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Abstract A quasi-static rate-independent model of

delamination of linearly elastic bodies at small strains,

sensitive to mode of delamination, using interfacial

damage and interfacial plasticity as two internal

parameters, is further developed with the aim to

extract representations typically employed in engi-

neering interface-models, i.e. fracture envelope and

fracture energy dependence on the mode mixity,

which are suitable for the model fitting to experimental

data. Moreover, two concepts of solutions are imple-

mented: globally stable energy-conserving solutions

or stress-driven maximally-dissipative local solutions,

arising by the fully implicit or by a semi-implicit time-

stepping procedures, respectively, both yielding

numerically stable and convergent time-discretiza-

tions. Spatial discretization is performed by the

symmetric Galerkin boundary-element method

(SGBEM). Alternating quadratic programming is

implemented to cope with, respectively, global or

local, energy-minimizations in the computation of the

time-discretized solutions. Sample 2D numerical

examples document applicability of the model as well

as efficiency of the SGBEM numerical implementa-

tion and facilitate comparison of the two mentioned

solution concepts.

Keywords Adhesive contact �Debonding � Interface

fracture � Interface damage � Interface plasticity �
Imperfect interface �Weak interface � Symmetric

Galerkin BEM � Alternating quadratic programming �
Local-solution concepts

1 Introduction

Number of applications of layered and laminated

structures is increasing recently, an example being

applications of composite materials extensively used

in aircraft industry nowadays, where powerful numer-

ical methods to characterize damage initiation and

propagation are required, e.g. [2]. In particular, the

problem of interface cracks initiation and propagation

is fundamental in the analysis of these structures.

Therefore, development and investigation of relevant

mathematical models of interface damage and fracture

seems to be very important. In many situations, the
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School of Engineering, University of Seville,

Camino de los Descubrimientos s/n, 41092 Seville, Spain

T. Roubı́ček
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interface between bulk subdomains, usually repre-

sented by a relatively thin adhesive layer, can be

partially or completely damaged. We model this layer

as infinitesimally thin, speaking thus about a delami-

nating interface. This situation is usually referred to as

delamination—debonding of adjacent material bodies.

There are several possibilities to describe the

interface damage by energy-based principles. The

present model follows Frémond’s approach [19] and

defines a scalar damage (or delamination) variable

along the interface, cf. also [20, 25, 47] and references

therein. Along with this variable, an energy formula-

tion governing the adhesive damage until it breaks is

proposed. The proposed energy functionals include

not only the energy stored in the adjacent bulk

subdomains and in the adhesive interface but also

the dissipated energy. The inelastic delamination

process can be very fast comparing to the typical rate

of outer loading, and then this dissipation (in particular

also in the aforementioned references) can and will be

described as a reasonable approximation of a rate-

independent process.

From the physical point of view, the dissipation of

energy at an interface can be of a different nature. The

first one, given by the damage of the adhesive interface

during the loading process applied, has already been

mentioned above. However, this rather simple formu-

lation does not include all the physical phenomena that

can take place at an interface. During the damage

process in this (infinitesimally) thin adhesive layer, the

growing cracks can be loaded in pure opening or shear

mode (Mode I or II, respectively), or in mixed mode.

In order to provide a better reflection of the experi-

mental results, another interface variable is included in

the present model to reflect an increase of the fracture

toughness in the Mode II. This variable represents

plastic tangential slip along the interface describing

some plastification in the adhesive before the debond-

ing of the adjacent bulk subdomains [38, 44, 47, 48].

Related models including plasticity at the interface

were developed and studied, sometimes also experi-

mentally verified, in [16, 21, 22, 27, 32, 37, 50, 55,

63]. Another dissipative process which can take place

at the interface is friction. Here, after delamination,

however, only simple frictionless contact is consid-

ered for the sake of simplicity; see [1, 54] for interface

models including friction.

We consider small strains and isotropic, piecewise

homogeneous and linearly responding material and

neglect in particular inertia, viscosity, and any tem-

perature-dependent effects. Therefore, in particular,

the elastic state of the adjacent bulk subdomains is

governed by systems of linear partial differential

equations and can be analyzed by any suitable numer-

ical technique, typically finite- or also boundary-

element methods (FEM or BEM, respectively). Here,

the symmetric Galerkin boundary element method

(SGBEM) [7, 49, 52, 57] is applied to the above

introduced delamination (or debonding) problems.

SGBEM enables a natural derivation by means of an

energy-based formulation [6, 7, 61, 62] which is its

principal advantage in the present approach to charac-

terize the damage and failure of an adhesive interface.

The numerical treatment of the solution process

includes as a crucial part an algorithm for finding the

global or (some specific) local minima of incremental

problems. This kind of damage-type problems ulti-

mately leads to a generally non-convex mathematical

programming. In the present implementation, an

alternating minimization algorithm (AMA) is

designed to split the solution to a series of quadratic-

programming calculations. The algorithms for this

kind of solutions can effectively be based on conjugate

gradient schemes [17], which were successfully

implemented in the present work.

The plan of this paper is the following: In Sect. 2,

we introduce the model involving interface damage

and plasticity and make its certain fitting to a

conventional engineering model. A computer imple-

mentation of the two solution concepts related to two

numerical stable ways of time discretization for this

model is presented in Sect. 3. Eventually, in Sect. 4,

the proposed approaches are also tested numerically in

two examples to demonstrate the behavior of the

model and to assess its suitability in a particular

physical situation.

2 A model involving interface plasticity

and damage

For the sake of simplicity, only 2D problems will be

considered in the present work. Let a body be defined

by a bounded planar domain X � R
2 with boundary

oX ¼ C.

The domain X consists of several subdomains Xg.

For the sake of simplicity, only two non-overlapping

subdomains XA and XB with Lipschitz boundaries
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CA ¼ oXA and CB ¼ oXB will be considered herein-

after, cf. Fig. 1. Let ng denote the unit outward normal

vector defined a.e. at Cg and let sg denote the unit

tangential anticlockwise oriented vector.

