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Abstract This work presents bending and free

vibration behaviour of carbon nanotubes reinforced

composite (CNTRC) plates using the three dimen-

sional theory of elasticity. The single-walled carbon

nanotubes reinforcement is either uniformly distrib-

uted or functionally graded (FG) along the thickness

direction indicated with FG-V, FG-O and FG-X. In the

present study the effective material properties of

CNTRC plates, are estimated according to the rule of

mixture along with considering the CNT efficiency

parameters. For the plate with simply supported edges

we used Fourier series expansion across the in plane

coordinates as well as the state space technique across

the thickness direction to obtain closed form solution.

Since in the case of plate with non-simply supported

boundary conditions it is not possible to use Fourier

series along the longitudinal and width directions,

therefore it should be employed numerical method

along the above mentioned coordinates. In this

investigation we used semi analytical technique,

differential quadrature method along the in-plane

coordinates and state-space technique across the

thickness direction. Present approach is validated by

comparing the numerical results with those published

results. Furthermore, effect of types of CNT distribu-

tions in the polymer matrix, volume fraction of CNT,

edges boundary conditions and width-to-thickness

ratio on the bending and free vibration behaviour of

FG-CNTRC plate are discussed.

Keywords Static � Vibration � Carbon nanotube �
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List of symbols

ECNT
11 ; ECNT

22 ; Em Young’s modulus of carbon

nanotube and matrix

GCNT
12 ; Gm Shear modulus of carbon

nanotube and matrix

VCNT , Vm Carbon nanotube and matrix

volume fractions

qm, qCNT Mass density of matrix and CNT

gi(i = 1, 2, 3) CNT efficiency parameters

u; v; w x-, y- and z-components of

displacement field

riði ¼ x; y; zÞ Normal stresses

sxysyzsxz Shear stresses

a, b, h Plate dimension in x-, y- and

directions

czy; czx; cxy Shear strains

ei ði ¼ x; y; zÞ Normal strains

mCNT
12 ; mm Poisson ratio of CNT and matrix
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1 Introduction

The special mechanical, thermal and electrical

properties of CNT cause to use it as a reinforcing

constituent instead of conventional fibers in com-

posite structures. Introduction of CNT into polymer

matrix increases the application of reinforcing

composite elements. Due to these exceptional

properties of the CNT, analysis of the static and

dynamic behaviour of carbon nanotubes reinforced

composite (CNTRC) beam, plate and shell struc-

tures has been considered by many researchers in

recent years.

Wuite and Adali [1], presented a multi-scale

analysis of the deflection and stress behavior of

CNTRC beams. Vodenitcharova and Zhang [2] inves-

tigated pure bending and bending-induced local

buckling of a nanocomposite beam reinforced by a

SWNT computationally as well as experimentally

using Airy stress-function technique. Shen [3] dis-

cussed nonlinear bending behavior of simply sup-

ported, FG composite plates reinforced by single-

walled carbon nanotubes (SWCNTs) and subjected to

transverse uniform or sinusoidal load in thermal

environments. Nonlinear free vibration of beam

reinforced by SWCNTs was studied by Ke et al. [4]

based on Timoshenko beam theory along with a von

Kármán-type of kinematic nonlinearity. Shen and

Zhang [5] presented an analytical solution consists of

two steps perturbation technique for thermal buckling

and post-buckling behavior of functionally graded

CNT reinforced composite plates. Shen [6] used

higher order shear deformation theory as well as a

von Karman-type of kinematic nonlinearity to inves-

tigate the post-buckling behavior of CNTRC cylindri-

cal shells subjected to axial compression in thermal

environments. Based on a micromechanical model and

multiscale approach, Shen [7] discussed post buckling

behavior of functionally graded (FG)-CNTRC cylin-

drical shells subjected to mechanical load in thermal

environments. Based on a higher order shear defor-

mation plate theory, Wanga and Shen [8] used an

improved perturbation technique to investigate non-

linear vibration of FG-SWCNT plates rested on elastic

foundation in thermal environments. Arani et al. [9]

investigated buckling behavior of laminated CNTRC

plates analytically based on the CLPT and numerically

based on the TSDT. Yas and Heshmati [10] used

Timoshenko beam theory to analyze vibration of

nanocomposite beams reinforced by randomly ori-

ented straight SWCNTs subjected to moving load.

Based on three dimensional theory of elasticity,

Sobhani et al. [11] used Ashelby–Mori–Tanaka

approach to analyses of vibration characteristic of

cylindrical panel. Wang and Shen [12] investigated

nonlinear vibration and bending of sandwich plates

with nanotube-reinforced composite face sheets rest-

ing on an elastic foundation in thermal environments.

