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Abstract A nonlinear elastic string is considered

here as a main structure to be passively controlled

using a Nonlinear Energy Sink (NES). The string is

internally nonresonant due to a point mass and an

elastic spring applied at a free tip, and a distributed

force with harmonic time-law is assumed. The Multi-

ple Scale/Harmonic Balance method, already intro-

duced for finite degree of freedom systems, is

extended here in direct approach, being applied to

the partial differential equations ruling the dynamics

of the system. Amplitude modulation equations are

obtained and discussion of some solutions, where the

beneficial effect of the NES is evident, are made.

Keywords Nonlinear energy sink � Infinite

dimensional system � Perturbation method

1 Introduction

Nonlinear energy sinks (NES) are strongly nonlinear

oscillators attached to a primary structure, used to act

as passive control device. An extensive background on

characteristics and applications of NES is reported in

[23]. Generally, the mass of the attached oscillator is

small compared to that of the primary system to be

controlled, and the essentially nonlinear stiffness

induces one-way mechanical energy transfer from

the primary structure to the NES. The nonlinearizable

nature of NES makes difficult the application of

standard perturbation techniques to systems describ-

ing the dynamics of structures where they are attached

as control devices. In particular, NES do not have a

natural linear frequency and, as a consequence, in

principle they turn out to get resonant at any frequen-

cies with the main structure, so that large band tuning

with it is involved. Moreover, the best performance of

the NES is reached when relaxation oscillations and

strongly modulated responses are triggered, which are

typical responses of singular perturbation problems,

where transitions from slow to fast dynamics, and

back, are induced [10].

The use of the NES as passive control devices has

received great attention in the literature, and here just

some of the large amount of papers dedicated to the

topic are cited. In [6], a NES is applied to a main linear

oscillator harmonically excited by a 1:1 resonant force.

In [22] a NES is applied to harmonically forced two

d.o.f. system in internal resonance. In [12] a NES is

coupled to a Bouc-Wen type oscillator, while in [24] a

NES is used to control the flutter oscillations of a long-

span bridge. In [7, 23], NES is used to suppress

aeroelastic instabilities on a class of rigid airfoils,

modeled as a two d.o.f. section-model, under stationary

wind in the quasi-steady hypothesis. In [8, 20] NES are

applied to suppress vibrations of continuous beams.
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Some drawbacks on the use of NES are reported in

the literature too [15, 17]. They are mostly concerned

on the possible occurrence of multiple coexisting

solutions, which can even thwart the beneficial effects

of the NES.

Due to the fact that the equations of NES are

nonlinearizable, standard perturbation techniques are

not directly applicable. Accordingly, the study of the

slow-flow dynamics can be approached by means of

the complexification averaging (referred as CX-A)

proposed by Manevitch [16] and, only as a further

step, the Multiple Scale Method [18].

Regular perturbation theory is used in [2, 3, 5] to

deal with various classes of coupled linear and

(essentially) nonlinear oscillators, and conditions to

trigger energy transfer are found. There, the

assumption of working in finite time intervals is

always given.

Recently a new perturbation algorithm, based on a

merging of Multiple Scale Method and Harmonic

Balance (and referred as MSHBM), has been proposed

to study multi-d.o.f. dynamical systems equipped with

NES, under harmonic external force [13] as well as

aero-elastic effects [14]. In [9] the same algorithm is

used to study the effect of the NES to control the

chatter in the turning process and in [1] to evaluate the

attenuation of lateral vibrations of a rotor via NES.

The algorithm allows one to skip the initial complex-

ification and, moreover it produces the set of equations

in normal form.

On the other hand, out of the context of systems

provided with NES, the Multiple Scale Method can be

applied in direct approach to continuous structures,

where the number of d.o.f. reaches infinite (see

e.g. [11, 18, 19, 21]). In those cases both qualitative

and quantitative differences are found if the method is,

in contrast, applied to a classical low-order Galerkin

model.

In this paper the direct form of the MSHBM is

presented, being the method extended to cases of

infinite number of d.o.f., when internal resonances are

not present. In particular a nonlinear taut elastic string,

under the action of external harmonic force, and

provided with NES is considered here. The string is

made internally nonresonant (at least for the first few

transverse modes) by applying a supplementary point

mass and a linear elastic spring at the tip. A NES is

applied at a specific abscissa to act as control device.

The continuum dynamical problem is obtained, when

the external force is 1:1 resonant with a generic mode

of the string. The MSHBM is specialized for that

system, being applied to the partial differential

equations of motion, in order to analyze the response

and provide a tool to optimize the position and the

constitutive parameters of the NES. Numerical results

are compared to those obtained through direct numer-

ical integration of an approximated system of ordinary

differential equations, drawn by means of a multi-

mode Galerkin projection of the main partial differ-

ential equations.