The common part of CA and CB, called interface, is

denoted as CC ¼ CA \ CB. Dirichlet boundary condi-

tions defined on a part of the outer boundary represent

a hard-device loading, prescribing displacements u ¼
w at CA

u and CB
u . Homogenous Neumann boundary

conditions are defined on the remaining traction free

part of the outer boundaries, denoted as CA
t and CB

t ,

prescribing tractions t ¼ 0. Thus, we consider Cg ¼
C

g
u[C

g
t [CC (overline denoting closure of a set), where

g ¼ A, B, with C
g
u\CC ¼ ;, and obviously

Cg
u\C

g
t ¼ Cg

t \CC ¼ ;.

2.1 Stored and dissipated energy functionals

governing the model

The interface CC is considered as an infinitesimally

thin adhesive layer represented by a continuous spring

distribution with normal and tangential elastic stiff-

nesses kn and ks, respectively. It is considered that the

subdomains can debond along the interface CC, this

debonding process being considered as rate-indepen-

dent. During this process the material of the adhesive

layer is damaged. This is modelled by a scalar damage

variable f which varies at each interface point between

one and zero: value one and zero, respectively,

corresponding to undamaged and fully damaged

adhesive at a particular point. In addition to this

variable, a plastic tangential slip variable p is consid-

ered at the interface which allows for making a

difference between fracture Mode I and II in the

following sense: some additional dissipated energy is

associated to interface fracture in Mode II in

agreement with experimental observations of interface

crack growth, where the energy dissipated in Mode II

is significantly greater than that dissipated in Mode I

and also correspondingly the associated plastic zones

in the adjacent bulk are larger in Mode II than in

Mode I. It is expected that the interface plastic

behaviour considered in the present work represents

a useful and practical approximation of the plastic

phenomena associated to relatively narrow plastic

zones in the bulk located in the interface vicinity.

Let us remark that the idea of the interfacial

plasticity can be used in adhesive contact modelling

also for different purposes than mode-sensitivity,

namely fatigue, cf. [51].

Let us consider the energy stored [25, 46, 47] in the

structure (given by XA;XB and CC) obeying the

aforementioned type of interface damage and kine-

matic-hardening-plasticity model [44], with the plas-

tic slope kH, as

The first two integrals, representing the elastic strain

energy in the bulk (adjacent subdomains Xg), are

Fig. 1 Model of debonding of two subdomains

Eðt;u;f;pÞ ¼

Z
CA

1

2
uA � tAðuAÞdSþ

Z
CB

1

2
uB � tBðuBÞdS

þ
Z

CC

1

2

�
f
�

kn u½ �2nþks u½ �s�p
� �2

�
þkHp2þ k0jrsfj2þ k1jrspj2

�
dS if ug ¼wgðtÞ on Cg

u;and

if u½ �n�0&0�f�1 on CC;

þ1; elsewhere.

8>>>>>>><
>>>>>>>:

ð1Þ
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expressed in their boundary form (taking into account

that tg ¼ tgðugÞ), which is advantageous when the

numerical technique for solving elastic problems in Xg

is also boundary based. The first condition on CC is the

Signorini condition of the unilateral contact, where the

relative normal displacement u½ �n¼ uB � uAð Þ�nA is

introduced. Similarly, the relative tangential displace-

ment (or slip) u½ �s is defined u½ �s¼ uB � uAð Þ�sA.

The gradient terms are added to the functional in a

similar way as it is usual in the gradient theory of

damage or plasticity, see [20]. It includes some

nonlocal effect to the internal parameters and facili-

tates the mathematical treatment of the model [47].

The parameters k0 and k1 are usually assumed small,

determining a certain length-scale of possible oscilla-

tion of f and p, respectively, along CC. Note that, in the

present 2D case, the surface gradients rsf and rsp
reduce to the tangential derivatives with respect to CC.

The dissipation potential for a rate-independent

process can be represented by a degree-1 homoge-

neous functional [36]. Considering both processes of

the interface damage and of the plastic slip, the

interface dissipation potential is given as follows:

Rð _f; _pÞ¼

Z
CC

�
Gdj _fjþryieldj _pj

�
dS if _f�0 onCC;

þ1; elsewhere.

8<
:

ð2Þ

The rates of the damage and the plastic slip are

denoted by _f and _p, respectively; e.g. _f ¼ of
ot

. The

parameter Gd is the (minimum) interface fracture

energy (sometimes called activation energy) required

to a complete damage (debond) of a unit of area of the

interface following the linear elastic-purely brittle part

of the interface constitutive law. In particular, Gd

represents the interface fracture energy in Mode I.

Moreover, ryield is the interface yield (shear) stress for

initiation of the plastic slip along the interface.

The rate-independent evolution is governed by the

initial-value problem for the system of nonlinear

variational inclusions

ouEðt; u; f; pÞ 3 0; uð0Þ ¼ u0; ð3aÞ

o _fRð _fÞ þ ofEðt; u; f; pÞ 3 0; fð0Þ ¼ f0; ð3bÞ

o _pRð _pÞ þ opEðt; u; f; pÞ 3 0; pð0Þ ¼ p0; ð3cÞ

where the symbol o refers to partial subdifferential

relying on convexity of pertinent functionals with

respect to each particular variable, see [47], and where

we already reflected that o _pR is independent of _f and

that o _fR is independent of _p. Note that, in fact, u0 is

here uniquely determined by f0 and p0 through

ouEð0; u0; f0; p0Þ30. Note also that here all involved

functionals are indeed non-smooth due to the absolute

values and unidirectional constraint in (2) or Signorini

unilateral and the f- constraints in (1). Recall that the

subdifferential oFðwÞ of an ‘energy’ functional FðwÞ
at w is a set of ‘forces’ (dual quantities) F, such that for

the ‘work’ F;wh i the inequality holds hF; v� wi þ
FðwÞ�FðvÞ for any appropriate v. Thus, vanishing F

provides the first-order optimality condition for the

minimization of F .

