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Abstract The present paper is given to investigate

free vibration analysis of stepped beams produced

from functionally graded materials (FGMs). The

differential transformation method is employed to

solve the governing differential equations of the

beams to obtain their natural frequencies and mode

shapes. The power law distribution is used and

modified for describing material compositions across

the thickness of the stepped beams made of FGM. Two

main types of the stepped FGM beams in which their

material compositions can be described by the mod-

ified power law distribution are selected to investigate

the free vibration behaviour. The significant paramet-

ric studies such as step ratio, step location, boundary

conditions and material volume fraction are also

covered in this paper.

Keywords Vibration � Stepped beam � Functionally

graded material � DTM

1 Introduction

FGMs are the new class of composite materials which

have spatially varying material properties. The earliest

FGMs were introduced by Japanese scientists in the

mid-1980s as ultra-high temperature-resistant materi-

als for aerospace applications. Recently, these mate-

rials have found other uses in electrical devices,

energy transformation, biomedical engineering,

optics, etc. [1].

In the study of Wattanasakulpong et al. [2], a multi-

step sequential infiltration technique was used to

fabricate FGM beams for vibration testing. An elab-

orate discussion on FGM fabrication, microstructure

and material volume fraction analysis as well as

vibration experimental set up was presented in the

study. Kapuria et al. [3, 4] created ceramic-metal FGM

beams via powder metallurgy and thermal spray

techniques in order to test bending and vibration

behaviour. For theoretical investigation on vibration

response of FGM beams, there were several reports

dealing with the topic; for example, Sina et al. [5]

presented a new beam theory based on the first order

shear deformation theory (FSDT) to obtain frequency

results of FGM beams which have uniform cross

section throughout the whole length. Simsek [6] used

the Lagrange multiplier method to solve a fundamen-

tal frequency analysis of FGM beams, applying

different beam theories. The vibration response of

FGM beams which have cracks at the edge was

investigated in Refs. [7, 8]. An improved third order
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shear deformation theory (TSDT) was applied to

analyse thermal buckling and elastic vibration of FGM

beams using the Ritz method [9, 10]. On the basic of

Euler-Bernonulli beam theory, nonlinear governing

differential equation was constructed by Fallah and

Aghdam [11] in order to solve the problems of thermo-

mechanical buckling and vibration analyses of FGM

beams resting on elastic foundation. To obtain the

analytical solutions of the nonlinear governing equa-

tion, He’s variational method was employed to carry

out the results of critical bucking temperatures and

natural frequencies of such beams. By using refined

shear deformation theory, Vo et al. [12] provided static

and vibration results of FGM beams using finite

element method with two-noded Hermite-cubic ele-

ment. Buckling and vibration of FGM beams which

have axially varying material compositions were

presented in Refs. [13, 14].

Stepped beam structures are widely used in various

engineering fields in order to economize on the beam

materials and to lighten the beams. They are also

found in engineering structures due to fabrication,

assembly and space constraint. On the investigations

of vibration of stepped beams, there were a number of

reports dealing with the topic [15–18]. However, the

stepped beams selected to investigate free vibration

characteristics in the past are made from isotropic and

laminated composite materials, using different theo-

ries and methodologies.

The DTM is an effective mathematical tool used to

solve ordinary and partial differential equation. By

using the DTM to solve vibration problem, funda-

mental and higher frequencies as well as their

corresponding mode shapes can be obtained accu-

rately without any frequency missing. Malik and Dang

[19] had successfully implemented the DTM to deal

with vibration analysis of isotropic beams supported

by several end conditions. Kaya and Ozgumus [20–22]

applied the DTM to solve many cases of vibration

problems. Pradhan et al. [23] also used the DTM to

find out the buckling results of a single walled carbon

nanotube. It was reported that the DTM results in

vibrational prediction of beams agree very well with

exact solutions, while using the Ritz method, an error

occurs in calculation [24]. Moreover, Salehi et al. [25]

confirmed that the DTM can give more accurate

results in prediction large deformation behaviour of

cantilever beams under point load, compared to those

obtained from the variational iteration method (VIM)

and Adomain decomposition method (ADM). Ni et al.

[26] also concluded that the DTM is a semi-analytical

approach which has high precision and computational

efficiency in vibration analysis.

Among previous investigations on vibration

response of FGM beams, it is found that most

researchers have analysed and presented only the

vibration of uniform cross section FGM beams.

Therefore, in this current investigation, free vibration

analysis of stepped FGM beams is chosen to consider

their behaviour associated with various general

boundary conditions. The DTM is applied to solve

the governing equations of the stepped FGM beams in

order to obtain accurate frequency results and mode

shapes. Several important aspects such as step ratio,

step location, boundary conditions as well as the

material volume fraction index which have impacts on

natural frequencies of such beams are investigated and

discussed in details.