2 The model

A nonlinear extensible elastic string AB is considered

(see Fig. 1). The string is restrained at A, while a

concentrated mass mB and a vertical elastic spring of

linear stiffness kB are applied at B. In particular, they

simulate in a rough way (through a 1 d.o.f. linear

oscillator) a flexible branched tower, working as right

support of a small sag-to-span electric transmission

cable, which in turn is approximated by a taut string.

The string is supposed of initial length ‘ and prestress

tensile force N. An external, distributed, harmonically

time-dependent, force pðxÞ cosðXtÞ is supposed to be

applied to the string (x being the abscissa measured in

the prestressed configuration and t the time). The mass

per unit length of the string is q and its longitudinal

stiffness EA. A NES characterized by a mass m, cubic

stiffness coefficient k and linear damping coefficient c,

is linked to the string at point C, corresponding to the

abscissa xC. Denoting by vðx; tÞ the in-plane transverse

y
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Fig. 1 String equipped with a NES
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displacement of a generic point of the string and by

yðtÞ the displacement of the NES, the nonlinear

equations of motion, up to the cubic order, read (see

[18, 19] for the equations of motion of the string,

obtained after the classic condensation procedure of

the longitudinal displacement and valid under the

hypothesis of large ratio between the celerity of

longitudinal vs. transverse waves)

Nv00ðx; tÞ þ EA

‘
v00ðx; tÞ

Z ‘

0

v02ðx; tÞ
2

dx

� �

� q€vðx; tÞ þ pðxÞ cosðXtÞ

� kðvðx; tÞ � yðtÞÞ3 þ cð _vðx; tÞ � _yðtÞÞ
h i

dðx� xCÞ ¼ 0

m€yðtÞ � kðvðxC; tÞ � yðtÞÞ3
h

þcð _vðxC; tÞ � _yðtÞÞ� ¼ 0

ð1Þ

where dðxÞ is the Dirac delta, the dot indicates time-

derivative and the prime space-derivative.

The geometric boundary condition at A states that

vð0; tÞ ¼ 0, while the mechanical boundary condition,

to be applied at B, reads

Nv0ð‘; tÞ þ EA

‘
v0ð‘; tÞ

Z ‘

0

v02ðx; tÞ
2

dx

� �

¼ �kBvð‘; tÞ � mB€vð‘; tÞ ð2Þ

which describes the balance of forces at the boundary:

the linear geometrical stiffness and the nonlinear elastic

one, at the left side of Eq. (2), provide forces which are

balanced by inertia and elastic forces of the mass-spring

system. Relevant initial conditions must be added too.

Defining nondimensional quantities, namely

~x¼ x

‘
; ~t¼ �xt; ~y¼ y

‘
; ~v¼ v

‘
; ~u¼ u

‘
;

~xC ¼
xC

‘
;

~d¼ ‘d; g¼ EA

N
; j¼ k‘3

N
; n¼ c �x‘

N
;

~m¼ m

q‘
;

~p¼ p‘

N
; ~X¼X

�x
; ~kB ¼

kB‘

N
; ~mB ¼

�x2mB‘

N
;

�x¼ 1

‘

ffiffiffiffi
N

q

s

ð3Þ

Eq. (1) become, in nondimensional form (omitting the

tilde) and after inclusion of the contribution of linear

structural damping (f _vðx; tÞ, where f is the damping

coefficient):

€vþ f _v� v00 � gv00
Z 1

0

v02

2
dx

� �
þ jðv� yÞ3
h

þnð _v� _yÞ
�
dðx� xCÞ ¼ p cosðXtÞ

m€y� jðvC � yÞ3 þ nð _vC � _yÞ
h i

¼ 0

ð4Þ

where vCðtÞ: ¼ vðxC; tÞ, and the boundary conditions

vð0; tÞ ¼ 0

v0ð1; tÞ þ gv0ð1; tÞ
Z 1

0

v02

2
dx

� �

¼ �kBvð1; tÞ � mB€vð1; tÞ

ð5Þ

Now the dot and the prime indicate derivative with

respect to the nondimensional time and abscissa,

respectively.