It should be stressed that the definition of local-

solution concept to the initial-value problem (3)

introduced in Sect. 2.3 below involves the time

derivative of stored energy o
ot
E in (24a) which is

hardly defined for time-dependent boundary condition

in (1). Hence, using an additive shift of displacement

u by an appropriate extension of w to obtain

homogeneous boundary conditions as described e. g.

in [44, 47] is required to give a sense to o
ot
E for a

transformed E; we omit details about this standard

transformation. Here, if CC and Cg
u are far from each

other, one can alternatively benefit from usage of

BEM in Sect. 3.3 below to reformulate (24) only in

terms of values of u on CC and thus to eliminate simply

the time-dependent constraints on Cg
u; again we omit

details.

2.2 Interface constitutive law—engineering

insight

The present interface model can be described in terms

of the energy release rate (ERR). In the linear elastic

interface model [12, 14, 28], the ERR at the crack tip

can be shown to be defined as the elastic strain energy

per unit area stored in the ‘spring’ located at the crack-

tip prior to failure. Although, the following derivation

is carried out having in mind this ‘spring’ at the crack

tip, in fact they are valid for any other undamaged

‘spring’.

An engineering insight into the present interface

constitutive law can be summarized by the two

conditions which activate two inelastic processes

included in the formulation. The first one is the

activation criterion for initiation of debonding (interface
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damage) which can be derived from the condition (3b)

considering only the crack-tip spring. It reads

1

2
knu2

n þ ks us � pð Þ2
� �

�Gd þ divs

�
k0rsf

�
; ð4aÞ

where un ¼ u½ �n� 0 and us ¼ u½ �s represent the elon-

gation of the spring in the normal and tangential

directions, respectively. The last term effectively

modifies the threshold Gd according the variation of

the damage profile in a vicinity of a current point,

realizing thus nonlocal hardening/weakening-like

effects. In fact, the form of this term in (4a) holds

only on a flat CC while on a curved boundary a more

complicated form arises from (3b) with (1). Of course,

(3b) itself represents the complementarity problem

which, together with (4a), involves still

_f� 0 and _f
1

2
knu2

n þ ks us � pð Þ2
� �

� Gd � divs k0rsfð Þ
� 	

¼ 0:

ð4bÞ

The complementarity problem (4) is to be valid on

CC. Actually, we wrote it for simplicity for f [ 0

while, in general, it still should involve the multiplier

to the constraint f� 0 while the constraint f� 1 in (1)

can be assumed nonactive due to the constraint _f� 0 in

(2) if the initial condition satisfies it, i.e. if f0� 1.

The evolution of the interface plastic slip p is

analogous with the evolution of plastic strain in the

conventional plasticity. The condition for evolution of

plastic slip can be derived from (3c) which provides

the following inequality for the crack-tip spring

fks

�
us � p

�
� kHpþ divs

�
k1rsp

�

 

� ryield ð5aÞ

assuming again that CC is flat. In fact, the classical

formulation of (3c) provides, likewise in the case of

(4), the complementarity problem which completes

(5a) still by

8 jrj � ryield :

_p � ðr� fks

�
us � p

�
� kHpþ divs

�
k1rsp

��
� 0:

ð5bÞ

Thus, due to (5a), p starts or restarts evolving when

the tangential driving stress reaches the yield threshold

ryield. Hence, in the positive direction of the tangential

displacement we have

fks

�
us � p

�
� kHp ¼ ryield � divs

�
k1rsp

�
: ð6Þ

Disregarding the influence of the gradient terms for more

lucid explanation of the essence of functioning of the

model, more detailed analysis of the interface constitu-

tive law, in particular schematic traction-displacement

plots, can be found in [44], here we only mention one

important relation of the material characteristics for the

model to produce the desired effects, namely:

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2ksGd

p
\ryield�

ffiffiffiffiffiffiffiffiffiffiffiffi
2ksGd

p
: ð7Þ

The upper bound of the yield stress is necessary for making

possible to initiate plastic slip before the total interface

damage. The lower bound is required to avoid plastic slip

evolution, governed by (5), after debonding (f ¼ 0).

Actually, satisfaction of inequalities in (7) is not

strictly necessary for the above model to work, c.f.

[44]. If the right-hand side inequality is not fulfilled,

i.e. ryield is too high with respect to Gd, then, as could

be expected, the model response will be brittle and

insensitive to fracture mode mixity and no plastic slip

will appear before the interface breakage. If the left-

hand-side inequality in (7) is not fulfilled, i.e. the

maximum shear stress is larger than 2ryield, then, for a

back stress kHjpj[ ryield, a portion of the hardening

energy, specifically 1
2

kH p2 � p2
�

� �
(denoting

p� ¼ ryield=kH), will be released at complete unload-

ing. In such a case, the expression of the hardening

energy 1
2

kHp2 in (1) should be replaced by a new

expression 1
2

kH f p2 � p2
�

� 

þ� p2 � p2

�
� 


�þp2
�

� �
,

where �h i	 denotes the positive and negative part of

a real number, in order to account for the released part

of hardening energy. Note that, if the left-hand-side

inequality in (7) is fulfilled, which is assumed in the

present work for the sake of simplicity, then p does not

vary at unloading and no portion of the hardening

energy is released at complete unloading, which

explains why its expression in (1) is not multiplied

by f.

Hereinafter, some aspects of this interface consti-

tutive law not discussed in [44] will be presented.