Shen and Xiang [13] discussed nonlinear free vibra-

tion of cylindrical shells reinforced by SWCNTs in

thermal environments using higher order shear defor-

mation theory as well as a von Karman-type of

kinematic nonlinearity. Wang and Shen [14] used the

higher order shear deformation theory along with a

von Kármán-type of kinematic nonlinearity to study

non-linear dynamic response of CNTRC plate rested

on elastic foundations in thermal environments. Me-

hrabadi et al. [15] discussed mechanical buckling

behavior of FG-CNTRC plate using Mindlin plate

theory and first-order shear deformation theory

(FSDT). Alibeigloo [16] presented an analytical

solution for bending behavior of FG-CNTRC rectan-

gular plate embedded in piezoelectric layers by using

theory of elasticity. Based on first-order shear defor-

mation theory, Malekzadeh and Shojaee [17] derived

Buckling response of quadrilateral laminated CNTRC

plate using differential quadrature method (DQM).

Free vibration analysis of FG-CNTRC plate based on

first-order shear deformation theory was investigated

by Lei et al. [18] using the Ritz method. Bending and

free vibration analysis of thin-to-moderately thick

composite plates reinforced by SWCNTs was pre-

sented by Zhu et al. [19] using the FEM and FSDT.

Alibeigloo and Liew [20] used three-dimensional

theory of elasticity to discuss thermo elastic behavior

of FG-CNTRC rectangular plate with simply sup-

ported boundary condition. According to the above

mention survey it was found that three-dimensional

free vibration and static analysis of FG-CNTRC

rectangular plate with various edges boundary condi-

tions has not yet been reported. In this paper, elasticity

solution of FG-CNTRC plate for free vibration and

bending behavior of FG-CNTRC rectangular plate

subjected to uniform pressure with different edges

boundary condition was presented by using differen-

tial quadrature method (DQM) along in-plane coordi-

nates and state-space analytical approach in transverse

direction.
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2 Problem formulation

Consider a CNTRC rectangular plate with length a,

width b and thickness h as shown in Fig. 1. The

SWCNT reinforcement is either uniformly distributed

(UD) or FG in the thickness direction which are

specified as FG-V, FG-O and FG-X. Displacements

component along the x-, y- and z- directions are

denoted by U, V and W, respectively.

Effective material properties of CNTRC plates are

according to the rule of mixture with considering the

CNT efficiency parameters [19];

E11 ¼ g1 VCNT ECNT
11 þ VmEm ð1aÞ

g2

E22

¼ VCNT

ECNT
22

þ Vm

Em
ð1bÞ

g3

G12

¼ VCNT

GCNT
22

þ Vm

Gm
ð1cÞ

Relation between CNT and polymer matrix volume

fractions, is as the follow;

VCNT þ Vm ¼ 1 ð2Þ

The uniform and three types of functionally graded

distributions of the carbon nanotubes along the plate

thickness depicted in Fig. 1 are assumed to be

VCNTðzÞ ¼ V�CNT ðUDÞ

VCNTðzÞ ¼ 2ð1þ 2z

h
ÞV�CNT ðFG� VÞ

VCNTðzÞ ¼ ð
4 zj j
h
ÞV�CNT ðFG� XÞ

VCNTðzÞ ¼ 2ð1� 2 zj j
h
ÞV�CNT ðFG�OÞ

8
>>>>>>>><

>>>>>>>>:

ð3Þ

Effective Poisson ratio, m12 and material density, q
of the CNTRC plates are, respectively [19]

m12 ¼ V�CNTmCNT
11 þ Vmmm ð4aÞ

q ¼ VCNTqCNT þ Vmqm ð4bÞ

And the other effective mechanical properties are

[6]

E33 ¼ E22 ; G13 ¼ G12;G23 ¼ 1:2G12 ;

m13 ¼ m12 ; m31 ¼ m21 ; m32 ¼ m23 ¼ m21 ;

m21 ¼
E22

E11

m12 ð5Þ

The constitutive equations for anisotropic compos-

ite layer can be shown as

r ¼ Qe ð6Þ

where

Fig. 1 Geometry of the CNTRC plates

Meccanica (2015) 50:61–76 63

123



r ¼ rx ry rz syz sxz sxy

� �T
;

e ¼ ex ey ez cyz cxz cxy

� �T

Q ¼

Q11 Q12 Q13 0 0 0

Q12 Q22 Q23 0 0 0

Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Relation between the stiffness elements, Qij and

engineering constants, Eij, Gij and vij are described in

Appendix.

