solving different structural

problems in recent years; see for example Refs.

[33–39]. It should be mentioned that this method

has the advantages that discretize the strong forms

of the governing equations and boundary and

compatibility conditions. In addition, the boundary

conditions are exactly satisfied at the boundary

grid points. Thus, in this work, this numerical tool

is employed to discretize the governing differential

equations of motion and the related boundary and

compatibility conditions of the mathematical layers

in the thickness direction. According to this

method, each mathematical layer is discretized

into a set of Nz grid points along the thickness

direction. Using the DQM, the governing partial

differential equations and the related boundary and

compatibility conditions are converted into a system

of algebraic equations. For brevity purpose, only the

discretized form of equations of motion (13)–(15) are

presented here, Eq. (13):

U eð Þ
mn z

eð Þ
2

� �
¼ U eþ1ð Þ

mn z
eþ1ð Þ

1

� �
; V eð Þ

mn z
eð Þ

2

� �
¼ V eþ1ð Þ

mn z
eþ1ð Þ

1

� �
; W eð Þ

mn z
eð Þ

2

� �

¼ W eþ1ð Þ
mn z

eþ1ð Þ
1

� �
amC

eð Þ
13 U eð Þ

mn þ bnC
eð Þ

23 V eð Þ
mn � C

eð Þ
33

dW eð Þ
mn

dz

� �
j
z¼z

eð Þ
2

¼ amC
eþ1ð Þ

13 U eþ1ð Þ
mn þ bnC

eþ1ð Þ
23 V eþ1ð Þ

mn � C
eþ1ð Þ

33

dW eþ1ð Þ
mn

dz

� �����
z¼z

eþ1ð Þ
1

C
eð Þ

55

dU eð Þ
mn

dz
þ amW eð Þ

mn

� ������
z¼z

eð Þ
2

¼ C
eþ1ð Þ

55

dU eþ1ð Þ
mn

dz
þ amW eþ1ð Þ

mn

� �����
z¼z

eþ1ð Þ
1

C
eð Þ

44

dV eð Þ
mn

dz
þ bmW eð Þ

mn

� ������
z¼z

eð Þ
2

¼ C
eþ1ð Þ

44

dV eþ1ð Þ
mn

dz
þ bmW eþ1ð Þ

mn

� �����
z¼z

eþ1ð Þ
1

ð19a-fÞ
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C
eð Þ

55

� �
i

XNz

j¼1

Bz
ijU

eð Þ
mnjþ

dC
eð Þ

55

dz

 !
i

XNz

j¼1

Az
ijU

eð Þ
mnj

� a2
mC

eð Þ
11 þb2

nC
eð Þ

66

� �
i
U

eð Þ
mni�ambn C

eð Þ
12 þC

eð Þ
66

� �
i
V

eð Þ
mni

þ am C
eð Þ

13 þC
eð Þ

55

� �
i

XNz

j¼1

Az
ijW

eð Þ
mnjþam

dC
eð Þ

55

dz

 !
i

W
eð Þ

mni

þq eð Þ
i x2

mnU
eð Þ

mni¼ 0

ð20Þ

Equation (14):

� ambn C
eð Þ

12 þC
eð Þ

66

� �
i
U

eð Þ
mni þ C

eð Þ
44

� �
i

XNz

j¼1

Bz
ijV

eð Þ
mnj

þ dC
eð Þ

44

dz

 !
i

XNz

j¼1

Az
ijV

eð Þ
mnj � a2

mC
eð Þ

66 þ b2
nC

eð Þ
22

� �
i
V

eð Þ
mni

þ bn C
eð Þ

23 þ C
eð Þ

44

� �
i

XNz

j¼1

Az
ijW

eð Þ
mnj þ bn

dC
eð Þ

44

dz

 !
i

W
eð Þ

mni

þ q eð Þ
i x2

mnV
eð Þ

mni ¼ 0

ð21Þ

Equation (15):

� am C
eð Þ

13 þ C
eð Þ

55

� �
i

XNz

j¼1

Az
ijU

eð Þ
mnj � am

dC
eð Þ

13

dz

 !
i

U
eð Þ

mni

� bn C
eð Þ

23 þ C
eð Þ

44

� �
i

XNz

j¼1

Az
ijV

eð Þ
mnj � bn

dC
eð Þ

23

dz

 !
i

V
eð Þ

mni

þ C
eð Þ

33

� �
i

XNz

j¼1

Bz
ijW

eð Þ
mnj þ

dC
eð Þ

33

dz

 !
i

XNz

j¼1

Az
ijW

eð Þ
mnj

� a2
mC

eð Þ
55 þ b2

nC
eð Þ

44

� �
i
W

eð Þ
mni þ qe

i x
2
mnW

eð Þ
mni ¼ 0

ð22Þ

where i ¼ 2; . . .;Nz � 1; Az
ij andBz

ij represent the

weighting coefficients of the first and second order

derivatives along the z-direction, respectively [33–

39]; also,
dC

eð Þ
13

dz

� �
i

means the function value at the grid

point z ¼ zi. In a similar manner, the DQ discretized

form of the boundary and compatibility conditions can

be obtained. In this study, the cosine-type grid

generation rule is used in the thickness direction

[33–39].