In what follows, elongation and energy description

of a particular spring rupture are summarized consid-

ering fracture mode mixity. The ERR of a mixed-

mode crack is thus defined depending on the existence

of plastic slip in the interface as

Gðun; us; pÞ ¼
1

2
knu2

n þ
1

2
ks us � pð Þ2

þ ryieldpþ
1

2
kHp2;

ð8Þ
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which simplifies for p ¼ 0 to the well-known expres-

sion Gðun; usÞ ¼ 1
2

knu2
n þ 1

2
ksu

2
s . In uploading, p ¼ 0

if jusj � ryield

ks
. Eliminating the plastic slip p which can

be expressed in the simple kinematic-hardening model

as, assuming us� ryield

ks
,

p ¼ ks

ks þ kH

us �
ryield

ks

� 	
; ð9Þ

the substitution leads to the relation

Gðun; usÞ ¼
1

2
knu2

n

þ 1

2

kskH

ks þ kH

us þ
ryield

kH

� 	2

�
r2

yield

2kH

;

ð10Þ

when some interface plasticity evolves. Alternatively,

the relation can be expressed in terms of the pertinent

stresses rn ¼ knun� 0 and rs ¼ ksðus � pÞ as

Gðrn; rsÞ ¼
r2

n

2kn
þ 1

2

ðks þ kHÞr2
s

kskH

�
r2

yield

2kH

: ð11Þ

As follows from (1), (2) and (3b) the relation of the

interface breakage is unique, when written in terms of

stresses, independently of the presence of interface

plasticity, namely:

r2
n

2kn
þ r2

s

2ks
¼ Gd: ð12Þ

Nevertheless, it should be noted that at the interface

breakage without or with interface plasticity, it holds

1

2
knu2

n þ
1

2
ksu

2
s ¼ Gd; or

1

2
knu2

n þ
1

2
ks

kH

ks þ kH

� 	2

us þ
ryield

kH

� 	2

¼ Gd;

ð13Þ

respectively. Finally, ERR G pertinent to either mode

of crack (G ¼ GI þ GII) can be considered as:

GI ¼
1

2
knu2

n ¼
r2

n

2kn
; ð14Þ

and then, without or with interface plasticity,

GII ¼
1

2
ksu

2
s ¼

r2
s

2ks
; resp:

GII ¼
1

2

kskH

ks þ kH

�
us þ

ryield

kH

�2

�
r2

yield

2kH

¼ 1

2

ðks þ kHÞr2
s

kskH

�
r2

yield

2kH

;

ð15Þ

the latter depending on the presence of the interface

plasticity. The relations of the interface breakage,

without or with interface plasticity, are then

GI þ GII ¼ Gd; resp:

GI þ
kH

ks þ kH

GII þ
r2

yield

2ðks þ kHÞ
¼ Gd:

ð16Þ

The equations in (13) define the relation between the

normal and tangential displacements at the crack tip

leading to the crack growth. This relation can be

visualized as an interface fracture envelope. Similarly,

the fracture envelope can be obtained in terms of

stresses from the relation (12) and in terms of ERR

from (16).

To this end, let us first parameterize the curve of

pairs ðun; usÞ corresponding to the crack growth.

Before the initiation of interface plasticity (p ¼ 0) and

for no previous damage (f ¼ 1), according to (13)1,

the parameterization reads as

un ¼
ffiffiffiffiffiffiffiffi
2Gd

kn

r
cos u; us ¼

ffiffiffiffiffiffiffiffi
2Gd

ks

r
sin u;

for 0�u� arcsin
ryieldffiffiffiffiffiffiffiffiffiffiffiffi
2ksGd

p ;

ð17aÞ

which is a part of ellipse with the center at the origin.

Similarly, after an interface plasticity initiation the

relation (13)2 provides another part of the

parameterization

un ¼
ffiffiffiffiffiffiffiffi
2Gd

kn

r
cosu; us ¼

ffiffiffiffiffiffiffiffi
2Gd

ks

r
ks þ kH

kH


 sinu� ryield

kH

; for arcsin
ryieldffiffiffiffiffiffiffiffiffiffiffiffi
2ksGd

p �u� p
2
:

ð17bÞ

Though, this corresponds to a parameterization of a

different ellipse, whose center is at the point

2938 Meccanica (2014) 49:2933–2963
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ð0;� ryield

kH
Þ, the parameter u continuously switches

from a state without plasticity to a state with an

interface plastic slip.

Let us now parameterize the curve of pairs ðrn; rtÞ
corresponding to the interface breakage. As long as it

is a part of an ellipse, the parameterization reads

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2knGd

p
cos u; rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2ksGd

p
sin u: ð18Þ

In fact, the angle u in the parameterizations (17) and

in the relation (18) is the same.

Finally, the relations (16) provide the curve of pairs

ðGI;GIIÞ as a broken line. All three graphs for a

particular choice of material parameters, used in the

numerical example in Sect. 4, are shown in Fig. 2a.

The fracture mode-mixity angle of an interface

crack can generally be introduced in three ways,

see [59], based on the crack-tip displacements, crack-

tip stresses or ERR components, respectively,

wu ¼ arctan
us

un
; wr ¼ arctan

rs

rn
;

wG ¼ arctan

ffiffiffiffiffiffi
GII

GI

r
:

ð19Þ

It is assumed that a crack propagates if the ERR G

reaches the fracture energy Gc, i.e. G ¼ GcðwÞ;w
denoting one of the mode-mixity angles in (19). It

means that if crack grows before interface plasticity

appears, Gd ¼ Gc. However, in presence of some

interface plasticity these two quantities separate. Let

us try to find the relation Gc ¼ GcðwÞ.
Both relations Gc ¼ GcðwuÞ and Gc ¼ GcðwrÞ, for

the case of interface plasticity, can be obtained

from G ¼ GI þ GII in (12) and the expression (15)2

substituting (18), because u in relations (17) and (18)

is the same. This renders

r2
n

2kn
þ 1

2

ðks þ kHÞr2
s

kskH

�
r2

yield

2kH

¼ Gd cos2 uþ ðks þ kHÞGd sin2 u
kH

�
r2

yield

2kH

¼ Gd

�
1þ ks

kH

sin2 u
�
�

r2
yield

2kH

¼ GcðuÞ: ð20Þ

The relation u ¼ uðwuÞ can be obtained from

tan wu ¼
ffiffiffiffiffi
kn

ks

r
ks þ kH

kH

tan u�
ffiffiffiffiffiffiffiffi
kn

2Gd

r
ryield

kH

1

cos u

ð21Þ

which can be substituted into (20). The final relation

is, however, somewhat cumbersome preventing from

writing explicitly an expression of GcðwuÞ. Neverthe-

less, the graph of Gc ¼ GcðwuÞ can easily be plotted,

see Fig. 2b.