2 Stepped FGM beams

Two types of stepped FGM beams made of ceramic-

metal are chosen to investigate vibration problem in

this study. The geometries and descriptions of the

FGM beam types are shown in Fig. 1.

It can be seen in Fig. 1 that the material compo-

sitions at points p1 and p2 are the same for the FGM

Type-I. However for FGM Type-II, the material at p1

consists of the mixture of ceramic and metal whereas

Section 1 Section 2

L

L1

p2

FGM Type-I (p1=p2)

L2

p1

p1
p2

FGM Type-II (p1≠p2)

ceramic

metal

ceramic
ceramic

metal
metal

h1 h2

x1 x2

w1 w2

ceramic/metal

ceramic/metal

(a)

(b)

Fig. 1 Geometries and descriptions of two types of stepped

FGM beams
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the material at p2 is pure ceramic. It is also defined that

the thickness of the stepped beams at Section 1 is

given as h1 = h and at Section 2 is h2 = nh in which n
is the step ratio parameter (0 \ n B 1).

Based on the rule of mixture, the effective material

properties, Pj, can be written as

Pj ¼ PmjVmj þ PcjVcj ðj ¼ 1; 2Þ ð1Þ

where the subscript j = 1 and 2 denote respectively

the Section 1 and 2 of the stepped FGM beams. Pmj,

Pcj, Vmj and Vcj are material properties and the volume

fraction of the metal and ceramic corresponding to

each beam section, respectively, with the relation

Vmj þ Vcj ¼ 1 ðj ¼ 1; 2Þ: ð2Þ

According to the power law distribution, the

volume fraction of ceramic (Vcj) in each section of

the stepped beams can be seen in Table 1.

It is defined that N and n are the power law or

volume fraction indexes of the stepped FGM beams

for Sections 1 and 2, respectively. The range of these

indexes is 0 B N, n B ?. The FGM beam becomes a

fully ceramic beam when N = n are set to zero. From

the above relationship, the material properties, in

terms of Young’s modulus and mass density in each

section are expressed as

EjðzÞ ¼ ðEcj � EmjÞ Vcj þ Emj; ðj ¼ 1; 2Þ; ð3Þ

qjðzÞ ¼ ðqcj � qmjÞ Vcj þ qmj; ðj ¼ 1; 2Þ: ð4Þ

However for the material property of Poisson’s

ratio (m), it is assumed to be a constant value due to

small difference between the ratio of ceramic and

metal.

To investigate vibration analysis of the stepped

FGM beams, the material stiffness components are

obtained from ðA11;B11;D11Þj ¼
R EjðzÞ
½1�m2�ð1; z; z2Þdz

and the mass density can be calculated by using

I0j = $ qj(z)dz. The upper and lower limits of the

integrals are set according to the thickness of consid-

ered beam section. Therefore, the integral results of

material stiffness components and the mass density in

each beam section can be written in the function of the

volume fraction indexes (N and n) as:

FGM Beam Section 1: (for Section 1, FGM Type-I

and FGM Type II give the same results)

A11 ¼
h

1� m2

Ecm

ðN þ 1Þ þ Em

� �

;

B11 ¼
Ecmh2

1� m2

N

2ðN þ 1ÞðN þ 2Þ

� � ð5aÞ

D11 ¼
h3

1� m2

EcmðN2 þ N þ 2Þ
4ðN þ 1ÞðN þ 2ÞðN þ 3Þ þ

Em

12

� �

;

I01 ¼ h
qcm

ðN þ 1Þ þ qm

� �

ð5bÞ

FGM Beam Section 2: (for FGM Type-I)

A11 ¼
h

1� m2

Ecm Nnþ1
1 � Nnþ1

2

� �

ðnþ 1Þ þ nEm

" #

ð6aÞ

B11 ¼
Ecmh2

1� m2

n
2

Nnþ1
1 þ Nnþ1

2

� �

ðnþ 1Þ þ Nnþ2
2 � Nnþ2

1

ðnþ 1Þðnþ 2Þ

" #

ð6bÞ

D11 ¼
h3

1� m2
Ecm

n2

4
Nnþ1

1 � Nnþ1
2

� �

ðnþ 1Þ

 "

�
n Nnþ2

1 þ Nnþ2
2

� �

ðnþ 1Þðnþ 2Þ þ
2 Nnþ3

1 � Nnþ3
2

� �

ðnþ 1Þðnþ 2Þðnþ 3Þ

!