After completing the DQ discretization procedure,

one obtains a system of algebraic equations in the case

of the static analysis, which can be solved using the

conventional system of algebraic equations solver. But

for the free vibration analysis, one achieves a system

of algebraic eigenvalue problem. In order to reduce the

computational efforts for solving this system of

eigenvalue problem, the boundary and domain degrees

of freedom are separated. In vector forms, they are

denoted as dbf g and ddf g; respectively. Based on

these definitions, the DQ discretized form of the

equations of motion and the related boundary and

compatibility conditions can be represented in the

matrix form as, respectively,

Kdb½ � dbf g þ Kdd½ � ddf g � x2
mn M½ � ddf g ¼ 0f g ð23Þ

Kbb½ � dbf g þ Kbd½ � ddf g ¼ 0f g ð24Þ

The elements of the stiffness matrixes Kdi½ � (i = b,

d) and the mass matrix M½ � are obtained from the

discretized form of the equations of motion and those

of the stiffness matrixes Kbi½ � (i = b, d) are obtained

from the discretized form of the related boundary and

compatibility conditions.

Eliminating the boundary degrees of freedom from

Eq. (24) using Eq. (23), the result reads

�K½ � � x2
mn M½ �

� �
ddf g ¼ 0f g ð25Þ

where �K½ � ¼ Kdd½ � � Kdb½ � Kbb½ ��1
Kbd½ �.

Solving the system of eigenvalue Eq. (25), the

natural frequencies are obtained. Also, in the case of

static analysis, after solving the corresponding system

of algebraic equations and evaluating the displace-

ment components, the stress components at the

material points of each mathematical layer can be

obtained. For this purpose, by consideringxmn ¼ 0 in

Eq. (12) and after substituting for the displacement

components from this equation into Eq. (7) and using

the DQM rule for the spatial derivative discretization,

the stress component at the grid point z ¼ zi of eth

mathematical layer are obtained as,
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3 Numerical results

In this section, as a first step, the formulation and

method of solution is validated by studying their fast

rate of convergence for the static and free vibration

analysis of single and multilayered laminated plates

with FG-CNTRC layers. In addition, the accuracy of

the approach is exhibited by performing the compar-

ison studies with the other available solutions in the

limit cases. Then, parametric study for plates with the

single FG-CNTRC layer and two common types of

sandwich plates, namely, the sandwich plates with FG-

CNTRC lower/upper face sheets and UD-CNTRC

core (model I, see Fig. 3a) and the sandwich plates

with UD-CNTRC lower/upper face sheets and FG-

CNTRC core (model II, see Fig. 3b) are presented. For

the static analysis, the following mechanical load is

considered [41],

q x; yð Þ ¼ q0 sin
px

a

� �
sin

py

b

� �
ð27Þ

Also, otherwise specified, the material properties of

the FG-CNTRC layers vary through the thickness

according to Eqs. (2)–(4). Also, the following non-

dimensional parameters are used through the numer-

ical studies [41, 42],

n ¼ 2zþ h

2h
; ðU;V ;WÞ ¼ ðu; v;wÞ EM

q0h
;

Rij ¼
rij

q0

i; j ¼ x; y; zð Þ; kmni ¼ xmnih

ffiffiffiffiffiffiffi
qM

EM

r

ð28a� dÞ

The material properties of FG-CNTRC layers and

CNTs efficiency parameters gj (j = 1, 2, 3) are chosen

from the work of Shen and Xiang [32], which are,

ECN
11 ¼ 5:6466 TPa, ECN

22 ¼ 7:0800 TPa;

GCN
12 ¼ 1:9445 TPa; qCN ¼ 1400 kg/m3

mCN
12 ¼ 0:175; EM ¼ 2:5 GPa; mM ¼ 0:34

For the three different values of V�CNT , the values of

gj are presented in Table 1. In addition, it is assumed

that G13 ¼ G12, G23 ¼ 1:2G12 andE33 ¼ E22.

(b) (a) 

Fig. 3 a, b Two models of sandwich plates. a Sandwich plates with FG-CNTRC lower/upper face sheets and UD core (model I),

b sandwich plates with UD lower/upper face sheets and FG-CNTRC core (model II)

Table 1 The CNTs efficiency parameters [32]

V�CNT g1 g2 g3

0.12 0.137 1.022 0.715

0.17 0.142 0.1626 1.138

0.28 0.141 1.585 1.109
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As a first example, the convergence behavior of

the present approach for the static and free vibration

analysis of a single FG-CNTRC layer plate against

the number of DQ grid points along the z-direction

are studied in Tables 2 and 3, respectively. The

influences of different types of CNTs distributions on

the convergence behavior of the approach are also

investigated in these tables. In Table 2, the results for

the non-dimensional displacement and stress compo-

nents are presented. In Table 3, the variation of the

first five non-dimensional natural frequencies asso-

ciated to the half wave numbers (m, n = 1, 1) of the

FG-CNTRC plates verses the DQ number of grid

points are given. In Table 4, the convergence

behaviors of the approach against the number of

mathematical layers are shown. In this table, the

results for the static analysis of a single layer plate

with uniformly distributed CNTs are presented. In

addition, the convergence behaviors of the approach

for the static and free vibration analysis of the both

types of sandwich plates (i.e., models I and II) are

exhibited in Tables 5 and 6, respectively. It is

noticeable that in all cases, the results converge

rapidly without any numerical instability by increas-

ing the number of DQ grid points or the number of

mathematical layers.