In the absence of body forces, governing differen-

tial equations of motion are

orx

ox
þ osxy

oy
þ osxz

oz
¼ q

o2u

ot2

osxy

ox
þ ory

oy
þ osyz

oz
¼ q

o2v

ot2
ð7Þ

osxz

ox
þ osyz

oy
þ orz

oz
¼ q

o2w

ot2

Three dimensional linear strain–displacement rela-

tions are

ex ¼
ou

ox
; ey ¼

ov

oy
; ez ¼

ow

oz
; cxy ¼

ov

ox
þ ou

oy
;

cxz ¼
ow

ox
þ ou

oz
; cyz ¼

ow

oy
þ ov

oz
ð8Þ

By using Eqs. (6)–(8), governing state-space equa-

tions can be written as follow

d

dz
d ¼ Gd ð9Þ

Where d = {rzuvwsxzsyz}
T is the state variable

vector, and G is the coefficients matrix (see

Appendix).

The in-plane stresses in term of state variables can

be derived as

rx ¼
Q13

Q33

rz þ Q11 �
Q2

13

Q33

� �
ou

ox

þ Q12 �
Q13Q23

Q33

� �
ov

oy

ry ¼
Q23

Q33

rz þ Q12 �
Q13Q23

Q33

� �
ou

ox

þ Q22 �
Q2

23

Q33

� �
ov

oy

ð10Þ

sxy ¼ Q66

ov

ox
þ ou

oy

� �

3 Analytical solution

In this section we use 3D theory of elasticity to derive

exact solution of simply supported CNTRC rectangu-

lar plate.

Relations for simply supported edges boundary

condition maybe written as

rx ¼ 0 ; v ¼ w ¼ 0 at x ¼ 0; a

ry ¼ 0 ; u ¼ w ¼ 0 at y ¼ 0; b ð11Þ

Following assumed solutions which satisfy the

simply supported boundary conditions are introduced

rx ¼ r�x sinðpmxÞ sinðpnyÞeixt ;

ry ¼ r�y sinðpmxÞ sinðpnyÞeixt

rz ¼ r�z sinðpmxÞ sinðpnyÞeixt;

sxz ¼ s�xz cosðpmxÞ sinðpnyÞeixt

syz ¼ s�yz sinðpmxÞ cosðpnyÞeixt ;

sxy ¼ s�xy cosðpmxÞ sinðpnyÞeixt

u ¼ U cosðpmxÞ sinðpnyÞeixt ;

v ¼ V sinðpmxÞ cosðpnyÞeixt

w ¼ W sinðpmxÞ sinðpnyÞeixt ð12Þ

where pm ¼ mp
a
; pn ¼ np

b

It is convenient to define following dimensionless

quantities for the plate

�rij ¼
r�ij
Y
; �Po ¼

Po

Y
; �Qij ¼

Qij

Y
;

Y ¼ 1Gpa ; �Ui ¼
Ui

h
; �z ¼ z

h
; �pm ¼ apm ;

�pn ¼ bpn ; �x ¼ xh

ffiffiffiffi
q
Y

r

ð13Þ
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Upon substitution of Eqs. (13) and (12) into Eq (9),

following dimensionless state space equations can be

derived

d

d�z
�d ¼ �G�d ð14Þ

where �d ¼ �rz
�U �V �W �sxz �syz

� �T
and �G is defined

in Appendix.

Since the coefficient matrix �G is not constant, it is

difficult to solve Eq (14) directly. It is possible to solve

such differential equations by using layer wise tech-

nique via dividing the FGM layer into N fictitious thin

layers. Thus, the coefficient matrix �G can be assumed

constant within each layer. General solution to Eq (14)

for k-th fictitious layer is

�dk ¼ expmð �Gk�1hk�1Þ�dk�1 ð15Þ

By applying the continuity and equilibrium inter-

face conditions, relation between surface traction at

the top and bottom surface can written as the follow

�dðþ0:5Þ ¼ �G��dð�0:5Þ ð16Þ

where �G� ¼ P
N

i¼1
e

1
N

�Gið Þ, zi ¼ 0:5� 2i�1
2N

Non-dimensional in-plane stresses can be derived

from Eqs. (10), (12) and (13) as

�rx ¼
�Q13

�Q33

�rz � �Q11 �
�Q2

13

�Q33

� �
h

a
�pm

�U

� Q12 �
Q13Q23

Q33

� �
h

b
�pn

�V

�ry ¼
�Q23

Q33

�rz � �Q12 �
�Q13

�Q23

�Q33

� �
h

a
�pm

�Ucr

�sxy ¼ �Q66

h

a
�pm

�V þ h

b
�pn

�U

� �

ð17Þ

The top and bottom surfaces of plate in the state of

free vibration are tractions free as

�rz ¼ �sxz ¼ �syz ¼ 0 ; at �z ¼ �0:5 ; 0:5 ð18Þ

Applying Eq (18) to Eq (16), following eigenfre-

quency equation can be obtained

�G�ij

	
	