The relation tan u ¼ tan uðwrÞ ¼
ffiffiffiffi
kn

ks

q
tanðwrÞ,

obtained by comparing (19)2 and (18), can be easily

substituted into (20). The resulting relation Gc ¼
GcðwrÞ is

Gd

�
1þ ks

kH

kH tan2 wr

ks þ kH tan2 wr

�
�

r2
yield

2kH

¼ GcðwrÞ:

ð22Þ

Finally, deducing the corresponding expression

related to ERR is also straightforward. It is sufficient

to express both GI and GII from the system (16)2

and (19)3

(a) (b)Fig. 2 a Dimensionless

interface fracture envelopes

in terms of relative

displacements (two

ellipses), stresses (one

ellipse) or ERR components

(a broken line) and b
fracture energy Gc as a

function of fracture mode-

mixity angles, for

Gd ¼ 10 J/m2,

kn ¼ 18 TPa/m,

ryield ¼ 0:79
ffiffiffiffiffiffiffiffiffiffi
ksGd

p
,

ks ¼ kn=4, kH ¼ ks=9
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GI þ GII ¼ GI 1þ tan2 wG

� �

¼
2Gdðks þ kHÞ � r2

yield

2ðks þ kH þ kH tan2 wGÞ
1þ tan2 wG

� �
¼ GcðwGÞ;

ð23Þ

which is valid for arcsin
ryieldffiffiffiffiffiffiffiffiffi
2ksGd

p �wG� p
2
, whereas

GcðwGÞ ¼ Gd for smaller wG. Dependence of the

fracture energy Gc on all the types of mode-mixity

angles are plotted in Fig. 2b. A nice qualitative

agreement with experimental results in [3, 18, 24,

26, 29, 58], see also [30] and further references

therein, can be observed. Actually, the above

fracture envelopes and fracture energy dependence

on mode mixity can be used in practical fitting of the

present model to experimental data for a particular

interface.

2.3 Two local-solution concepts: energy (ES)

versus stress (MDLS)

Relying on homogeneity of degree 1 of the functional

R, both with respect to _f and _p, the ‘‘weak formula-

tion’’ of the initial-value problem (3) was essentially

devised just for the delamination-type problems in [56,

60], cf. also [33], by the following definition: the triple

ðu; f; pÞ is called a local solution to (3) if the following

four properties are satisfied:

(i) Energy imbalance: For all 0� t1� t2� T :

Eðt2;uðt2Þ; fðt2Þ; pðt2ÞÞ þ DissRðf; p; ½t1; t2�Þ

�
Z t2

t1

o

ot
Eðt; uðtÞ; fðtÞ; pðtÞÞdt

þ Eðt1; uðt1Þ; fðt1Þ;pðt1ÞÞ ð24aÞ

with DissRðf; p; ½t1; t2�Þ ¼ supt1 � s0\...\sn � t2PN
j¼1R

�
fðsjÞ � fðsj�1Þ; pðsjÞ � pðsj�1Þ

�
;

(ii) Variation inequality for displacement u: For

a.a. t 2 ½0; T �:

8 ~u: Eðt; uðtÞ; fðtÞ; pðtÞÞ� Eðt; ~u; fðtÞ; pðtÞÞ;
ð24bÞ

(iii) Semi-stability for f and p: For a.a. t 2 ½0; T �:

8 ~f: Eðt; uðtÞ; fðtÞ; pðtÞÞ� Eðt; uðtÞ; ~f;pðtÞÞ
þ Rð~f� fðtÞ; 0Þ; ð24cÞ

8 ~p: Eðt; uðtÞ; fðtÞ; pðtÞÞ� Eðt; uðtÞ; fðtÞ; ~pÞ
þ Rð0; ~p� pðtÞÞ; ð24dÞ

(iv) Initial conditions

uð0Þ¼u0; fð0Þ¼ f0; pð0Þ¼p0: ð24eÞ

Actually, here we combined the original local-solution

concept [56, 60] with the concept of semi-stability

[40]. From the viewpoint of applications, it is impor-

tant that the energy imbalance (24a) is formulated as

an inequality, which allows for modelling ruptures that

intentionally do not jump unphysically early (or in

unphysically less dissipative modes) and inevitably do

not conserve energy, as demonstrated in particular in

this paper. The possible energy gap thus arising can be

understood due to neglected viscous dissipative

mechanisms, cf. also [45], or neglected elastic waves,

whereas in a quasistatic and rate-independent problem

formulation it can be associated to a snap-back

instability originating a crack jump, cf. [11, 31].

It can be shown that, under mild qualification

assumptions on the problem (satisfied in our case), the

local solutions are just conventional weak (but not

strong!) solutions to (3), cf. [43, Prop. 2.3]. If Eðt; �Þ is

convex and quadratic or ‘‘nearly’’ quadratic, the local

solution is unique. Yet, in nonconvex case (as also

here), local solutions are rather a general and rather

broad framework. Various refined concepts have been

devised, ranging from energetic solutions (which

conserves energy) to approximable, vanishing-viscos-

ity, BV-, or maximally-dissipative solutions, cf. in

particular [35, 43] and also [15, 33] for a survey of

even more concepts and a comparison. In our adhe-

sive-contact context, there are essentially two extreme

cases to be considered which, roughly speaking,

delaminate either as early or as late as possible, being

governed either by energy or by stress, and being

approximable either by fully implicit or by a specific

semi-implicit time discretizations, respectively.

The former, energetic solution (ES) concept

requires, in addition to (24), also the full stability:

8 ð~u; ~f; ~pÞ: Eðt; uðtÞ; fðtÞ; pðtÞÞ� Eðt; ~u; ~f; ~pÞ
þ Rð~f� fðtÞ; ~p� pðtÞÞ ð25Þ

to be valid for a.a. t. Then, in fact, (25) is valid for all t

and (24a) holds as an equality; for quite technical

analytical details behind this highly nontrivial fact we
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refer to [15, Sect. 7] or [33, Prop.3.11], or also [40,

Prop. 5.4]. Such solutions conserve energy, being thus

called energetic solutions (ES), invented in [35]. Note

also that (25) obviously implies both (24b) and (24c,

24d).