Table 2 Convergence of the results for the single layered CNTRC plates subjected to sinusoidal pressures

ða=b ¼ 1; a=h ¼ 5; Nm ¼ 1Þ

V�CN Nz U W Rxy Rxz Rxx Rzz

UD 0.12 5 0.0082 10.145 0.0483 1.9712 -0.0731 0.4967

7 0.0081 9.6373 0.0483 1.7399 -0.0700 0.4961

9 0.0081 9.6050 0.0483 1.7475 -0.0704 0.4963

11 0.0081 9.6054 0.0483 1.7471 -0.0704 0.4963

0.17 5 0.0054 6.1194 0.0470 1.9606 -0.0669 0.4969

7 0.0053 5.8337 0.0470 1.7520 -0.0650 0.4964

9 0.0054 5.8180 0.0470 1.7581 -0.0653 0.4965

11 0.0054 5.8177 0.0470 1.7579 -0.0653 0.4965

FG-V 0.12 9 0.0687 5.4841 0.0803 0.9265 -1.4668 0.7053

13 0.0664 5.2444 0.0808 0.8850 -1.4083 0.7161

17 0.0659 5.1919 0.0809 0.8761 -1.3957 0.7184

19 0.0658 5.1836 0.0810 0.8747 -1.3937 0.7187

23 0.0658 5.1767 0.0810 0.8735 -1.3923 0.7191

25 0.0658 5.1764 0.0810 0.8735 -1.3920 0.7192

0.17 9 0.0522 3.2435 0.0883 0.9015 -1.6490 0.7049

13 0.0501 3.0812 0.0884 0.8556 -1.5732 0.7177

17 0.0497 3.0456 0.0884 0.8457 -1.5567 0.7206

19 0.0496 3.0406 0.0884 0.8443 -1.5545 0.7208

21 0.0496 3.0386 0.0884 0.8437 -1.5535 0.7211

23 0.0496 3.0385 0.0884 0.8435 -1.5533 0.7211

FG-X 0.12 7 0.0162 15.813 0.0425 2.7614 0.1250 0.4999

9 0.0162 15.775 0.0426 2.7532 0.1265 0.5044

11 0.0162 15.755 0.0426 2.7500 0.1285 0.5104

13 0.0162 15.754 0.0426 2.7496 0.1286 0.5105

0.17 7 0.0109 9.2325 0.0394 2.6275 0.3937 0.5540

9 0.0109 9.2235 0.0395 2.6240 0.1501 0.5637

11 0.0109 9.2190 0.0395 2.6227 0.1543 0.5761

13 0.0109 9.2185 0.0395 2.6225 0.1544 0.5763

U(0.5, 0, 0.5), W(0.5, 0.5, 0.5), Rxy(0.5, 0, 0), Rxz(0.5, 0, 0.5), Rxx(0.5, 0.5, 0.5), Rzz(0.5, 0.5, 0.5)
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In order to verify the accuracy of the formulation

and the method of solution, the results for the static

and free vibration analysis of the conventional FG

plates, i.e. functionally graded plates with ceramic–

metal constituents, are compared with those of the

higher-order shear deformation theory (HSDT) of

Matsunaga [41, 42] in Tables 7 and 8. He assumed that

all the material properties vary according to the power

law distribution as [41, 42],

P zð Þ ¼ PM þ PC � PM
� � 2zþ h

2z

� �p

ð29Þ

where P denotes a generic material property,PC and

PM are the corresponding values at the top surface

(ceramic rich) and bottom surface (metal rich) of the

plate; p is the power law index (or the material

property graded index), which is a positive real

number. The material properties of the constituents

are as follows [42],

EM ¼ 70 GPa; qM ¼ 2702 kg/m3; mM ¼ 0:3;

EC ¼ 380 GPa; qC ¼ 3800 kg/m3; mC ¼ 0:3

The non-dimensional transverse displacement W

and transverse shear stressRxz for the two different

values of the length-to-thickness ratio and also for the

different values of the material graded index ‘p’ are

compared with those of HSDT [41] in Table 7. Also,

the non-dimensional fundamental natural frequency

parameters of the FG plates for the different values of

the material graded index ‘p’ and the length-to-

thickness ratio of the FG plates are compared with

those of the HSDT [42] in Table 8. In all cases,

excellent agreement between the results of the two

approaches is obvious.