It is convenient to introduce the relative displace-

ment function between the main structure at point C

and NES: zðtÞ: ¼ vðxC; tÞ � yðtÞ. Therefore equations

(4) become:

€vþ f _v� v00 � gv00
Z 1

0

v02

2
dx

� �

þ jz3 þ n _z
� �

dðx� xCÞ ¼ p cosðXtÞ
mð€z� €vCÞ þ jz3 þ n _z ¼ 0

ð6Þ

3 The multiple scale/harmonic balance method

The dependent variables are rescaled through a

nondimensional small parameter � such that

0\�� 1, as ðv; zÞ: ¼ �1=2ð~v; ~zÞ, consistently with

the presence of cubic nonlinearity. The damping is

rescaled as f ¼ �~f and the external force as p ¼ �3=2 ~p,

consistently with the idea to order both damping and

excitation at the same level of the nonlinearity. It is

assumed that the external excitation is 1:1 resonant

with one of the linear modes (the j-th mode of

frequency xj) of the string (with NES disengaged),

and no other resonance combinations are possible. A

detuning parameter r is therefore introduced for the

external excitation, as X ¼ xj þ r; it is rescaled as

r ¼ �~r. The parameters of the NES are rescaled too,

since both its mass and damping are assumed small:

ðm; nÞ: ¼ �ð ~m; ~nÞ. The rescaling leads to the following
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equations, after omission of tilde and division by �1=2:

€v� v00 þ �
�
f _v� gv00

Z 1

0

v02

2
dx

� �

þ jz3 þ n _z
� �

dðx� xCÞ � p cosðXtÞ
�
¼ 0

� mð€z� €vCÞ þ jz3 þ n _z
� �

¼ 0

ð7Þ

with boundary conditions:

vð0; tÞ ¼ 0

v0ð1; tÞ þ kBvð1; tÞ þ mB€vð1; tÞ

þ �gv0ð1; tÞ
Z 1

0

v02

2
dx

� �
¼ 0

ð8Þ

According to the Multiple Scale Method, independent

time scales t0 :¼ t; t1 :¼ �t; t2 ¼ �2t; . . . are introduced

and, consistently, the time derivatives expressed as
o
ot
¼ d0 þ �d1 þ �2d2 þ . . . and o2

ot2 ¼ d2
0 þ 2�d0d1

þ�2ðd2
1 þ 2d0d1Þ þ . . ., where dj: ¼ o=otj, for

j ¼ 0; 1; 2; . . .. Moreover, the dependent variables

are expanded in series as:

v

z

( )
¼

v0

z0

( )
þ �

v1

z1

( )
þ �2

v2

z2

( )
þ . . . ð9Þ

Substituting in Eqs. (7) and (8) and collecting terms of

the same order in �, lead to the following perturbation

equations:

order �0 :

d2
0v0 � v000 ¼ 0

ð10Þ

order �1 :

d2
0v1 � v001 ¼ �2d0d1v0 � fd0v0

þ p cosðXt0Þ � ðnd0z0 þ jz3
0Þdðx� xCÞ

þ gv000

Z 1

0

v020
2

dx

� � ð11Þ

mðd2
0z0 � d2

0vC0
Þ þ nd0z0 þ jz3

0 ¼ 0 ð12Þ

order �2 :

d2
0v2 � v002 ¼ �ðd2

1v0 þ 2d0d2v0

þ 2d0d1v1Þ � fðd2v0 þ d1v1Þ
� nðd0z1 þ d1z0Þ þ 3jz2

0z1

� �

dðx� xCÞ þ gv001

Z 1

0

v020
2

dx

� �

þ gv000

Z 1

0

v00v01dx

� �

ð13Þ

mðd2
0z1 � d2

0vC1
Þ þ nd0z1 þ 3jz2

0z1 ¼
� 2mðd0d1z0 � d0d1vC0

Þ � nd1z0

ð14Þ

and relevant boundary conditions:

order �0 :

v0ð0; t0; t1; . . .Þ ¼ 0;

v00ð1; t0; t1; . . .Þ þ kBv0ð1; t0; t1; . . .Þ
þ mBd2

0v0ð1; t0; t1; . . .Þ ¼ 0

ð15Þ

order �1 :

v1ð0; t0; t1; . . .Þ ¼ 0;

v01ð1; t0; t1; . . .Þ þ kBv1ð1; t0; t1; . . .Þ
þ mBd2

0v1ð1; t0; t1; . . .Þ ¼

� gv00ð1; t0; t1; . . .Þ
Z 1

0

v020
2

dx

� �

� 2mBd0d1v0ð1; t0; t1; . . .Þ

ð16Þ

order �2 :

v2ð0;t0;t1; . . .Þ¼0;

v02ð1;t0;t1; . . .ÞþkBv2ð1;t0; t1; . . .Þ
þmBd2

0v2ð1;t0;t1; . . .Þ¼

�gv01ð1;t0;t1; . . .Þ
Z 1

0

v020
2

dx

� �

�gv00ð1;t0;t1; . . .Þ
Z 1

0

v00v01dx

� �

�mBðd2
1v0ð1; t0;t1; . . .Þ

þ2d0d2v0ð1;t0;t1; . . .Þ
þ2d0d1v1ð1;t0;t1; . . .ÞÞ

ð17Þ
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The small values of mass and damping of the NES, as well