þ n3Em

12

�

ð6cÞ

I02 ¼ h
qcm Nnþ1

1 � Nnþ1
2

� �

ðnþ 1Þ þ nqm

" #

ð6dÞ

where N1 ¼ n
2
þ 1

2

� �
; N2 ¼ �n

2
þ 1

2

� �
and Ecm = (Ec -

Em); qcm = (qc - qm) in each section.

Table 1 The volume fractions of ceramic based on the power

law distribution of the stepped FGM beams

FGM type-I FGM type-II

Section 1 Vc1 ¼ z
h
þ 1

2

� �N
;

z 2 h
2
; �h

2

� � Vc1 ¼ z
h
þ 1

2

� �N
;

z 2 h
2
; �h

2

� �

Section 2 Vc2 ¼ z
h
þ 1

2

� �n
;

z 2 nh
2
; �nh

2

� � Vc2 ¼ z
nh
þ 1

2

� 	n

;

z 2 nh
2
; �nh

2

� �
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FGM Beam Section 2: (for FGM Type-II)

A11 ¼
nh

1� m2

Ecm

ðnþ 1Þ þ Em

� �

;

B11 ¼
n2Ecmh2

1� m2

n

2ðnþ 1Þðnþ 2Þ

� � ð7aÞ

D11 ¼
n3h3

1� m2

Ecmðn2 þ nþ 2Þ
4ðnþ 1Þðnþ 2Þðnþ 3Þ þ

Em

12

� �

;

I02 ¼ nh
qcm

ðnþ 1Þ þ qm

� �

ð7bÞ

3 Application of DTM to vibration of stepped

FGM beams

Consider a classical beam theory (CBT) based on the

Kirchhoff–Love hypothesis, the partial differential

equation used to describe the free vibration in each

section of the FGM beams can be expressed as [18, 27]:

o4wjðxj; tÞ
ox4

j

þ I0j

kj

o2wjðxj; tÞ
ot2

¼ 0;

xj 2 ½0; L� ðj ¼ 1; 2Þ:
ð8Þ

It is defined that I0j is the mass density, kj ¼
D11 � B2

11

A11

� 	

j
is the material stiffness coefficient cor-

responding to each section of such beams. By using the

decoupling procedure for coupled governing equa-

tions of FGM beams as presented in Ref. [27], the

parameter lambda (kj) is obtained from bending

moment resultant when the axial inertia effect is

neglected. Substituting harmonic vibration, wj(xj, -

t) = Wj(xj)e
ixt into Eq. (8), one can obtain a time

independent governing equation as follows,

d4WjðxjÞ
dx4

j

� I0j

kj

x2WjðxjÞ ¼ 0 ð9Þ

where x is the natural frequency.

The DTM can be applied to solve vibration problem

of stepped FGM beams. The principle of the DTM is to

transform the ordinary and partial differential equa-

tions into algebraic equations. The brief detail of the

method can be described as follows.

By considering rth-order differential transforma-

tion of a function f = f(x) at a point of x = x0, which

can be defined as,

Fj½r� ¼
1

r!

drfjðxjÞ
dxr

j

" #

x¼x0

ð10Þ

where fj(xj) is the original function and Fj[r] is the

transformed function.

The function fj(xj) can be expressed in the form of

Fj[r] as the following equation,

fjðxjÞ ¼
X1

r¼0

ðxj � xj0ÞrFj½r�: ð11Þ

From the relationship between Eqs. (10) and (11),

one can write

fjðxjÞ ¼
X1

r¼0

ðxj � xj0Þr

r!

drfjðxjÞ
dxr

j

" #

x¼x0

ð12Þ

which is known as the Taylor series expansion of fj(xj)

at a point xj = xj0. To solve vibration problem of

beams using the DTM, the governing differential

equation and boundary condition equations as well as

the continuity conditions are transformed into a set of

algebraic equations using transformation rules. The

basic operations required in differential transforma-

tion for the governing differential equations, boundary

conditions, and the continuity conditions are shown in

Tables 2 and 3, respectively [20–22].

The general function, fj(xj), in Tables 2 and 3 is

considered as the transverse displacement Wj(xj).