In order to further verify the presented approach, in

Table 9, comparison between the fundamental natural

frequency parameter of the simply supported

Table 3 The convergence behavior of the non-dimensional natural frequency parameters of the single layered CNTRC plates with

different CNTs distribution ða=b ¼ 1; a=h ¼ 5; Nm ¼ 1Þ

V�CN Nz k111 k112 k113 k114 k115

UD 0.12 13 0.4707 0.6370 1.9388 2.1079 3.2377

15 0.4715 0.6367 1.9387 2.1078 3.2378

19 0.4720 0.6365 1.9387 2.1077 3.2379

21 0.4720 0.6365 1.9387 2.1077 3.2379

0.17 13 0.6162 0.8101 2.4700 2.5638 4.1083

15 0.6171 0.8097 2.4700 2.5636 4.1086

17 0.6174 0.8096 2.4700 2.5636 4.1086

19 0.6174 0.8096 2.4700 2.5636 4.1086

FG-K 0.12 13 0.4174 0.6802 2.0019 2.6053 3.3103

15 0.4189 0.6798 2.0018 2.6052 3.3108

17 0.4198 0.6795 2.0017 2.6051 3.3112

19 0.4199 0.6795 2.0017 2.6051 3.3112

0.17 15 0.5485 0.8818 2.5885 3.1806 4.2842

17 0.5496 0.8815 2.5885 3.1805 4.2847

19 0.5503 0.8814 2.5884 3.1804 4.2850

21 0.5503 0.8814 2.5884 3.1804 4.2850

FG-X 0.12 7 0.2429 0.7199 1.9793 3.0503 3.3392

9 0.2432 0.7200 1.9793 3.0507 3.3402

11 0.2434 0.7200 1.9793 3.0504 3.3402

13 0.2434 0.7200 1.9793 3.0504 3.3402

0.17 9 0.3169 0.9355 2.5303 3.7999 4.1752

11 0.3170 0.9356 2.5303 3.7994 4.1748

13 0.3171 0.9357 2.5303 3.7992 4.1747

15 0.3171 0.9357 2.5303 3.7992 4.1747
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Table 4 Convergence of the results against the number of mathematical layer for the CNTRC (UD) plates

a=b ¼ 1; a=h ¼ 5; V�CN ¼ 0:12
� �
Nm Nz U W Rxy Rxz Rxx Rzz

3 3 0.0085 10.901 0.0481 1.9923 -0.0702 0.4959

5 0.0081 9.6213 0.0483 1.7518 -0.0704 0.4961

7 0.0081 9.6055 0.0483 1.7472 -0.0704 0.4963

9 0.0081 9.6054 0.0483 1.7472 -0.0704 0.4963

5 3 0.0082 10.071 0.0482 1.8237 -0.0703 0.4960

5 0.0081 9.6079 0.0483 1.7478 -0.0704 0.4963

7 0.0081 9.6054 0.0483 1.7472 -0.0704 0.4963

9 0.0081 9.6054 0.0483 1.7472 -0.0704 0.4963

7 3 0.0081 9.8432 0.0483 1.7853 -0.0704 0.4962

5 0.0081 9.6061 0.0483 1.7473 -0.0704 0.4963

7 0.0081 9.6054 0.0483 1.7472 -0.0704 0.4963

9 0.0081 9.6054 0.0483 1.7472 -0.0704 0.4963

U(0.5, 0, 0.5), W(0.5, 0.5, 0.5), Rxy(0.5, 0, 0), Rxz(0.5, 0, 0.5), Rxx(0.5, 0.5, 0.5), Rzz(0.5, 0.5, 0.5)

Table 5 Convergence of the results for the three layered CNTRC plates subjected to sinusoidal pressures