as the lack of its linear stiffness, cause that no equation

relevant to the NES appears at order �0, where just the

linearized problem of the string (with NES disen-

gaged) is obtained. Moreover, as a consequence of

both the 1:1 external resonance with one of the linear

modes of the string, and the presence of damping, all

the other (nonresonant) modes cause a higher-order

contribution to the response. In this respect, the

contribution of the resonant mode is retained only,

so that the (generating) solution of Eqs. (10),(15) is:

v0ðx; t0; t1; . . .Þ ¼ Aðt1; . . .ÞuðxÞeixt0 þ cc ð18Þ

where: Aðt1; . . .Þ is a complex modal amplitude to be

evaluated, depending on the slower time-scales; i is

the imaginary unit; x :¼ xj and uðxÞ :¼ ujðxÞ are the

(j-th) resonant eigenvalue and (real) eigenfunction of

the problem with NES disengaged; cc stands for

complex conjugate. In particular, the natural fre-

quency x is the j-th root of the characteristic equation

tan x ¼ x
x2mB � kB

ð19Þ

and the relevant eigenfunction is uðxÞ ¼ sinðxxÞ.
When passing to the � order, the NES equation (12)

is first considered, and the Harmonic Balance method

[18] is applied after supposing the solution as:

z0ðt0; t1; . . .Þ ¼
Xþ1
k¼1

B0k
ðt1; . . .Þeikxt0 þ cc ð20Þ

where B0k
ðt1; . . .Þ are complex amplitudes depending

on slow time, to be evaluated. After substitution of

Eq. (18) and (20) in Eq. (12) and balance of frequency

x (other frequencies are neglected, as well as just

B0: ¼ B0k
is retained, coherently with [13]), the

following algebraic equation is obtained:

�mx2ðB0 � AuðxcÞÞ þ inxB0 þ 3jB2
0
�B0 ¼ 0 ð21Þ

describing the manifold which constrains the steady

value of the string amplitude of oscillation to that of

the NES (the overbar here stands for complex

conjugate). In fact, if a polar transformation is

introduced for both A and B0 (namely A: ¼ 1
2

aeia and

B0: ¼ 1
2

beib), manipulations on Eq. (21) give the

equation for the manifold:

m2x4uðxcÞ2a2 ¼ ðmx2b� 3

4
jb3Þ2 þ n2x2b2 ð22Þ

To catch the dynamics out of manifold (22), Eqs. (11),

(16) must be tackled. In particular, the solution of

Eq. (11) is sought in the form

v1ðx; t1; t2Þ ¼w1ðx; t1; t2Þeixt0 þw3ðx; t1; t2Þe3ixt0 þ cc

ð23Þ

where w1ðx; t1; t2Þ;w3ðx; t1; t2Þ are complex functions

to be determined. This expression for v1 in Eq. (23) is

suggested by the presence of cubic nonlinear terms in

Eq. (11). Then Eq. (23) is substituted in Eqs. (11) and

(16), and terms multiplying expðixt0Þ and expð3ixt0Þ
are mutually separated, giving two ordinary differen-

tial equations with relevant boundary conditions,

respectively. The first one is:

w001 þ x2w1 ¼ �f1ðx; t1; t2Þ ð24Þ

with boundary conditions

w1ð0; t1; t2Þ ¼ 0

� w01ð1; t1; t2Þ � ðkB � x2mBÞw1ð1; t1; t2Þ ¼
2imBxuð1Þd1Aþ 3gmu0ð1ÞA2 �A

ð25Þ

where

f1ðx; t1; t2Þ: ¼ �2ixuðxÞd1A

� ifxuðxÞA� ðixnB0 þ 3jB2
0
�B0Þ

dðx� xCÞ þ 3gmu00ðxÞA2 �Aþ pðxÞ
2

eirt1

ð26Þ

and m ¼
R 1

0
u0ðxÞ2dx=2 ¼ ðxþ sin x cos xÞx=4.

The second one is:

w003 þ 9x2w3 ¼ �f3ðx; t1; t2Þ ð27Þ

with boundary conditions

w3ð0; t1; t2Þ ¼ 0

� w03ð1; t1; t2Þ � ðkB � 9x2mBÞw3ð1; t1; t2Þ ¼
gmu0ð1ÞA3

ð28Þ

where

f3ðx; t1; t2Þ: ¼ �jB3
0dðx� xcÞ þ gmu00ðxÞA3 ð29Þ

In order to get a solution from Eqs. (24),(25), the

solvability condition must be enforced on them, which

reads:
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�
Z 1

0

f1ðx; t1; t2ÞuðxÞdxþ 2imBxuð1Þ2d1A

þ 2gmu0ð1Þuð1ÞA2 �A ¼ 0

ð30Þ

Substitution of Eq. (26) in Eq. (30) provides:

d1A ¼ c1Aþ c2B0 þ ic3B2
0

�B0 þ ic4A2
1

�A1 þ ic5pje
irt1

ð31Þ

where pj ¼
R 1

0
pðxÞuðxÞdx and the expressions of the

coefficients cj are given in Appendix 1. The substitu-

tion of Eq. (31) in Eq. (24) and (25) allows one to

obtain a solution for this system (see details in

Appendix 2), which reads:

w1ðx; t1; t2Þ ¼ iAw1ðxÞ þ iB0w2ðxÞ þ B2
0

�B0w3ðxÞ
þ A2 �Aw4ðxÞ þ w5ðxÞeirt1 ð32Þ

In Eq. (32) the normalization condition consisting in a

vanishing amplitude for the complementary solution is

assumed.

On the other hand, system (27),(28) is not singular

and admits the following solution:

w3ðx; t1; t2Þ ¼ Cðt1; t2Þ sinð3xxÞ
þ B3

0w6ðxÞ þ A3w7ðxÞ
ð33Þ

where wkðxÞ; ðk ¼ 1; . . .; 7Þ and Cðt1; t2Þ are defined in

Appendix 1.

Equation (14) is considered and a further harmonic

balance is applied to it, assuming the following

expression for z1:

z1ðt0; t1; . . .Þ ¼
Xþ1
k¼1

B1k
ðt1; . . .Þeikxt0 þ cc ð34Þ

Retaining only the first term ðB1: ¼ B1k
Þ, substituting

Eqs. (18), (20) and (23) in Eq. (14) and balancing the

x-frequency terms, the following equation is

obtained:

� mx2B1 þ inxB1 þ 3jB2
0

�B1 þ 6jB0
�B0B1

þ ðnþ 2imxÞd1B0 � 2imxuðxCÞd1A

þ mx2ðiAwC1
þ iB0wC2

þ B2
0
�B0wC3

þ A2 �AwC4
Þ þ mx2wC5

eirt1 ¼ 0

ð35Þ

where wCk
: ¼ wkðxCÞ; k ¼ 1; . . .; 5. Equations (21)

and (35) can be reconstituted, using the definition

B: ¼ B0 þ �B1: coming back to the true time and

reabsorbing � one obtains:

ðnþ 2imxÞ _B� 2imxuðxCÞ _A

¼ ðmx2ð1� iwC2
Þ � inxÞB

� ð3jþ mx2wC3
ÞB2 �B� mx2ðuðxCÞ

þ iwC1
ÞA� mx2wC4

A2 �A� mx2wC5
eirt

ð36Þ

Equation (36) describes the dynamics of the amplitude

B, allowing to both the variables A and B to evolve out

of the manifold described by Eq. (21). The derivatives

of B and A have been obtained just at the second-order,

being multiplied by small coefficients n and m, which

cause singular perturbation.

In a similar way, Eq. (31) can be written in the true

time, becoming:

_A ¼ c1Aþ c2Bþ ic3B2 �Bþ ic4A2 �Aþ ic5pje
irt ð37Þ

Eqs. (37) and (36) are the complex Amplitude mod-

ulation equations (AME) ruling the slow dynamics of

the string and NES. They can be written in real form

after applying the polar transformation AðtÞ: ¼
1
2

aðtÞeiaðtÞ and BðtÞ: ¼ 1
2

bðtÞeibðtÞ, separating real and

imaginary parts, defining phase differences as cðtÞ: ¼
aðtÞ � bðtÞ and #ðtÞ: ¼ aðtÞ � rt, and combining the

obtained equations. They read

_a ¼ F 1ða; b; c; #Þ
_b ¼ F 2ða; b; c; #Þ
_c ¼ F 3ða; b; c; #Þ
_# ¼ F 4ða; b; c; #Þ

ð38Þ

valid for a 6¼ 0 and b 6¼ 0;where the nonlinear func-

tions F k (k ¼ 1; . . .; 4) are not reported for brevity.

Equilibrium points of system (38), which corre-

spond to periodic motions of both the string and

NES, can be computed by solving it for

_a ¼ _b ¼ _c ¼ _# ¼ 0. Their stability is analyzed eval-

uating the eigenvalues of the relevant Jacobian matrix;

moreover the stability of periodic solutions of

Eq. (38), which correspond to quasi-periodic motions

of the string and NES, is evaluated by analysis of the

Floquet multipliers of the monodromy matrix. In the

following section, all those computations are car-

ried out by means of the softwares Auto [4] and

Mathematica [25].
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4 Numerical results

Numerical results are obtained for a case-study, which

corresponds to a string whose nonlinear coefficient is

g ¼ 2:825; moreover mB ¼ 0:3167 and kB ¼ 3:9�
10�3 are assumed for the tip mass and spring,

respectively. The external force is considered as

uniform ðpðxÞ � pÞ and the damping coefficient of

the string is f ¼ 1:557%. The nondimensional param-

eters of the NES are m ¼ 0:05; j ¼ 400; n ¼ 0:01.