The latter, stress driven, maximally-dissipative

local-solution (MDLS), concept can be selected by

requiring, in addition to (24), Hill’s [23] maximum-

dissipation principle, known also as an orthogonality

principle [64], expressing that (3b) is equivalent to

hef � f ; v� _fi� 0 for any v and any ef 2 o _fRðvÞ with

the so-called available driving force f 2 �ofEðt;
u; f; pÞ; the adjective ‘‘available’’ becomes sensible

especially if ofEðt; u; f; pÞ is set-valued because not all

available f ’s are compatible with f 2 o _fRð _fÞ and can

be realized during evolution. In particular, for v ¼ 0,

using also 1-homogeneity of R, we obtain the

announced principle which can, very formally, be

written as

�
f ; _f


¼ maxef 2o _fRð0Þ

�ef ; _f



with f 2�ofEðt;u;f;pÞ; ð26aÞ

and similarly from (3c) we obtain

�
g; _p


¼ maxeg2o _pRð0Þ

�eg; _p



withg2�opEðt;u;f;pÞ: ð26bÞ

Note that the ‘‘max’’ terms are exactly Rð _f;0Þ and

Rð0; _pÞ, respectively. Let us emphasize that, in

general, _f and _p are measures possibly having singular

parts concentrated at rupture times where the solution

and also the driving forces need not be continuous, so

that the dualities in (26) are not well defined. For this

reason, an Integrated version of the Maximum-Dissi-

pation Principle (IMDP) was devised in [43], which

reads here as:Z t2

t1

f ðtÞdfðtÞ¼
Z t2

t1

Rð _f;0Þdt ¼DissRðf;0; ½t1;t2�Þð Þ

with some f ðtÞ2�ofEðt;u;f;pÞ; ð27aÞ
Z t2

t1

gðtÞdpðtÞ¼
Z t2

t1

Rð0; _pÞdt ¼DissRð0;p; ½t1;t2�Þð Þ

with some gðtÞ2�opEðt;u;f;pÞ ð27bÞ

to be valid for any 0� t1\t2� T . This definition is

inevitably a bit technical and, without sliding into too

much details, let us only mention that the first integrals

in (27) are so-called lower Riemann-Stieltjes integrals

defined by suprema of lower Darboux sums, i.e. in

the case (27a) the left-hand-side integral is defined

as
R s

r
f ðtÞ dfðtÞ :¼ supN2N; r¼t

0
\t

1
\:::\t

N�1
\t

N
¼ s

PN
j¼1

inft2½tj�1;tj� hf ðtÞ; fðtjÞ � fðtj�1Þi while the right-hand

side integral is just an integral of a measure and its

specific value is just the Diss-term as defined in (24a).

The IMDP (27) is satisfied on any interval ½t1; t2�
where the solution is absolutely continuous; then the

integrals in (27) are the conventional Lebesgue

integrals. Thus the particular importance of IMDP is

at jumps, i.e. at times when abrupt delamination

possibly happens.

It is shown in [34, 43] on various finite-dimen-

sional examples of ‘‘damageable springs’’ that this

IMDP can identify too early rupturing local solu-

tions (in particular the energetic ones) and its

satisfaction for left-continuous local solutions indi-

cates that the evolution is stress driven. On the other

hand, it does not need to be satisfied even in

physically well justified stress-driven local solutions.

E.g. it happen if two springs with different fracture

toughness organized in parallel rupture at the same

time (but even in this situation our algorithm from

Sect. 3.2 gives a correct approximate solution).

Existence of left-continuous local solutions comply-

ing with IMDP has not been proved in general, yet.

Therefore, we will rely rather on some approxima-

tion of IMDP, as described further in Sect. 3.2.

3 Computer implementation

For computer implementation, we are first to perform

time and then spatial discretization. The time-discret-

ization uses the fully implicit formula for ES com-

bined with global minimization and a suitable semi-

implicit formula for MDLS, both with an equidistant

partition of the time interval ½0; T� by a time step s,

assuming T=s integer. Actually, these two options

seem to be the only ones which yield a discrete

analogy of the upper energy inequality (24a) for

t1 ¼ 0, cf. (29) below summed for k ¼ 1; . . ., and thus

also basic a-priori estimates guaranteeing numerical

stability and, at the end, also convergence for s! 0,

cf. [43, 44]. For example, the fully-implicit formula

combined with local minimization (often used in

engineering calculations) does not seem to guarantee

it.
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Actually, as we consider purely quasistatic problem

without any inertial effects, there is algorithmically

well possible to vary the time step s within time levels.

Also all mentioned theoretical estimates are kept and,

if the maximal time step is made converging to zero,

also the convergence is preserved. One can apply

various adaptive strategies based either on controlling

accuracy in energetics or, in case of MDLS, in

approximate maximum-dissipation principle. Yet, it

is not the focus of this paper and, as already said, we

will consider only equidistant partitions of ½0; T�.
As long as the material is linear and isotropic and

our quasistatic isothermal problem can be formulated

in terms of the boundary data only, see (1) and (2), the

spatial discretization can advantageously be per-

formed by a BEM. The present standard approxima-

tion of the distributions for u, f, and p uses continuous

linear boundary elements [39].

3.1 Discretization in time by the fully implicit

formula

To satisfy the energy balance (24a) and the stability

condition (25) also after discretization, the minimiza-

tion problem for the solution at the successive step k is

solved, once the solution for the time step k � 1 is

known and, in case of non-uniqueness, chosen,

cf. [25]. More specifically, this problem is:

minimize Hkðu; f; pÞ ¼ Eðks; u; f; pÞ
þ Rðf� fk�1; p� pk�1Þ:

ð28Þ

This recursive time-stepping procedure starts from the

solution at k ¼ 1 calculated by using the initial

conditions (24e).