ða=b ¼ 1; a=h ¼ 5; Nm ¼ 3Þ

V�CN Nz U W Rxy Rxz Rxx Rzz

Model I 0.12 9 0.0069 2.8380 0.0452 0.5145 -0.0460 0.4765

13 0.0068 2.6495 0.0441 0.4803 -0.0449 0.4650

17 0.0067 2.5878 0.0435 0.4691 -0.0443 0.4588

21 0.0066 2.5663 0.0432 0.4652 -0.0440 0.4561

25 0.0066 2.5587 0.0431 0.4638 -0.0439 0.4550

27 0.0066 2.5559 0.0431 0.4635 -0.0439 0.4547

29 0.0066 2.5558 0.0431 0.4633 -0.0439 0.4546

0.17 9 0.0041 1.5319 0.0391 0.4631 -0.0362 0.4266

13 0.0039 1.3904 0.0374 0.4203 -0.0347 0.4077

17 0.0038 1.3314 0.0362 0.4025 -0.0336 0.3950

21 0.0037 1.3052 0.0356 0.3946 -0.0330 0.3881

25 0.0037 1.2935 0.0353 0.3910 -0.0329 0.3847

29 0.0036 1.2882 0.0352 0.3894 -0.0327 0.3831

31 0.0036 1.2857 0.0351 0.3888 -0.0326 0.3827

33 0.0036 1.2857 0.0351 0.3889 -0.0326 0.3826

Model II 0.12 5 0.0095 11.2335 0.0422 2.0183 0.1278 0.4977

9 0.0095 11.2016 0.0422 2.0108 0.1287 0.5005

13 0.0095 11.1984 0.0422 2.0102 0.1325 0.5116

17 0.0095 11.1974 0.0422 2.0101 0.1348 0.5183

19 0.0095 11.1974 0.0422 2.0101 0.1349 0.5184

0.17 5 0.0063 6.7397 0.0387 2.0024 0.1474 0.5485

9 0.0063 6.7279 0.0387 1.9970 0.1512 0.5597

13 0.0063 6.7272 0.0388 1.9969 0.1594 0.5840

15 0.0063 6.7271 0.0388 1.9969 0.1629 0.5943

17 0.0063 6.7270 0.0388 1.9969 0.1630 0.5945

U(0.5, 0, 0.5), W(0.5, 0.5, 0.5), Rxy(0.5, 0, 0), Rxz(0.5, 0, 0.5), Rxx(0.5, 0.5, 0.5), Rzz(0.5, 0.5, 0.5)

Meccanica (2015) 50:143–167 153

123



rectangular plates with single FG-CNTRC layer is

made with those obtained by Zhu et al. [18] using FEM

and ANSYS software. The values of V�CNT and CNT

efficiency parameter gj (j = 1, 2) are as follows [18]:

g1 ¼ 0:149; g2 ¼ 0:934 if V�CN ¼ 0:11

g1 ¼ 0:150; g2 ¼ 0:941 if V�CN ¼ 0:14

g1 ¼ 0:149; g2 ¼ 1:381 if V�CN ¼ 0:17

8<
:

ð30Þ

In addition, they assumed that g3 ¼ g2 and

G13 ¼ G12 ¼ G23.

The results are compared for different thickness-to-

length ratio of the plate, CNTs distribution through the

plate thickness and CNTs volume fraction. It can be

observed that in all cases excellent agreement exists

between the results of the present study and those of

Zhu et al. [18], which once more validate the present

approach (Table 9).

After validating the presented approach, some

parametric studies are carried out to exhibit the

Table 6 The convergence behavior of the non-dimensional natural frequency parameters of the sandwich plates

ða=b ¼ 1; a=h ¼ 5; Nm ¼ 3Þ

V�CN Nz k111 k112 k113 k114 k115

Model I 0.12 11 0.6066 0.6696 1.9047 2.8754 3.0063

13 0.6062 0.6713 1.9042 2.8753 3.0062

15 0.6060 0.6720 1.9039 2.8753 3.0061

17 0.6060 0.6720 1.9039 2.8753 3.0061

0.17 11 0.7817 0.8652 2.4345 3.4902 3.7027

13 0.7812 0.8675 2.4338 3.4901 3.7025

15 0.7810 0.8685 2.4336 3.4901 3.7024

17 0.7810 0.8685 2.4336 3.4901 3.7024

Model II 0.12 3 0.2693 0.7088 2.0122 3.2901 3.8537

5 0.2886 0.7085 2.0158 3.2528 3.8096

7 0.2891 0.7085 2.0158 3.2524 3.8123

9 0.2891 0.7085 2.0158 3.2524 3.8123

0.17 3 0.3465 0.9188 2.5941 4.2238 4.6426

5 0.3708 0.9192 2.6035 4.1829 4.6111

7 0.3712 0.9192 2.6035 4.1815 4.6128

9 0.3712 0.9192 2.6034 4.1815 4.6128

Table 7 Accuracy of the results for the static analysis of the FG plates a=b ¼ 1;Nm ¼ 1;Nz ¼ 17ð Þ

a/h p = 0 p = 1 p = 4

Present HSDT [41] Present HSDT [41] Present HSDT [41]

5 W 20.981 20.98 41.390 41.39 65.112 65.11

Rxz 1.1856 1.186 1.1843 1.184 1.0763 1.076

10 W 294.25 294.3 587.54 587.5 882.27 882.3

Rxz 2.3834 2.383 2.3828 2.383 2.1750 2.175

U(0.5, 0, 0.5), W(0.5, 0.5, 0.5), Rxy(0.5, 0, 0), Rxz(0.5, 0, 0.5), Rxx(0.5, 0.5, 0.5), Rzz(0.5, 0.5, 0.5)

Table 8 Comparison of the fundamental non-dimensional

natural frequency parameter k111ð Þ of a FG plate

a=b ¼ 1; Nm ¼ 1; Nz ¼ 11ð Þ

p a/h = 2 a/h = 5 a/h = 10

Present HSDT

[42]

Present HSDT

[42]

Present HSDT

[42]

0 0.9400 0.9400 0.2121 0.2121 0.0578 0.0578

0.5 0.8224 0.8232 0.1816 0.1819 0.0491 0.0492

1 0.7475 0.7476 0.1640 0.1640 0.0443 0.0443

4 0.5995 0.5997 0.1382 0.1383 0.0381 0.0381
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influences of the CNTs volume fraction, different

profiles of CNTs distribution through the layer thick-

ness, lamination scheme and thickness-to-length ratio

on the static and free vibration behaviors of the

laminated plates with CNTRC layers.