First, the two members of the characteristic equa-

tion (19) are plotted in Fig. 2a, where the intersections

of the two graphs (blue and magenta lines), denoted by

the red dots, represent the roots of the equation; in

particular, the first four roots are x1 ¼ 1:208;x2 ¼
3:831;x3 ¼ 6:722;x4 ¼ 9:738. The relevant eigen-

functions are shown in Fig. 2b.

If not differently stated, from now on the external

force is assumed to be resonant to the second mode,

therefore x: ¼ x2 and uðxÞ: ¼ u2ðxÞ.
It is interesting to look at the invariant manifold

(22) if the position of the NES is changed along the

span of string: when it is attached to the abscissa

corresponding to the mode antinode (red point in

Fig. 3a), it is expected that the maximum amount of

energy transfer is obtained, whereas if it is applied to

the tip (blue point in Fig. 3a) or, worse, close to the

mode node (black point in Fig. 3a), less energy

transfer is predicted. In fact the corresponding invari-

ant manifolds, shown in Fig. 3b, denote that for fixed

NES oscillation amplitude b, smaller string oscilla-

tions a are involved when the NES is placed at the

antinode (red line) than at tip (blue line) or close to the

node (black line), where the contribution of the NES is

very low.

Amplitude of periodic motions of both the string

and NES, for force amplitude value p ¼ 0:007, are

shown in Fig. 4 in terms of frequency detuning r. In

particular, in Fig. 4a, the frequency-response curve
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Fig. 2 Natural frequencies and modes: (a) Plot of the two

members of the characteristic equation (19) (left member: blue

line; right member: magenta line) and highlighting of the natural

frequencies (red points); (b) natural modes corresponding to the

first (blue), second (magenta), third (brown) and fourth (green)
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Fig. 3 Position of the NES on the span and second mode (a);

corresponding invariant manifolds (b)
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obtained for disengaged NES (black curve) is super-

imposed to the corresponding curve obtained when

NES is engaged (red line). In Fig. 4b, the amplitude of

oscillation b of the NES is shown. Blue points

represent Hopf bifurcations. It is evident the beneficial

effect of the NES, whose presence reduces the peak of

the string amplitude of oscillations a.

In Fig. 5, the periodic time-evolutions of the vertical

displacement of the mid-span of the string (vm: ¼
vð1=2; tÞ) and of the NES (zðtÞ) are shown for

r ¼ 0:02, with NES at the antinode. They are superim-

posed to the corresponding evolutions (dotted line)

obtained by time-integration of an approximated system

of ODE, which is drawn after a Galerkin projection of

Eqs. (6),(5) on a basis constituted by the eight first natural

modes of the string. They show a very good agreement.

In Fig. 6, a more detailed zoom of Fig. 4 is shown,

where the branches of periodic motions in a and b arising

from the Hopf bifurcation points are highlighted. In

particular, from the left Hopf bifurcation point,

occurring at about r ¼ 0:05, a stable branch of

periodic motions in a and b arises, giving rise to

weakly modulation responses (WMR, which corre-

spond to quasi-periodic oscillations of string and

NES). Filled regions describe amplitude of the corre-

sponding limit cycles, and blue lines indicate the

maximum and minimum of the oscillations. The

branch suddenly becomes unstable (lightly filled

regions), and Strongly Modulated Responses are

induced after a cascade of Period Doubling bifurca-

tions (not shown in the Figure). Then, after a fold, the

branch dies on the right Hopf bifurcation point, at

about r ¼ 0:127.

In Fig. 7a and 7b, the WMR (for r ¼ 0:064) and

SMR (for r ¼ 0:070) are superimposed to the invari-

ant manifold, respectively. The first one develops

itself close to the fold of the invariant manifold, while

the second one describes relaxation oscillations

around it. In Fig. 8, the time-evolutions of both a

σ

a

(a)

σ

b

(b)

Fig. 4 Frequency-response curves of the string (a) and NES (b),

for p ¼ 0:007. Red line: response with NES at the antinode;

black line response with NES disengaged. Blue points indicate

Hopf bifurcations. Continuous line stable; dashed line unstable
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Fig. 5 Periodic time-evolution of the string mid-span (a) and

NES (b), for p ¼ 0:007 and r ¼ 0:02. Continuous line

reconstituted functions from MSHBM; dotted line reconstituted

functions from a discrete Galerkin model
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and b are shown for the same SMR. For the same case,

the time-evolutions of the vertical displacement of the

mid-span of the string and of the NES are shown in

Fig. 9a and 9b, respectively, compared to the corre-

sponding response provided by direct integration of

the Galerkin model (Fig. 9c and 9d), still showing

good agreement. As said, they describe relaxation

oscillations, which are one of the typical features of

singular perturbed systems. Moreover, those (quasi-

periodic) oscillations are found to be, for any value of

r, significantly smaller than the (periodic) oscillations

experienced by the string without NES, proving the

beneficial effect of the NES.