Apply the basic operations of DTM in Table 2 with

the fundamentals of the DTM presented above and in

Refs. [17–19] to the governing differential equation,

Eq. (9), one can obtain the recurrence equation

associated with the number of terms (r) for approx-

imating solutions as:

Wj½r þ 4� ¼ I0jx2

kjðr þ 1Þðr þ 2Þðr þ 3Þðr þ 4ÞWj½r�

ð13Þ

In order to demonstrate the application of the DTM

to vibration response of the stepped FGM beam, let us

Table 2 Basic operations of DTM for the governing equations

Original functions Transformed functions

fj(xj) = gj(xj) ± hj(xj) Fj[r] = Gj[r] ± Hj[r]

fj(xj) = kgj(xj) Fj[r] = kGj[r]

fj(xj) = gj(xj)hj(xj) Fj r½ � ¼
Pr

l¼0 Gj r � l½ �Hj l½ �

fjðxjÞ ¼ dpgjðxjÞ
dx

p
j

Fj½r� ¼ ðrþpÞ!
r! Gj½r þ p�

fj xj

� �
¼ x

p
j Fj½r� ¼ djðr � pÞ ¼ 0 r 6¼ p

1 r ¼ p
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consider the beam with clamped-free (C–F) boundary

condition. The governing equation in the form of the

recurrence equation for the Section 1 of the beam can

be expressed as:

W1½r þ 4� ¼ I01x2

k1ðr þ 1Þðr þ 2Þðr þ 3Þðr þ 4ÞW1½r�:

ð14Þ

The beam is clamped at the left end (x1 = 0), hence

the deflection W1 = 0 and slope dW1

dx1
¼ 0 at that end.

The non-zero values of the bending moment and shear

force at x1 = 0 are represented by C1 and C2

respectively. Applying the basic operations of DTM

for the boundary condition at x1 = 0, using Table 3,

one obtains

W1½0� ¼ 0; W1½1� ¼ 0; W1½2� ¼ C1; W1½3� ¼ C2:

ð15Þ

By using Eq. (15) with the recurrence equation,

Eq. (14), this leads to W1[r] for all values of r as

follows:

W1½4r� ¼ 0 r ¼ 0; 1; 2; 3. . .: ð16aÞ

W1½4r þ 1� ¼ 0 r ¼ 0; 1; 2; 3. . .: ð16bÞ

W1½4r þ 2� ¼ 2!Ir
01x

2r

kr
1ð4r þ 2Þ! C1 r ¼ 0; 1; 2; 3. . .:

ð16cÞ

W1½4r þ 3� ¼ 3!Ir
01x

2r

kr
1ð4r þ 3Þ! C2 r ¼ 0; 1; 2; 3. . .:

ð16dÞ

Next procedure is given for considering the

Section 2 of the beam, therefore, the governing

recurrence equation of the Section 2 is

W2½r þ 4� ¼ lI01x2

k1ðr þ 1Þðr þ 2Þðr þ 3Þðr þ 4ÞW2½r�;

ð17Þ

where l ¼ I02

I01

k1

k2
:

To consider the boundary condition at the right end

(x2 = 0) of the beam having free (F) condition, the

bending moment d2W2

d2x2
¼ 0 and shear force d3W2

d3x2
¼ 0,

the non-zero values of the deflection and slope account

for C3 and C4 respectively. Again, applying the basic

operations of DTM for the boundary condition at

x2 = 0, using Table 3, one obtains

W2½0� ¼ C3; W2½1� ¼ C4; W2½2� ¼ 0; W2½3� ¼ 0

ð18Þ

Again, by using Eq. (18) with Eq. (17), the expres-

sions of W2[r] for all values of r can be written as

follows:

W2½4r� ¼ lrIr
01x

2r

kr
1ð4rÞ! C3 r ¼ 0; 1; 2; 3:. . . ð19aÞ

W2½4r þ 1� ¼ lrIr
01x

2r

kr
1ð4r þ 1Þ! C4 r ¼ 0; 1; 2; 3. . .:

ð19bÞ

W2½4r þ 2� ¼ 0 r ¼ 0; 1; 2; 3. . .: ð19cÞ

W2½4r þ 3� ¼ 0 r ¼ 0; 1; 2; 3. . .: ð19dÞ

It is assumed that, for a FGM beam having

discontinuous cross-section, stress concentration at

the interchange or the step location of the beam can be

neglected [14, 15]. Hence, the continuity conditions

are

W1ðL1Þ ¼ W2ðL2Þ;
dW1ðL1Þ

dx1

¼ � dW2ðL2Þ
dx2

ð20aÞ

Table 3 Basic operations of DTM for the boundary conditions and continuity conditions

xj = 0 xj = Lj

Original BC Transformed BC Original BC Transformed BC

fj(0) = 0 Fj [0] = 0 fj(Lj) = 0
P

r=0
? Lj

(r) Fj[r] = 0

dfjð0Þ
dxj
¼ 0 Fj [1] = 0 dfjðLjÞ

dxj
¼ 0

P
r=0
? rLj

(r-1) Fj[r] = 0

d2fjð0Þ
dx2

j

¼ 0 Fj [2] = 0 d2 fjðLjÞ
dx2

j

¼ 0
P1

r¼0 rðr � 1ÞLr�2
j Fj½r� ¼ 0

d3fjð0Þ
dx3

j

¼ 0 Fj [3] = 0 d3 fjðLjÞ
dx3

j

¼ 0
P

r=0
? r(r - 1)(r - 2)Lj

(r-3) Fj[r] = 0
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d2W1ðL1Þ
d2x1