The effects of the type of CNTs distributions on the

static response of the CNTRC plates are studied by

comparing the results for the single layered CNTRC

plates with the different profiles of CNTs distributions

in Fig. 4a–f. It can be seen that the plates with

symmetric CNTs distributions (i.e., UD and FG-X

cases) have lower overall stiffness than plates with

asymmetric distributions ones (i.e., FG-V and FG-

K). Both the maximum displacement and stress

components of the plates with symmetric distribu-

tions are greater than those of the corresponding

field variables of the plates with the asymmetric

distributions ones. Also, for the cases of asymmetric

distributions of the CNTs through the plate thickness

(i.e., FG-V, FG-K), the transverse shear stresses

Rxzð Þ are also asymmetric with respect to middle

surface of the plate.

The effects of the CNTs volume fraction V�CN

� �
on the static response of plates with single FG-

CNTRC layer (FG-X) are shown in Fig. 5a–f. One can

observe from the data presented in these figures that,

compromise to the other the studies on the CNTRC

plate (see for example Ref. [14]), increasing the CNTs

volume fraction causes increasing of the overall plate

stiffness.

The influences of the length-to-thickness ratio on the

static responses of the plates with single UD-CNTRC

layer are presented in Fig. 6a–f. It is obvious that this

geometrical parameter significantly changes the varia-

tion of the displacement and stress components (except

the transverse normal component, Rzz) through the

plate thickness. However, its effect on the transverse

normal component of the stress Rzzð Þ is small and can

be ignored. It is also interesting to note that, in spite of

the results based on the two-dimensional classical and

Table 9 Comparison of the fundamental non-dimensional natural frequency parameter k111 ¼ ðx111a2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qM=EM

p� �
of FG-

CNTRC plates a=b ¼ 1; Nm ¼ 1; Nz ¼ 19ð Þ

V�CN a/h UD FG-V FG-X

Present FEM [18] ANSYS [18] Present FEM [18] ANSYS [18] Present FEM [18] ANSYS [18]

0.11 10 13.429 13.532 13.521 12.202 12.452 12.495 14.607 14.616 14.659

20 17.236 17.355 17.328 14.915 15.110 15.103 19.822 19.939 19.916

50 19.068 19.223 19.184 16.120 16.252 16.216 22.799 22.984 22.910

0.14 10 14.303 14.306 14.296 13.006 13.256 13.300 15.337 15.368 15.413

20 18.839 18.921 18.893 16.322 16.510 16.503 21.520 21.642 21.620

50 21.240 21.354 21.311 17.892 17.995 17.956 25.405 25.555 25.474

0.17 10 16.762 16.815 16.801 15.186 15.461 15.514 18.100 18.278 18.330

20 21.307 21.456 21.422 18.423 18.638 18.628 24.499 24.764 24.735

50 23.504 23.697 23.649 19.833 19.982 19.938 28.146 28.413 28.322

Table 10 The fundamental non-dimensional natural fre-

quency parameters kmn1ð Þ of the sandwich plates ða=h ¼ 5;
Nm ¼ 3Þ

a/b m n V�CN ¼ 0:12 V�CN ¼ 0:17

Model I Model II Model I Model II

1 1 1 0.6060 0.2891 0.7810 0.3713

2 1.0597 0.4315 1.3687 0.5615

3 1.5356 0.7256 1.9856 0.9444

2 1 0.8397 0.6360 1.0794 0.8194

2 1.2085 0.7145 1.5584 0.9247

3 1.6418 0.9238 2.1213 1.1985

3 1 1.1261 0.9789 1.4458 1.2627

2 1.4221 1.0331 1.8312 1.3355

3 1.8044 1.1885 2.3289 1.5391

2 1 1 1.0597 0.2891 1.3687 0.3713

2 2.0098 0.4315 2.6014 0.5615

3 2.9244 0.7256 3.7922 0.9444

2 1 1.2085 0.6360 1.5584 0.8194

2 2.0924 0.7145 2.7076 0.9247

3 2.9850 0.9238 3.8756 1.1985

3 1 1.4221 0.9789 1.8312 1.2627

2 2.2218 1.0331 2.8730 1.3355

3 3.0765 1.1885 3.9933 1.5391
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the first-order shear deformation theories, the through-

the-thickness variations of the in-plane normal and

shear stress components i:e:;Rxxand Rxy

� �
for the case

of moderately thick plates is not linear. However, for

the thin plates, these parameters have almost linear

variations.