As a further analysis, the effect of the same NES

engaged at the same position is verified in case of

external force which is resonant to the first mode. It is

worth noticing that, in this case, the position of the

NES is not optimized, since it is not applied in

correspondence of the antinode of the mode (see

Fig. 3). This analysis is performed for the external

force amplitude p ¼ 0:0005. The corresponding fre-

quency-response curves are shown in Fig. 10, where

the black line is relevant to the string without NES,

while the red line to the system with NES engaged.

The significant reduction of the resonance peak is

evident. Moreover, Hopf bifurcations (blue points in

Fig. 10), as well as SMR, are obtained too. In

particular, the SMR are shown in Fig. 11 (black line)

for r ¼ 0, superimposed to the invariant manifold (red

line), and in Fig. 12 versus time. The corresponding

displacement of the mid-span of the string and of the

NES are shown in Fig. 13a,b, respectively, in good

agreement with those obtained with integration of the

discrete Galerkin system (Fig. 13c,d). Still in this case

the quasi-periodic evolution of vm shows ampli-

tudes which are significantly smaller than those

experienced without NES. Therefore, it is worth

Fig. 6 Detail of the frequency-response function with NES at

the antinode (red line), for p ¼ 0:007. Blue points indicate Hopf

bifurcations; blue line and filled region indicate limit cycles in a

and b. Continuous line stable; dashed line unstable
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Fig. 7 Weakly Modulated Response (r ¼ 0:064, blue line (a))

and Strongly Modulated Response (r ¼ 0:070, black line (b))

with NES at the antinode, for p ¼ 0:007; red line invariant

manifold. Continuous line stable; dashed line unstable
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pointing out that the beneficial effect is proved in this

case too, except perhaps for a very narrow region of

frequencies at the left of the first resonance peak

ðr 2 ½�0:012;�0:011�Þ, where some SMR can lightly

overtake the periodic motion of the system without

NES, for the same frequency. On the other hand, the

remarkable lowering of the resonance peak can

generally overcome this drawback. Different behavior

can be obtained for larger values of p, where

sometimes the NES may induce oscillations which

can be significantly larger than those experienced

without it.

5 Conclusions

The Multiple Scale/Harmonic Balance Method

(MSHBM) is a perturbation method suitable to deter-

mine the equations which rule the slow/fast dynamics

of systems provided with Nonlinear Energy Sink as

control device. Here the MSHBM has been applied in

direct form to an infinite dimensional structure,
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Fig. 8 Time evolutions of the Strongly Modulated Responses

for p ¼ 0:007 and r ¼ 0:070: (a) string oscillation amplitude a;

(b) NES oscillation amplitude b
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Fig. 9 Quasi-periodic time-evolution of the string mid-span

and NES displacement, for p ¼ 0:007 and r ¼ 0:02. String mid-

span (a) and NES displacement (b) as reconstituted from

MSHBM; string mid-span (c) and NES displacement (d) as

reconstituted from the discrete Galerkin model
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constituted by an internally nonresonant string excited

by a 1:1 resonant harmonic force, with NES applied.

The relevant AME have been obtained and their

singular perturbation nature has been observed, due to

the small mass and damping of the NES.

Numerical results have been shown in terms of

invariant manifold, frequency-response plots as well

as time-series, for periodic, Weakly and Strongly

Modulated Responses. They denote the beneficial

effect of the same NES to reduce the amplitude of

oscillation of the string, once external force has

moderate amplitude and it is resonant to the second or

first mode. Results are in good agreement with those

provided by a discrete, approximated, system of

ordinary differential equations obtained by means of

a Galerkin projection of the infinite dimensional

problem.
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Fig. 10 Frequency-response curves of the string (a) and NES

(b), when the force is resonant to the first mode, for p ¼ 0:0005.

Red line: response with NES engaged; black line response with

NES disengaged. Blue points indicate Hopf bifurcations.