Due to the character of the present delamination

problem model (allowing sudden ruptures), the func-

tional Hk is inevitably nonconvex. This nonconvexity

requires applying a special numerical treatment in the

minimization algorithm. The AMA proposed in the

context of fracture mechanics in [9], and used also

in [38, 44, 47], has been used to split the minimization

to alternation between minimization with respect to

ðu; pÞ and with respect to f, each of these being a

minimization of a convex functional. Such alternation,

however, does not have to lead to global minimization

which is a characteristic feature behind ES, as pointed

out already in [10]. Therefore a back-tracking algo-

rithm (BTA) to control such a process has been

utilized, providing that the energy (im)balance (24a)

as an equality, in discrete form converted to a two-

sided inequality, is satisfied, see [5, 38, 44, 47]. This

two-sided energy inequality can be written in the

following form, relying on the minimization of Hk in

two subsequent time steps:

Z ks

ðk�1Þs

o

ot
Eðt; uk; fk; pkÞdt�Eðks; uk; fk; pkÞ

� Eððk � 1Þs; uk�1; fk�1; pk�1Þ
þ Rðfk � fk�1; pk � pk�1Þ

�
Z ks

ðk�1Þs

o

ot
Eðt; uk�1; fk�1; pk�1Þdt:

ð29Þ

In fact, ðuk; fk; pkÞ is the minimizer of Hk, which

means, by the degree-1 homogeneity of R for any

ð~u; ~f; ~pÞ that

Eðks; uk; fk; pkÞ� Eðks; ~u; ~f; ~pÞ þ Rð~f� fk�1; ~p

� pk�1Þ � Rðfk � fk�1; pk � pk�1Þ� Eðks; ~u; ~f; ~pÞ
þ Rð~f� fk; ~p� pkÞ;

ð30Þ

which is the discrete analogy of the full stability (25),

and, in particular, also

Eðks; uk; fk; pkÞ þ Rðfk � fk�1; pk � pk�1Þ
� Eðks; uk�1; fk�1; pk�1Þ:

ð31Þ

Subtracting the term Eððk � 1Þs; uk�1; fk�1; pk�1Þ
from both sides of (31), we obtain, after a little calculus,

the upper estimate in (29). Writing (30) at the level

k � 1 and testing it by ð~u; ~f; ~pÞ ¼ ðuk; fk; pkÞ yields

Eððk � 1Þs; uk�1; fk�1; pk�1Þ� Eððk � 1Þs; uk; fk; pkÞ
þ Rðfk � fk�1; pk � pk�1Þ; ð32Þ

and adding the term Eðks; uk; fk; pkÞ to both sides

of (32), we obtain the lower estimate in (29). The

upper estimate in (29) serves for a-priori estimates and

thus numerical stability of the proposed scheme and

further also for the convergence for s! 0 and h! 0

with a spatial-mesh parameter h introduced in

Sect. 3.3.

The scheme of AMA follows (the superscript index

in parentheses is used to denote the iterations within

AMA, while without parentheses it is the time step):
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1. For next k ¼ 1; 2; . . .; T=s set j ¼ 0, uð0Þ ¼ uk�1,

pð0Þ ¼ pk�1 and fð0Þ ¼ fk�1.

2. While kfðjÞ � fðj�1Þk� e, do:

(a) Set next j.

(b) Solve for uðjÞ ¼ u and pðjÞ ¼ p: the mini-

mization problem of Hkðu; fðj�1Þ; pÞ sub-

jected to boundary conditions.

(c) Solve for fðjÞ ¼ f: the minimization prob-

lem of HkðuðjÞ; f; pðjÞÞ subjected to the

condition 0� f� fk�1.

3. Put uk ¼ uðjÞ, pk ¼ pðjÞ and fk ¼ fðjÞ.

The proposed energy-based BTA obeys the following

scheme:

1. Initiation: k ¼ 1, fð0Þ ¼ 1.

2. While k� T=s do:

(a) Use AMA to find fk from the initial value

fð0Þ.

(b) Set fð0Þ ¼ fk.

(c) Check the discrete two-sided energy con-

dition (29): if satisfied, increase k by one,

otherwise decrease k by one (this is the

actual back-tracking).

The goal of the step (c) is to start the iterations of AMA

with some different initial iteration if the one from the

previous time step was obviously not successful from

the viewpoint of (29) which should ultimately be

satisfied. Not to try randomly chosen starting iteration,

the idea is to use some states from previous unsuc-

cessful trials for larger values of k.

Although there is no guaranty that this iterative

process converges to the global minimum, the

practical experience with this energy-based BTA,

however, shows that it provides a solution with lower

energy than that obtained by mere AMA [5, 38, 44,

47] and often leads to satisfaction of (29) under given

loading regimes. Yet, it should be emphasized that,

although based on the assumption of global minimi-

zation, the satisfaction of the two-sided energy

estimate (29), which this BTA tries to achieve, itself

does not imply that the obtained solutions are global

minimizers of the incremental problem (28). It only

underlines algorithmic difficulties related to ES and,

besides physical arguments, advocates advantages of

the MDLS strategy.

Let us also note that an alternative variant of BTA

has been proposed in [8, Sect. 2.4] and used also in

[10], based on special properties of the particular

problem studied therein, namely 2-homogeneity of the

stored energy and monotonically increasing load. As a

matter of fact, there is no universal hint for solving

nonconvex global-minimization problems and other

global-minimization strategies are to be thought about

too, e.g. the so-called simulated annealing, etc.