In Fig. 7a–c, the influences of CNTs distribution

through the plate thickness and also the CNTs

volume fraction V�CN

� �
on the first ten non-dimen-

sional natural frequency parameters of the plates with

single CNTRC layer are studied. It can be observed

that in the all cases, the fundamental frequency
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Fig. 4 a–f The influence of the profile of CNTs distribution on the static response of the single layer plates

ða=h ¼ 5; a=b ¼ 1; Nm ¼ 1; Nz ¼ 25; V�CN ¼ 0:12Þ
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parameters of the CNTRC plates with symmetric

distributions of the CNTs are less than those of plates

with asymmetric distribution ones. This again indi-

cates that the overall stiffness of the plates with

symmetric distributions of the CNTs is less than those

of plates with asymmetric distributions ones, which

was previously found in the static analysis. However,

the higher order modes have not a regular trend and

their variations depend on the value of the CNTs

volume fraction. In these figures, it is obvious that both

FG-V and FG-K distribution have the same effects on

the natural frequency parameters. Also, it can be seen
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Fig. 5 a–f The influence of the CNTs volume fraction V�CN

� �
on the static response of the single layered plates (FG-X)

ða=h ¼ 5; a=b ¼ 1; Nm ¼ 1; Nz ¼ 25Þ
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that increasing the values of the CNTs volume fraction

V�CN

� �
, the non-dimensional natural frequency param-

eters increase, which is in agreement with those

reported by other researchers [13, 14].

Comparison between the variation of the non-

dimensional displacement and stress components

along the thickness direction of the sandwich plates

of models I and II and also UD-CNTRC plates are

0.0 0.2 0.4 0.6 0.8 1.0
ξ

-40

-20

0

20

40

U

a/h=20
a/h=10
a/h=5

(a)

0.0 0.2 0.4 0.6 0.8 1.0
ξ

5

160

315

470

625

W

a/h=20
a/h=10
a/h=5

(b)

0.0 0.2 0.4 0.6 0.8 1.0

ξ

-4.2

-2.1

0.0

2.1

4.2

Σ

a/h=20
a/h=10
a/h=5

xy

(c)

0.0 0.2 0.4 0.6 0.8 1.0

ξ

0.0

2.2

4.4

6.6

8.8

Σ

a/h=20
a/h=10
a/h=5xz

(d)

0.0 0.2 0.4 0.6 0.8 1.0

ξ

-240.0

-120.0

0.0

120.0

240.0

Σ

a/h=20
a/h=10
a/h=5

xx

(e)

0.0 0.2 0.4 0.6 0.8 1.0

ξ

0.0

0.2

0.4

0.6

0.8

1.0

Σ

a/h=20
a/h=10
a/h=5

zz

(f)

Fig. 6 a–f The influence of the length-to-thickness ratio on the static response of the single layered plates with uniformly distributed

CNTs ða=b ¼ 1; Nm ¼ 1; Nz ¼ 25; V�CN ¼ 0:12Þ
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presented in Fig. 8a–f. It is obvious that the sandwich

plates of model I are more stiffen than the two other

types of plates.

The influence of the CNTs volume fraction V�CN

� �
on

the static response of the sandwich plates of models I

and II are studied in Figs. 9a–f and 10a–f, respec-

tively. One can see that the CNTs volume fraction

considerably affect the non-dimensional displacement

components of the both models but the stress compo-

nents of the model I are more exaggerated than those

of model II.

The effects of the length-to-thickness ratio as an

important geometrical parameter on the static response

and the frequency parameters of the sandwich plates of

models I and II are shown in Figs. 11a–f, Figs. 12a–f,

and Table 10, respectively. It is evident from these

figures that this parameter has significant effect on the

non-dimensional displacement and stress components

of the both types of sandwich plates. Also, the unsym-

metrical nature of the transverse shear stress Rxzð Þ for

the case of thick plates (a/h = 2), specially for model

I, is obvious. This is due to unsymmetrical transverse

loading with respect mid-plane of the plate and for the

thin-to-moderately thick plates its influence becomes

negligible.

Comparison between the first ten non-dimensional

natural frequency parameters associated to the half

wave numbers (m, n = 1, 1) of the sandwich plates

and also plates with uniformly distributed CNTs (i.e.,

UD-CNTRC plates) are made in Fig. 13. The results

are prepared for the two different values of the CNTs

volume fraction V�CN

� �
. As one can concluded based
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Fig. 7 a–c The influence of the types of CNTs distribution and volume fraction V�CN

� �
on the frequency parameters of the single

layered plates ðm ¼ n ¼ 1; a=h ¼ 5; a=b ¼ 1; Nm ¼ 1; Nz ¼ 23Þ
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on the results of the static analysis, since the overall

stiffness of the sandwich plates of model I is greater

than those of the two other types of plates, its

fundamental natural frequency is also greater than

those of the two other plates. But, the higher order

modes of the sandwich plates of model I are less than

those of the two other plates. It is interesting to note

that the plates with uniformly distributed CNTs and

the sandwich plate of model II, which has the

uniformly distributed CNTs face sheets, have almost

the same frequency parameters. It is also notice-

able that the non-dimensional natural frequency
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Fig. 8 a–f Comparison between the static response of the sandwich plates and also plates with uniformly distributed CNTs

ða=h ¼ 5; a=b ¼ 1; Nm ¼ 3; Nz ¼ 11; V�CN ¼ 0:12Þ
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parameters increase with increasing CNTs volume

fraction V�CN

� �
in all cases.