Continuous line stable; dashed line unstable
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Coefficients of the equations

The expression of the coefficients of Eq. (31) are:

c ¼
Z 1

0

uðxÞ2dxþ mBuð1Þ2;

c1 ¼ �
f

2c

Z 1

0

uðxÞ2dx;

c2 ¼ �
n
2c

uðxCÞ; c3 ¼
3j

2xc
uðxCÞ;

c5 ¼ �
1

4xc
;

c4 ¼ �
3gm
2xc

Z 1

0

u00ðxÞuðxÞdx� u0ð1Þuð1Þ
� �

ð39Þ

In order to write the expressions of the coefficients of

Eq. (32) and (33), first the following definitions are

introduced:

I1ðx; xCÞ ¼
1

x
sinðxðx� xCÞÞHðx� xCÞ

J1ðxÞ ¼
1

x

Z x

0

uðsÞ sinðxðx� sÞÞds

¼ 1

2x2
ðsinðxxÞ � xx cosðxxÞÞ

PðxÞ ¼ 1

x

Z x

0

pðsÞ sinðxðx� sÞÞds

I3ðx; xCÞ ¼
1

3x
sinð3xðx� xCÞÞHðx� xCÞ

J3ðxÞ ¼
1

3x

Z x

0

uðsÞ sinð3xðx� sÞÞds

¼ sinðxxÞ3

6x2

ð40Þ

where HðxÞ is the Heaviside step (here the Dirac delta

and Heaviside step are considered in the sense of

distributions). In particular, the expressions of

I1ðx; xCÞ and I3ðx; xCÞ are obtained as solution of the

linear ordinary differential equations

y00ðxÞ þ x2yðxÞ ¼ dðx� xCÞ ð41Þ

and

y00ðxÞ þ 9x2yðxÞ ¼ dðx� xCÞ ð42Þ

to vanishing initial conditions, respectively. Then the

following expressions are obtained:
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Fig. 13 Quasi-periodic time-evolution of the string mid-span

and NES displacement, for p ¼ 0:0005 and r ¼ 0 resonant to

the first mode. String mid-span (a) and NES displacement (b) as

reconstituted from MSHBM; string mid-span (c) and NES

displacement (d) as reconstituted from the discrete Galerkin

model
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w1ðxÞ ¼ ðfxþ 2xc1ÞJ1ðxÞ
w2ðxÞ ¼ 2xc2J1ðxÞ þ nxI1ðx; xcÞ
w3ðxÞ ¼ �2xc3J1ðxÞ þ 3jI1ðx; xcÞ
w4ðxÞ ¼ ð3gmx2 � 2xc4ÞJ1ðxÞ

w5ðxÞ ¼ �
1

2
PðxÞ � 2xc5pjJ1ðxÞ

w6ðxÞ ¼ jI3ðx; xcÞ
w7ðxÞ ¼ �gmx2J3ðxÞ

ð43Þ

and

Cðt1; t2Þ

¼ � 1

3x cosð3xÞ þ ðkB � 9x2mBÞ sinð3xÞ
½ðw06ð1Þ þ ðkB � 9x2mBÞw6ð1ÞÞB3

0

þ ðw07ð1Þ þ ðkB � 9x2mBÞw7ð1Þ
þ gmu0ð1ÞÞA3�

ð44Þ

Details on the solution of Eq. (24)

After the application of the solvability condition (31)

on the boundary value problem (24),(25), it becomes

w001 þ x2w1 ¼ ixðfþ 2c1ÞuðxÞA
þ ixðndðx� xCÞ þ 2c2uðxÞÞB0

þ ð3jdðx� xCÞ þ 2xc3uðxÞÞB2
0
�B0

� ð3gmu00ðxÞ þ 2xc4uðxÞÞA2 �A

� ðpðxÞ=2þ 2xpjc5uðxÞÞeixt1

ð45Þ

with boundary conditions

w1ð0Þ ¼ 0

� w01ð1Þ � ðkB � x2mBÞw1ð1Þ
¼ 2mbixc1uð1ÞA� ð3gmu0ð1Þ
� 2mBxc4uð1ÞÞA2 �A

þ 2mBixc2uð1ÞB0 � 2mBxc3uð1ÞB2
0

�B0

� 2mBxc5uð1Þpje
irt1

ð46Þ

The solution of Eq. (45) is

w1ðx; t1; t2Þ ¼ K1ðt1; t2Þ cosðxxÞ
þ K2ðt1; t2Þ sinðxxÞ
þ iAw1ðxÞ þ iB0w2ðxÞ
þ B2

0
�B0w3ðxÞ þ A2 �Aw4ðxÞ

þ w5ðxÞeirt1

ð47Þ

where wkðxÞ (k ¼ 1; . . .; 5) are given in Eq. (43)

whereas the coefficients K1;2 of the complementary

solution are undetermined so far; they should be

evaluated by means of the boundary conditions (46),

which however lead to the following singular alge-

braic system in the variables K1;2:

1 0

1 0

� �
K1

K2

� �
¼ 0

0

� �
ð48Þ

the solution of which can be taken as K1;2 ¼ 0 (after

having imposed a normalization condition).
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