	

	
	
	 ¼ 0; ði ¼ 1; 5; 6 j ¼ 2; 3; 4Þ ð19Þ

Solving Eq (19) yields the natural frequencies. By

setting x = 0 in Eq (12) and using the following

surface boundary condition, it is possible to consider

bending behavior of CNTRC plate

�rz ¼ �pmn ; �sxz ¼ �syz ¼ 0 at �z ¼ 0:5 ð20aÞ

�rz ¼ �sxz ¼ �syz ¼ 0 at �z ¼ �0:5 ð20bÞ

where �pmn ¼ 16�po

mnp2

Imposing surface traction at the top and bottom

surface of the plate [Eq (20)–Eq (16)] along with

x = 0 yields

�G�ij

h i
�djð�0:5Þ
� �

¼ �pmn 0 0f g ; ði ¼ 1; 5; 6

j ¼ 2; 3; 4Þ ð21Þ

Solving Eq (21) for �dj

� �
, yields displacements at

the bottom surface. Using state vector �dð�0:5Þ and

Eq (15), the state variables in three dimensions will be

obtained. Finally, inserting the obtained state variables

into the induced variable, Eq (17), the in-plane

stresses can be determined.

4 Semi-analytical solution

It is impossible to obtain analytical solution for plats

with non-simply supports boundary condition. A semi-

analytical procedure with the aids of DQ technique

was developed by Chen et al. [21]. In this method, the

r-th order partial derivative of a continuous function

f(x,y,z) with respect to x and y at a given point (xi, yj)

can be approximated as a linear sum of weighted

function values at all of the discrete points in the

domain of x and y, i.e.

orf ðx; y; zÞ
oxr

	
	
	
	
ðxi;yjÞ
¼
XNx

m¼1

Ar
im f ðxm; yj; zÞ

for i ¼ 1; . . .;Ni; j ¼ 1; . . .;Nj;
r ¼ 1; . . .;N � 1

ð22aÞ

orf ðx; y; zÞ
oyr

	
	
	
	
ðxi;yjÞ
¼
XNy

n¼1

Br
jn f ðxi; yn; zÞ

for i ¼ 1; . . .;Ni; j ¼ 1; . . .;Nj;
r ¼ 1; . . .;N � 1

ð22bÞ

orf ðx; y; zÞ
oxr�toyt

	
	
	
	
ðxi;yjÞ
¼
XNy

n¼1

Bt
jn

XNx

m¼1

Ar�t
im f ðxm; yn; zÞ

for i ¼ 1; . . .;Ni; i ¼ 1; . . .;Nj;
r ¼ 1; . . .;N � 1

ð22cÞ
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where Nx, Ny are the number of sampling points in x- and

y- directions, respectively, and Aim
r , Bjn

r are the weight

coefficients in x- and y- directions, respectively [22].

Applying Eqs. (22a)–(22c) and (13) to Eq (9),

following state equations at an arbitrary sampling

point are then obtained

o�rzij

o�z
¼ �

XNx

m¼1

�Aim �sxzmj
�
XNy

m¼1

�Bjm �syzim
� �x2 �wij

o�uij

o�z
¼ �

XNx

m¼1

�Aim �wmj �
1

�Q55

�sxzij

o�vij

o�z
¼ �

XNy

m¼1

�Bjm �wim �
1

�Q44

�syzij

o �wij

o�z
¼

�rzij

�Q33

�
�Q13

�Q33

XNx

m¼1

�Aim �umj �
�Q23

�Q33

XNy

m¼1

�Bjm �vim

o�sxzij

o�z
¼ �

�Q13

�Q33

XNx

m¼1

�Aim �rzmj
þ

�Q2
13

�Q33

� �Q11

� �

XNx

m¼1

�A2
im �umj � �Q66

XNy

m¼1

�B2
jm �uim

� �Q12 þ �Q66 �
�Q13

�Q23

�Q33

� �
XNx

m¼1

�Aim

XNy

s¼1

�Bjs �vms � �x2 �uij

o�syzij

o�z
¼�

�Q23

�Q33

XNy

m¼1

�Bjm �rzim
� �Q12 þ �Q66 �

�Q13
�Q23

�Q33

� �

XNx

m¼1

�Aim

XNy

s¼1

�Bjs �umsþ
�Q2

23

�Q33

� �Q22

� �
XNy

m¼1

�B2
im �vim

� �Q66

XNy

m¼1

�A2
im �vmj � �x2�vij ð23Þ

Similarly the induced variables, Eq (10), after

applying the DQM are;