¼ k2

k1

d2W2ðL2Þ
d2x2

;

d3W1ðL1Þ
d3x1

¼ � k2

k1

d3W2ðL2Þ
d3x2

ð20bÞ

According to the principle of the DTM, the

continuity conditions are transformed into algebraic

equations using Table 3. The results of the transfor-

mation can be expressed as,

W1½r�LðrÞ1 �W2½r�LðrÞ2 ¼ 0 ð21Þ

W1½r�rL
ðr�1Þ
1 þW2½r�rL

ðr�1Þ
2 ¼ 0 ð22Þ

W1½r�rðr � 1ÞLðr�2Þ
1 � dW2½r�rðr � 1ÞLðr�2Þ

2 ¼ 0

ð23Þ

W1½r�rðr � 1Þðr � 2ÞLðr�3Þ
1 þ dW2½r�rðr � 1Þ

ðr � 2ÞLðr�3Þ
2 ¼ 0

ð24Þ

where d ¼ k2

k1

Using the components in Eqs. (16) and (19) to

substitute into the transformed continuity conditions

in Eqs. (21–24), the results of the substitution can be

arranged and presented in the matrix form as follows,

e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

2

6
6
4

3

7
7
5

C1

C2

C3

C4

2

6
6
4

3

7
7
5 ¼ 0: ð25Þ

Where the elements in the matrix are:

e11 ¼
X1

r¼0

Ir
01x

2rL
ð4rþ2Þ
1

kr
1ð4r þ 2Þ! ; e12 ¼

X1

r¼0

Ir
01x

2rL
ð4rþ3Þ
1

kr
1ð4r þ 3Þ! ;

e13 ¼ �
X1

r¼0

lrIr
01x

2rL
ð4rÞ
2

kr
1ð4rÞ! ; e14 ¼ �

X1

r¼0

lrIr
01x

2rL
ð4rþ1Þ
2

kr
1ð4r þ 1Þ! ;

e21 ¼
X1

r¼0

Ir
01x

2rL
ð4rþ1Þ
1

kr
1ð4r þ 1Þ! ; e22 ¼

X1

r¼0

Ir
01x

2rL
ð4rþ2Þ
1

kr
1ð4r þ 2Þ! ;

e23 ¼
X1

r¼1

lrIr
01x

2rL
ð4r�1Þ
2

kr
1ð4r � 1Þ! ; e24 ¼

X1

r¼0

lrIr
01x

2rL
ð4rÞ
2

kr
1ð4rÞ! ;

e31 ¼
X1

r¼0

Ir
01x

2rL
ð4rÞ
1

kr
1ð4rÞ! ; e32 ¼

X1

r¼0

Ir
01x

2rL
ð4rþ1Þ
1

kr
1ð4r þ 1Þ! ;

e33 ¼ �d
X1

r¼1

lrIr
01x

2rL
ð4r�2Þ
2

kr
1ð4r � 2Þ! ; e34 ¼ �d

X1

r¼1

lrIr
01x

2rL
ð4r�1Þ
2

kr
1ð4r � 1Þ! ;

e41 ¼
X1

r¼1

Ir
01x

2rL
ð4r�1Þ
1

kr
1ð4r � 1Þ! ; e42 ¼

X1

r¼0

Ir
01x

2rL
ð4rÞ
1

kr
1ð4rÞ! ;

e43 ¼ d
X1

r¼1

lrIr
01x

2rL
ð4r�3Þ
2

kr
1ð4r � 3Þ! ; e44 ¼ d

X1

r¼1

lrIr
01x

2rL
ð4r�2Þ
2

kr
1ð4r � 2Þ! ;

ð26Þ

To obtain a non-trivial solution, the determinant of

coefficient matrix in Eq. (25) could be set equal to zero.

For practical calculation, the finite number of terms in

each element of the matrix in Eq. (26) from r to R should

be applied. It is noted that r is the lower limit and R is the

upper limit of the sum operator. An appropriate number

of R can be determined from convergence studies which

will be shown in the following section.