The influence of the length-to-thickness ratio on

the first ten non-dimensional natural frequency

parameters associated to the half wave numbers

(m, n = 1, 1) of the sandwich plates are exhibited in

Fig. 14. This study is conducted for the two

different values of the CNTs volume fraction

V�CN

� �
. One can see that the length-to-thickness ratio

has a contrary effect on the frequency parameters, i.e.,

the frequency parameters increase by reducing this

geometrical parameter.
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Fig. 9 a–f The influence of the CNTs volume fraction V�CN

� �
on the static response of the sandwich plates (model I)

ða=h ¼ 5; a=b ¼ 1; Nm ¼ 3; Nz ¼ 11Þ

Meccanica (2015) 50:143–167 161

123



4 Conclusion

The three-dimensional the free vibration and static

analysis of the laminated plates with FG-CNTRC

layers was carried out. The effective material

properties of the individual layers, which were

assumed to be build up from a mixture of aligned

and straight SWCNTs and an isotropic matrix, were

estimated through the extended rule of mixture as a

simple and convenient micromechanical model. A
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Fig. 10 a–f The influence of the CNTs volume fraction V�CN

� �
on the static response of the sandwich plates (model II)

ða=h ¼ 5; a=b ¼ 1; Nm ¼ 3; Nz ¼ 11Þ
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semi-analytical approach composed of the layerwise-

differential quadrature method and the series solution

was employed to accurately model the 3D variations

of the displacement components in the plate thickness

and in-plane directions, respectively. After studying

the convergence behavior and accuracy of the method,

firstly, the influences of different types of CNTs

distributions through the layer thickness were exam-

ined by analyzing and comparing the results for single

layer plates. Then, the static and vibration behavior of
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Fig. 11 a–f The influence of the length-to-thickness ratio on the static response of the sandwich plates (model I)

ða=b ¼ 1; Nm ¼ 3; Nz ¼ 11; V�CN ¼ 0:12Þ
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two types of sandwich plates, i.e. the sandwich plates

with FG-CNTRC lower/upper face sheets (model I)

and UD-CNTRC core and the sandwich plates with

UD-CNTRC lower/upper face sheets and FG-CNTRC

core (model II) were studied. From the obtained

results, one can conclude that

• The maximum displacement and stress compo-

nents of the single layered plates with symmetric

CNTs distributions are greater than those of the

corresponding field variables of the plates with the

asymmetric CNTs distributions. But their funda-

mental frequency parameters are less than those of
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Fig. 12 a–f The influence of the length-to-thickness ratio on the static response of the sandwich plates (model II)

ða=b ¼ 1; Nm ¼ 3; Nz ¼ 11; V�CN ¼ 0:12Þ
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these types of plates. Hence, the plates with

symmetric CNTs distributions (i.e., UD and FG-

X cases) have lower overall stiffness than plates

with asymmetric distributions ones. However, in

all cases, by increasing the CNTs volume fraction,

the overall stiffness of the plates increases.

• The length-to-thickness ratio significantly changes

the variation of the displacement and stress

components through the plate thickness,

• The sandwich plates with FG-CNTRC lower/

upper face sheets and UD-CNTRC core (model

I) are more stiffen than the sandwich plates with

UD-CNTRC lower/upper face sheets and FG-

CNTRC core (model II) and also plates with single

UD-CNTRC layer,

• The CNTs volume fraction considerably affect the

non-dimensional displacement components of the

both types of sandwich plates under consideration,

but its effect on the stress components of the

sandwich plates of model I are more observable

than those of model II,

• The through-the-thickness unsymmetrical varia-

tion of the transverse shear stress Rxzð Þ for the case

of thick plates (a/h = 2) under transverse loading,

especially for the sandwich plates of model I,

becomes apparent, but for the thin-to-moderately

thick plates it has almost a symmetric variation,

• The fundamental natural frequency of the sand-

wich plates of model I is greater than those of the

sandwich plates of model II and also single layered

plates with uniformly distributed CNTs. But, the

higher-order modes of the sandwich plates of

model I are less than those of the two other types of

plates,
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Fig. 14 a, b The influence of the length-to-thickness ratio on the frequency parameters of the sandwich plates
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• The sandwich plates of model II, which have the

uniformly distributed CNTs face sheets, have

nearly the same frequency parameters as the single

layered plates with uniformly distributed CNTs.

In addition, owing to the practical significance of

the 3D analysis of laminated plates with FG-CNTRC

layers, and also lack of information in the open

literature in this regards, the obtained results can be

used as benchmark in the future researches.
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