�rxij
¼

�Q13

�Q33

�rzij
� �Q11 �

�Q2
13

�Q33

� �
XNx

m¼1

�Aim �umj

� �Q12 �
�Q13

�Q23

�Q33

� �
XNy

n¼1

�Bjn �vin

�ryij
¼

�Q23

�Q33

�rzij
� �Q12 �

�Q13
�Q23

�Q33

� �
XNx

m¼1

�Aim �umj

� �Q22 �
�Q2

23

�Q33

� �
XNy

n¼1

�Bjn �vin

�sxyij
¼ �Q66

XNx

m¼1

�Aim �vmjþ
XNy

n¼1

�Bjn �uin

 !

ð24Þ

By assembling of Eq (23) at all sampling points

lead to the following global state equation in matrix

form;

d

d�z
�D ¼ �M �D ð25Þ

where

�D ¼ �rz �u �v �w �sxz �syz

� �T
;

�rz ¼ �rz1
; �rz2

; . . . ; �rzN
f gT ð26Þ

And the other of sub-vectors in Eq (25) are defined

in the same manner as Eq (26). The partitioned matrix
�M is described in Appendix.

Applying the boundary conditions at x = 0, a to

Eq (25) the unique solution for the state vari-

ables, �D, will be derived. Relations of boundary

conditions for Simply (S) support, Clamped (C) sup-

port, Free (F) from supported at the x = 0,a edges are

assumed

S : v ¼ w ¼ rx ¼ 0

C : u ¼ v ¼ w ¼ 0

F : sxz ¼ syz ¼ rx ¼ 0 ð27Þ

After applying the boundary conditions, Eq (25)

becomes;

d

d�z
�Db ¼ �Mb

�Db ð28Þ

Where, the subscript, b, denotes that the state

equation contains the boundary conditions and the

matrix �Mb according to each boundary condition type

are given in Appendix. Applying the same procedure

used in Eq (14) to Eq (28), stresses and displacements

due to static loading as well as natural frequencies are

obtained.
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5 Results and discussion

For numerical illustration, three-dimensional static

and free vibration analysis for UD-CNT and three type

of FG-CNT with the following material properties for

the CNT and matrix polymer is carried out [6]

ECNT
11 ¼ 5:6466 Tpa ; ECNT

22 ¼ 7:08 Tpa ; GCNT
12

¼ 1:9445 Tpa ; mCNT
12 ¼ 0:175

qCNT ¼ 1:4 g=cm3 ; Em ¼ 2:1 Gpa ;

mm ¼ 0:34 ; qm ¼ 1:5 g=cm3 ; g3 ¼ 0:7 g2

V�CNT ¼ 0:11 : g1 ¼ 0:149 ; g2 ¼ 0:934

V�CNT ¼ 0:14 : g1 ¼ 0:150 ; g2 ¼ 0:941

V�CNT ¼ 0:17 : g1 ¼ 0:149 ; g2 ¼ 1:381

In DQM procedure, following sampling points

along the x- coordinate [22] are used:

xi ¼
L

2
1� cos

i� 1ð Þp
Nx � 1

� �
 �

i ¼ 1; 2; 3; . . .;Nx

It is noted that sampling points along the y-coor-

dinate are defined the same as x-direction. At first, we

presente numerical results in Table 1 for CNTRC

square plate to show the convergence of DQM. From

the table it can be observed that, regardless of case of

CNT distribution, at sampling point Nx = Ny = 11

numerical results converge to the analytical results.

Further investigation is to show the validity of the

present approach. For this purpose, numerical results

for the square plate with various kind of CNT

distributions as well as different kind of edges

boundary conditions are presented in Table 2 and

compared with the results obtained by Zhu et al. [19].

As the Table shows, the results of present approach for

the thin plate are nearly the same as the results of Ref.

[19] and for the thick plate some discrepancy can be

observed which is due to the conventional two

dimensional theory that has been used in Ref. [19].