Mode shapes of the step FGM beams can be plotted

by setting C1 to unity in Eq. (25) so that the remaining

nonzero constants (C2, C3,, C4) are solved. Thus, the

mode shapes corresponding to any frequency can be

expressed as the function of Wj(xj) =
P

r=0
? xj

rWj[r].

To obtain the mode shapes with the whole length

coordinate (x), for example in the case of CF beam, its

mode shape functions are:

WðxÞ ¼
W1ðxÞ ¼

P1

r¼0

Ir
01x

2r

kr
1ð4r þ 2Þ x

ð4rþ2Þ þ C2

X1

r¼0

Ir
01x

2r

kr
1ð4r þ 3Þ x

ð4rþ3Þ x 2 ½0; L1�

W2ðL� xÞ ¼ C3

P1

r¼0

lrIr
01x

2r

kr
1ð4rÞ ðL� xÞ4r þ C4

X1

r¼0

lrIr
01x

2r

kr
1ð4r þ 1Þ ðL� xÞð4rþ1Þ

x 2 ½L1; L�

8
>>><

>>>:

ð27Þ
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By following the same procedure, one can solve the

vibration problem of the stepped FGM beams with other

kinds of boundary conditions. The matrix elements for

other boundary conditions that are simply supported at

both ends (S–S), clamped-clamed (C–C) and clamped-

simply supported (C–S) are presented in Table 8 in

Appendix 1. The mode shape functions of these

boundary conditions are also provided in Appendix 2.

4 Numerical results and discussions

In this present study, stepped FGM beams made of

Alumina (Al2O3) and Aluminum (Al); whose material

properties are: Ec = 380 GPa, qc = 3,960 kg/m3,

m = 0.3 for Al2O3 and Em = 70 GPa, qm = 2,702 -

kg/m3, m = 0.3 for Al; are chosen for investigation

throughout the paper.

Using the DTM for solving vibration analysis of

stepped FGM beams, it is important to first carry out

convergence studies. The results of the studies are

presented in Table 4 with various types of boundary

conditions. The stepped FGM beams in this table are

specialised to pure Al2O3 stepped beams by setting

N = n=0 in which some available results were

adopted to compare with the present results. The

available results of Mao and Pietrzko [18] were

computed from the ADM. Based on the numerical

results, it is observed that the DTM gives rapid

convergence for the first to fifth frequencies using only

R = 10, and it also demonstrates computational

stability as well as accuracy for every boundary

condition.

Table 5 gives dimensionless fundamental frequen-

cies of stepped FGM beams. The expression of the

dimensionless form is X ¼ ðxL2
�

hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqm=EmÞ

p
: The

new frequency results of such beams related to

different boundary conditions and beam types are

investigated by varying the values of step ratio. As

shown in the table, the trends of frequency changes for

the cases of C–C, S–S and C–S are the same in which

the frequency results increase with the increasing step

ratio. However, for the case of C–F, the trend is

different and the highest frequency is obtained at

n = 0.5with L1 = 0.5L. By setting n = 1.0, the fre-

quency results can account for the results of uniform

Table 4 Convergence studies and comparisons of frequency results (rad/s) of isotropic stepped beams with various boundary

conditions (L/h = 30; L1 = 0.25 L; n = 0.5)

B.C. R x1 x2 x3 x4 x5

C–F 5 8.749 49.094 119.394 205.588 506.737

7 8.749 49.094 119.362 216.733 370.780

9 8.749 49.094 119.362 216.738 363.580

10 8.749 49.094 119.362 216.738 363.578

8.750* 49.093* 119.362* 216.737* –

C–C 5 50.037 119.293 220.343 278.960 523.585

7 50.037 119.295 216.735 362.759 567.428

9 50.037 119.295 216.735 363.579 557.289

10 50.037 119.295 216.735 363.579 557.194

50.037* 119.296* 216.737* 363.622* –

S–S 5 15.584 65.638 158.459 273.094 334.480

7 15.584 65.638 158.316 295.032 441.986

9 15.584 65.638 158.316 295.064 466.006

10 15.584 65.638 158.316 295.064 466.029

15.583* 65.638* 158.319* 295.074* –

C–S 5 35.479 100.149 190.046 255.724 518.503

7 35.479 100.150 188.253 321.633 560.358

9 35.479 100.150 188.253 322.034 505.256

10 35.479 100.150 188.253 322.034 505.172

(*) Mao and Pietrzko [18]
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FGM beams, which their accuracy are confirmed by

comparing with the available results presented in the

brackets. In general, the natural frequency is higher

when the system becomes stiffer with the increase of

elastic properties. By increasing of step ratio, the beam

has larger size and becomes stronger; therefore, its

frequency is found to increase accordingly.