To validate the frequency behaviour of CNTRC

square plate, Non-dimensional frequency parameters

are presented numerically in Tables 3 and 4. Table 3

shows analytical results for the first three dimension-

less frequencies of thin and thick plates with different

case of CNT distributions. From comparison good

agreement can be observed especially for the thin

plate. In addition, we present numerical results for the

plate with clamped edges conditions as well as

different case of CNT distributions in Table 4. As

the table shows, increase the CNT volume fraction

causes to increase the frequency parameter. Further

conclusion is that in the case of FG - XCNT distribu-

tion, fundamental frequencies are greater than that for

the other case of CNT distributions. As expected, it is

also seen that non-dimensional frequency for the plate

with four edges clamped conditions is maximum

where as it is minimum for the plate with four edges

simply supported conditions. Effect of SCSC edges

conditions on first three nondimensional frequencies

of thin and thick CNTRC square plate with three CNT

volume fraction is depicted in Table 5. According to

the table, CNT volume fraction affects the frequency

parameter at higher modes significantly. Further

conclusion is that the frequency parameter, regardless

of case of CNT distribution, for the plate with SCSC

condition is greater than that for the plate with SSSS

conditions and is smaller than that for the plate with

CCCC conditions. For further discussion numerical

results for CNTRC plate are obtained and plotted in

Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.

Figure 2 depicts the convergence of the analytical

solution. According to the figure, by increasing the

half wave number in longitudinal and width direction

up to m = n = 21 exact solution can be achieved.

Figures 3, 4, 5 and 6 shows the effect of different cases

of CNT distribution in polymer matrix on the longi-

tudinal normal stress and displacements distribution of

CNTRC square plate. The symmetric distribution of

CNT in the cases of UD, FG-X and FG-O cause the

distribution of stress as well as displacements to be

symmetry. Also from Figs. 4, 5 and 6 it is seen that

displacement components at a point in the FG-X

distribution is smaller than that the other cases of CNT

distribution at the same point, therefore the numerical

results for parametric study is for the case of FG-X

CNT distribution. Influence of edges boundary condi-

tions on through the thickness distribution of trans-

verse displacement and longitudinal normal stress are

presented in Figs. 7 and 8. According to figures,

transverse displacement as well as longitudinal normal

stress in the case of CCCC boundary condition has

minimum value in comparison with the other edge

conditions. Further conclusion is that the effect of

CCCC edges boundary condition on the stress and

displacements is more significant. Distribution of
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transverse and width displacements along the thick-

ness for thin and thick CNTRC square plate is depicted

in Figs. 9 and 10. Thickness to length ratio affects

transverse displacement as well as latitudinal dis-

placement significantly. In addition, it is seen that

regardless of plate thickness, transverse displacement

is independent of transverse coordinate whereas the

width displacement varies linearly along the thickness

direction. Effect of CNT volume fraction on through

the thickness distribution of transverse and longitudi-

nal displacements is presented in Figs. 11 and 12.

Increases CNT volume fraction causes to increase

transverse displacement (Fig. 11). From Fig. 12 it can

be observed that increase the CNT volume fraction

decreases the longitudinal displacement. Since the

axial stiffness of CNT is greater than the radial

stiffness, so when CNT increases the stiffness of the

plate in the longitudinal direction increases and

consequently the longitudinal displacement decreases.

Besides, it is seen that the rate of decreasing the width

displacement decreases with increasing the CNT

volume fraction. Effect of aspect ratio, a/b, on

fundamental frequency of CNTRC rectangular plate

for three volume fraction of CNT is shown in Fig. 13.

Fundamental frequency of the plate with aspect ratio

a/b = 2.5 is more affected by CNT volume fraction in

comparison with the other aspect ratio. Influence of

edges boundary conditions on dimensionless funda-

mental frequency for thin and thick CNTRC square

plate is presented in Fig. 14. As expected and it is

observed from this figure, regardless of thickness to

length ratio, fundamental frequency for the plate with

CCCC boundary conditions has maximum value and it

is minimum for the plate with SSSS boundary

conditions. Moreover it can be concluded that the

CNT affects the fundamental frequency in higher CNT

volume fraction significantly. Figure 15 depicts the

effect of thickness to length ratio on dimensionless

fundamental frequency of CNTRC square plate with

various CNT volume fractions. According to the

figure, influence of CNT in thick plate is more

significant and it is nearly negligible in thin plate.

Also it can be concluded that the effect of CNT in

higher CNT volume fraction is greater than that in

lower volume fraction.

6 Conclusions

We presented a three-dimensional static and vibration

analysis of FG-CNTRC rectangular plate with four

cases of CNT distribution. Material properties are

assumed to vary through the thickness. Analytical

solution is presented for the plate with simply

Table 1 Dimensionless

longitudinal normal stress at

top surface of CNTRC

square plate with x ¼ y ¼ a
2
,

V* = 0.11, h/a = 0.02

Distribution of CNT sample points (Nx = Ny) Analytical (m = n = 21)

5 7 9 11

UD -0.2056 -0.2038 -0.2033 -0.2034 -0.2033

FG-X -0.2739 -0.2702 -0.2695 -0.2695 -0.2695

Table 2 Non-dimensional central deflection in top surface of square plate with V* = 0.17, h/a = 0.02

Distribution of CNT UD FG-V FG-O FG-X

h/a 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02

SFSF Ref. [19] 2.207 9 10-3 0.695 2.691 9 10-3 1.01 3.787 9 10-3 1.329 1.596 9 10-3 0.4772

Present(DQM) 2.211 9 10-3 0.6921 2.793 9 10-3 1.0199 3.53 9 10-3 1.348 1.763 9 10-3 0.4802

SCSC Ref. [19] 2.124 9 10-3 0.7135 2.461 9 10-3 0.979 2.865 9 10-3 1.252 1.804 9 10-3 0.499

Present(DQM) 2.107 9 10-3 0.7131 2.493 9 10-3 0.9771 2.892 9 10-3 1.246 1.814 9 10-3 0.5005

CCCC Ref. [19] 1.412 9 10-3 0.1698 1.486 9 10-3 0.2384 1.595 9 10-3 0.3085 1.318 9 10-3 0.1232

Present(DQM) 1.353 9 10-3 0.1699 1.503 9 10-3 0.2407 1.632 9 10-3 0.3107 1.277 9 10-3 0.1232

SSSS Ref. [19] 2.394 9 10-3 0.7515 2.864 9 10-3 1.082 3.378 9 10-3 1.416 2.012 9 10-3 0.5132

Present(Analytical) 2.376 9 10-3 0.7523 2.935 9 10-3 1.082 3.450 9 10-3 1.412 2.027 9 10-3 0.5156
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Table 3 Effects of CNT volume fraction on the dimensionless natural frequency, �x� ¼ x a2=h
ffiffiffiffiffi
qm

Em

q

, of thin and thick plate with

SSSS condition

VCNT
* h/a Mode UD FG-V FG-O FG-X

Present Ref. [19] Present Ref. [19] Present Ref. [19] Present Ref. [19]

0.11 0.1 (1,1) 13.555 13.532 12.263 12.452 11.332 11.550 14.668 14.616

(2,1) 17.666 17.700 16.909 17.060 16.106 16.265 18.600 18.646

(3,1) 19.427 19.449 19.477 19.499 19.477 19.499 19.477 19.499

0.02 (1,1) 19.168 19.223 16.208 16.252 14.280 14.302 22.898 22.984

(2,1) 23.284 23.408 21.046 21.142 19.306 19.373 26.617 26.784

(3,1) 34.054 34.669 32.785 33.350 31.092 31.615 36.919 37.591

0.14 0.1 (1,1) 14.357 14.306 13.058 13.256 12.125 12.338 15.388 15.368

(2,1) 18.354 18.362 17.578 17.734 16.699 16.848 19.313 19.385

(3,1) 19.775 19.791 19.862 19.879 19.862 19.879 19.863 19.879

0.02 (1,1) 21.328 21.354 17.968 17.995 15.799 15.801 25.491 25.555

(2,1) 25.199 25.295 22.566 22.643 20.517 20.563 29.042 29.192

(3,1) 35.679 36.267 34.111 34.660 32.006 32.509 39.171 39.833

0.17 0.1 (1,1) 16.838 16.815 15.253 15.461 14.103 14.282 18.173 18.278

(2,1) 22.014 22.063 21.14 21.307 19.983 20.091 23.319 23.541

(3,1) 24.306 24.337 24.480 24.511 24.480 24.512 24.481 24.512

0.02 (1,1) 23.622 23.697 19.932 19.982 17.531 17.544 28.264 28.413

(2,1) 28.825 28.987 26.098 26.204 23.730 23.783 33.163 33.434

(3,1) 42.386 43.165 40.959 41.646 38.257 38.855 46.605 47.547

Table 4 Effects of CNT volume fraction on the dimensionless natural frequency, �x� ¼ x a2=h
ffiffiffiffiffi
qm