To study the influences of step location (L1/L) and

step ratio (n) on fundamental frequencies, the dimen-

sionless frequency results are tabulated in Table 6.

Again, the trend of frequency changes of C–F beams

shows different patterns compared to others when

using different step locations. It is also seen that FGM

Type-I provides higher frequency results than those of

FGM Type-II for every boundary condition. This is

because the FGM Type-I has much higher material

stiffness coefficient compared to that of the FGM

Type-II, while, the difference between the mass of the

two beam types are relatively small. Hence, according

to the above discussion, the stronger beam has higher

frequency. In order to clearly understand the relation-

ship between the step location and the step ratio, Fig. 2

shows the relationship of these aspects to the funda-

mental frequencies of FGM-Type I beams with C–F

and C–C boundary conditions. It is seen that the

frequency results change considerably when the

aspects are varied for both boundary conditions. It is

also found that the greatest frequency of C–F beam is

at around L1/L = 0.7 and n = 0.2, whereas for C–C

beam, it is around L1/L = 0.9 and n = 0.9.

Table 7 presents the first three modes of frequency

results of stepped FGM beams by varying the values of

the volume fraction index (n = N). Increasing the

values leads to reduction in frequency results for all

types of beams and boundary conditions. Within a

range of 0 \ n=N B 1, the frequency results of

stepped FGM-Type I beams are higher than those of

the FGM-Type II beams for every boundary condition.

However, this phenomenon is reversed when

n = N[1. Similarly, the material volume fraction

indexes (n and N) are the important parameters that

lead to the change in material stiffness coefficient of

the stepped beam made from FGM. In case of

Table 5 Dimensionless fundamental frequencies of stepped

FGM beams with different step ratios (L/h = 20; L1 = 0.5 L;

N = n = 0.5)

n
B.C. FGM

Type

0.1 0.3 0.5 0.8 1.0

C–F I 0.710 1.791 2.006 1.806 1.663 (1.663)

II 0.661 1.711 1.978 1.805 1.663 (1.663)

C–C I 4.328 5.905 7.255 9.548 10.584 (10.571)

II 4.068 5.791 7.019 9.353 10.584 (10.571)

S–S I 0.354 1.546 2.784 4.165 4.669 (4.665)

II 0.327 1.441 2.636 4.068 4.669 (4.665)

C–S I 3.047 4.901 5.421 6.658 7.294

II 2.848 4.824 5.286 6.526 7.294

(–) Simsek [6]

Table 6 Dimensionless fundamental frequencies of stepped FGM beams with different step ratios and step locations (L = 30;

N = n = 0.5)

BC L1/L FGM type-I FGM type-II

n = 0.3 n = 0.5 n = 0.8 n = 0.3 n = 0.5 n = 0.8

C–F 0.25 0.966 1.446 1.740 0.905 1.381 1.714

0.50 1.877 2.103 1.893 1.793 2.073 1.893

0.75 2.394 2.143 1.874 2.397 2.148 1.878

0.25 5.921 8.205 10.056 5.579 7.897 9.834

C–C 0.50 6.191 7.606 10.009 6.071 7.358 9.805

0.75 6.244 8.681 10.302 5.982 8.487 10.204

0.25 1.524 2.612 4.102 1.421 2.460 3.964

S–S 0.50 1.620 2.918 4.366 1.511 2.763 4.265

0.75 2.650 4.066 4.771 2.499 3.954 4.744

0.25 4.123 5.827 7.052 3.879 5.600 6.909

C–S 0.50 5.138 5.683 6.979 5.057 5.541 6.841

0.75 4.426 6.212 7.410 4.267 6.037 7.355

1096 Meccanica (2015) 50:1089–1101

123



n = N = 0, the stepped beam is made from fully

ceramic and it is classified as the strongest beam which

has the greatest frequency. When the indexes are

increased, n = N[0, this means that the beam is made

from the mixture of ceramic and metal and the

frequency of the beam is reduced according to the

increase of percentage of metal. In addition, it is noted

that n = N\1 means that the beams are made from

Fig. 2 Dimensionless fundamental frequencies of stepped FGM beams: a C–F, b C–C

Table 7 Dimensionless frequency results of stepped FGM beams with different values of the volume fraction index (L = 30;

L1 = 0.5 L; n = 0.5)