Em

q

, of thin and thick plate with

CCCC condition

VCNT
* h/a Modes UD FG-V FG-O FG-X

Present Ref. [19] Present Ref. [19] Present Ref. [19] Present Ref. [19]

0.11 0.1 1 17.978 17.626 17.086 17.211 16.432 16.707 18.510 18.083

2 23.195 23.041 22.662 22.818 21.995 22.253 23.763 23.606

3 34.495 33.592 32.995 33.070 31.850 32.378 35.039 34.338

0.02 1 39.53 39.730 33.809 34.165 29.981 30.303 45.971 46.166

2 43.569 43.876 38.600 39.043 35.036 35.444 49.639 49.934

3 53.727 54.768 50.052 51.204 46.762 47.878 59.219 60.225

0.14 0.1 1 18.55 18.127 17.721 17.791 17.074 17.311 19.022 18.593

2 24.130 23.572 23.293 23.413 22.589 22.782 24.385 24.243

3 34.797 34.252 34.168 34.101 33.112 33.411 35.866 35.224

0.02 1 43.444 43.583 37.208 37.568 33.045 33.369 50.200 50.403

2 47.243 47.479 41.736 42.175 37.753 38.145 53.733 54.025

3 57.025 57.968 52.833 53.963 48.975 50.055 63.124 64.112

0.17 0.1 1 22.438 22.011 21.413 21.544 20.637 20.833 23.075 22.748

2 28.980 28.801 28.433 28.613 27.486 27.651 29.859 29.878

3 43.131 42.015 41.380 41.431 40.230 40.501 44.125 43.293

0.02 1 48.805 49.074 41.665 42.078 36.911 37.247 56.767 57.245

2 53.921 54.324 47.790 48.309 43.147 43.577 61.620 62.236

3 66.758 68.069 62.349 63.755 57.611 58.890 74.202 75.746
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supported edges by using Fourier series along the in-

plane axis and state space method in thickness

direction. Furthermore, a semi analytical solution for

the plate with non-simply supported boundary condi-

tions is carried out by using DQM along the longitu-

dinal and width direction instead of Fourier series.

Table 5 Effects of CNT volume fraction on the dimensionless

natural frequency, �x� ¼ x a2=h
ffiffiffiffiffi
qm

Em

q

, of thin and thick plate

with SCSC condition

VCNT
* h/a modes UD FG-V FG-O FG-X

0.11 0.1 1 14.620 13.458 12.559 15.699

2 19.420 19.480 19.477 19.477

3 20.972 20.371 19.624 21.862

0.02 1 20.138 17.380 15.509 23.765

2 27.222 25.413 23.745 30.331

3 41.592 40.774 39.007 44.385

0.14 0.1 1 15.399 14.223 13.299 16.427

2 19.755 19.865 19.863 19.864

3 22.030 21.047 20.198 22.610

0.02 1 22.233 19.070 16.935 26.315

2 28.997 26.822 24.802 32.666

3 43.178 42.028 39.782 46.650

0.17 0.1 1 18.179 16.767 15.611 19.523

2 24.300 24.480 24.364 24.480

3 26.165 25.509 24.480 27.479

0.02 1 24.852 21.432 19.048 29.414

2 33.798 31.644 29.205 38.034

3 51.873 50.951 47.926 56.272
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Effectiveness of the method in predicting the exact

behaviour of FG-CNTRC plate was checked by

comparing its numerical results with the related

published results in literature. From the study, it is

concluded that

– Case of CNT distribution affects the bending

behaviour of CNTRC plate significantly and in this

investigation FG-X CNT distribution has mini-

mum displacement and maximum fundamental

frequency.

– The numerical results reveal that the variations of

material properties along the thickness direction

affect the response of FG-CNTRC plate.

– Absolute distribution of axial normal stress across

the thickness of FG-CNTRC plate would be

symmetric with respect to the mid plane when

the CNT distribution is symmetric.

– Axial normal stresses and transverse displacement

in the case of CCCC, at a point are always smaller

in magnitude than those at the corresponding points

in the other three cases of boundary condition.

– Increases the CNT volume fraction causes to

decrease the transverse and longitudinal displace-

ments and the rate of decreasing the transverse

displacement decreases by increasing the CNT

volume fraction.

– Non-dimensional natural frequencies strongly

depend on the case of CNT distribution CNT

volume fraction.

– Effect of CNT volume fraction in thick plate is

more significant.

– Influence of CNT volume fraction in clamped edges

is greater than that for the other edges conditions.
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Appendix

Q11 ¼
E11

D
1� m23m32ð Þ ; Q22 ¼

E22

D
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