B.C. Beam type Mode N = n

0 0.3 0.5 1.0 3.0 5.0 10.0

C–F FGM-I X1 2.435 2.214 2.103 1.911 1.650 1.579 1.489

X2 8.659 8.008 7.642 6.931 5.718 5.381 5.046

X3 25.682 23.760 22.673 20.565 16.902 15.767 14.636

FGM-II X1 2.435 2.194 2.073 1.875 1.660 1.629 1.580

X2 8.659 7.802 7.373 6.666 5.903 5.792 5.620

X3 25.682 23.139 21.867 19.769 17.507 17.177 16.668

C–C FGM-I X1 8.641 7.975 7.606 6.895 5.720 5.402 5.080

X2 25.834 23.901 22.807 20.688 17.004 15.861 14.720

X3 47.617 43.818 41.751 37.854 31.667 30.051 28.354

FGM-II X1 8.641 7.786 7.358 6.652 5.891 5.780 5.609

X2 25.834 23.276 21.997 19.886 17.611 17.279 16.767

X3 47.617 42.902 40.544 36.654 32.461 31.848 30.905

S–S FGM-I X1 3.245 3.045 2.918 2.645 2.089 1.912 1.754

X2 16.887 15.591 14.868 13.487 11.151 10.435 9.706

X3 34.530 31.820 30.333 27.503 22.920 21.713 20.471

FGM-II X1 3.245 2.923 2.763 2.498 2.212 2.170 2.106

X2 16.887 15.215 14.379 12.999 11.512 11.295 10.961

X3 34.530 31.111 29.402 26.581 23.540 23.095 22.411

C–S FGM-I X1 6.508 5.969 5.683 5.156 4.355 4.151 3.928

X2 20.249 18.796 17.954 16.284 13.262 12.321 11.412

X3 42.374 38.909 37.045 33.591 28.252 26.825 25.275

FGM-II X1 6.508 5.863 5.541 5.010 4.436 4.353 4.224

X2 20.249 18.244 17.241 15.587 13.804 13.543 13.142

X3 42.374 38.178 36.080 32.618 28.887 28.341 27.502
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more percentage of ceramic than that of metal,

whereas for n = N[1 the beam has less ceramic.

Therefore, the vibration responses of the beams with

these two ranges are different.

Figure 3 illustrates a 3-D plot of fundamental

frequencies of stepped FGM beams associated with

variations of the volume fraction index in Sections 1

and 2. The frequency results are obtained from FGM-

Type II with C–F boundary condition. It is seen that

substantial changes in the frequency results are

observed at the values of the volume fraction index

varied from 0 to 3 for both sections. In Fig. 4, mode

shapes from the first to third mode of stepped FGM-

Type I beams are illustrated with various boundary

conditions. The volume fraction index is fixed to be

the same for Sections 1 and 2 (N = n = 0.5).

5 Conclusions

In this paper, the DTM is applied to solve the

governing differential equations for predicting vibra-

tion characteristics of stepped FGM beams supported

by various boundary conditions. According to some

previous researches in the open literature, the method

yields accurate frequency results and mode shape of

the beams with small computational efforts. Two main

types of FGM are chosen to make the stepped beams,

Fig. 3 Dimensionless fundamental frequencies of stepped

FGM beams with variations of the volume fraction index in

Sections 1 and 2 (L = 20; L1 = 0.5 L; n = 0.5)

Fig. 4 The 1st to 3th mode shapes of stepped FGM beams with various boundary conditions (L = 30; L1 = 0.5 L; n = 0.5)
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for investigating vibration characteristics. According

to the numerical results, the concluding remarks are

revealed as follows:

• Step ratio, step location, the volume fraction index

and boundary conditions show significant effects

on frequency results for every mode.

• As step ratio increases, the frequencies detected in

C–C, S–S and C–S boundary conditions follow the

same increasing trend. However, the frequency

changes detected in C–F case is dependent on step

location.

• FGM-Type I beam gives higher frequency results

than those of FGM-Type II beam for every mode

and boundary condition.

• Increasing the values of the volume faction index

leads to reduction in frequency results for every

boundary condition and beam type.

The methodology, discussion and numerical results

that are presented in this paper are supposed to be useful

for further development and validation. The DTM can

be extended to deal with various engineering problems.

For example, to design piezoelectric modal senor for

uniform and non-uniform cross section beams, this can

be achieved by using structural mode shape functions

obtained from the DTM. Additionally, to calculate

mode characteristics for piezoelectromechanical beams

[28] and to identify damages on cracked beams [29, 30],

these topics can be analysed by using the DTM.

Appendices

Appendix 1

See Table 8.

Table 8 Matrix elements used for vibration analysis of stepped FGM beams with other types of boundary conditions
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Appendix 2

Mode shape functions for other types of boundary

conditions

For S–S:

For C–C:
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