3.2 Discretization in time by a semi-implicit

formula

For finding the MDLS, we use a fractional-step-type

semi-implicit time discretization devised in [45], see

also [48], such that the problem is split into two

convex minimizations similarly as done in AMA

above, yet it must be emphasized that AMA is now

used only in one iteration at each time level. There-

fore, in contrast to ES strategy, there are no difficulties

with global minimization and the numerical calcula-

tion is much easier with no need of repeating the

minimization or backtracking, and additionally it

prevents the solution from non-physically too early

debonding or from sliding non-physically into the less

dissipative Mode I, cf. also Fig. 10 below. More

specifically, considering fk�1 and pk�1 known from

the previous time step, the problem includes two

subsequent minimizations. First,

minimize Hk
pðu; pÞ ¼ Eðks; u; fk�1; pÞ

þ Rð0; p� pk�1Þ;
ð33aÞ

and, denoting its unique minimizer ðuk;pkÞ, second

minimize

Hk
fðfÞ ¼ Eðks;uk; f;pkÞ þ Rðf� fk�1; 0Þ;

ð33bÞ

with the minimizer fk. Again, this recursive time-

stepping procedure naturally starts from the solution at

k ¼ 1 calculated by using the initial conditions (24e).

To see that the system (33) guarantees a discrete

analogy of the conditions for local solutions (24), we

can proceed as explained in the following. First, as

fk is the minimizer of Hk
f and Rð�; 0Þ is homoge-

neous of degree 1, we have for any ~f, like in (30),

that Eðks; uk; fk; pkÞ� Eðks;uk; ~f; pkÞ þ Rð~f� fk; 0Þ,
which provides a discrete analogy of (24c). Second, as
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ðuk; pkÞ is the minimizer of Hk
p and Rð0; �Þ is

homogeneous of degree 1, we have for any ð~u; ~pÞ that

Eðks; uk; fk�1; pkÞ� Eðks; ~u; fk�1; ~pÞ þ Rð0; ~p� pkÞ;
ð34Þ

which provides a discrete analogy of both (24b) and

(24d). These minimization properties of fk and of

ðuk; pkÞ also allow us to write

Eðks; uk; fk�1; pkÞ þ Rð0; pk � pk�1Þ
� Eðks; uk�1; fk�1; pk�1Þ

ð35aÞ

and

Eðks; uk; fk; pkÞ þ Rðfk � fk�1; 0Þ
� Eðks; uk; fk�1; pkÞ;

ð35bÞ

which after summation cancels the terms

Eðks; uk; fk�1; pkÞ and gives again (31), and then

further the upper estimate in (29) which is a discrete

analogy of (24a). The minimization of (33) thus

provide an approximation of all conditions defining

local solution, cf. (24).

Denoting the left-continuous piecewise-constant

interpolants ðus; fs; psÞ of the values ðuk
s; f

k
s;p

k
sÞ, i.e.

usðksÞ ¼ uk
s etc., one can devise the discrete analogy

of the integrated maximum-dissipation principle (27)

straightforwardly for these left-continuous interpo-

lants, required however to hold only asymptotically.

More specifically, in analogy to (27) formulated

equivalently for all ½0; t� instead of ½t1; t2�, one can

expect an Approximate Maximum-Dissipation Princi-

ple (AMDP) in the form

Z t

0

fs dfs �
?

DissRðfs; 0; ½0; t�Þ for some

fsðtÞ 2 �of
�Esðt; usðtÞ; fsðt � sÞ; psðtÞÞ;

ð36aÞ

Z t

0

gs dps �
?

DissRð0; ps; ½0; t�Þ for some

gsðtÞ 2 �op
�Esðt; usðtÞ; fsðtÞ; psðtÞÞ;

ð36bÞ

where again the integrals are the lower Riemann-

Stieltjes integrals as in (27) and where �Esð�; u; f; pÞ is

the left-continuous piecewise-constant interpolant of

the values Eðks; u; f; pÞ; k ¼ 0; 1; . . .; T=s. Moreover,

‘‘�? ’’ in (36) means that the equality holds possibly

only asymptotically for s! 0 but even this is rather

only desirable and not always valid. Anyhow, loadings

which, under given geometry of the specimen, lead to

rate-independent slides where the solution is abso-

lutely continuous will always comply with AMDP

(36). Also, some finite-dimensional examples of

‘‘damageable springs’’ in [34, 43] show that this

AMDP can detect too early rupturing local solutions

(in particular the energetic ones) while it generically

holds for solutions obtained by the semi-implicit

algorithm (33).

Now, for the piecewise-constant interpolants, we

can simply evaluate the integrals explicitly, so that

AMDP (36) reads

DRf;sðtÞ :¼
Z

CC

Gd

�
fK
s � f0

�
dS

�
XK

k¼1

Z
CC

f k�1
s ðfk

s � fk�1
s Þ dS �? 0

ð37aÞ

and

DRp;sðtÞ :¼
XK

k¼1

Z
CC

ryield



pk
s � pk�1

s



 dS

�
XK

k¼1

Z
CC

gk�1
s ðpk

s � pk�1
s Þ dS�? 0

where K ¼ maxfk 2 N; ks� tg and

where f k
s 2 �ofEðuk

s; f
k�1
s ; pk

sÞ and

gk
s 2 �opEðuk

s; f
k
s; p

k
sÞ:

ð37bÞ

Always, the left-hand sides in (36) are below the

right-hand sides, and one can a-posteriori check the

residua DRf;s� 0 and DRp;s� 0 depending on t (or

possibly also on space, as in Fig. 21 below). Even

though IMDP (27) and similarly AMDP (36) do not

need to hold even for physically relevant stress-

driven local solutions (typically when several

‘‘springs’’ rupture at the same time, some of them

being still at the sub-critical stress before the

rupture), a good satisfaction of AMDP (36) can

always be counted as valuable a-posteriori justifica-

tion of the (otherwise not physically based) simple

and numerically efficient fractional-step-type algo-

rithm (33) and distribution of the residuum in (36) in

time (or in space) can serve for some possible

adaptive refinement strategies.
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3.3 Spatial discretization and SGBEM

The role of the SGBEM [7, 49, 57] in the present

computational procedure is to solve a BVP for each

subdomain separately in order to calculate the elastic

strain energy in these subdomains. Thus, at each time

step and at each iteration of the minimization

algorithm, the SGBEM code calculates unknown

tractions along CC [ Cu, supposing the displacements

at CC to be known from the used minimization

procedure, in a similar way as proposed and tested

using a collocational BEM code in [38, 44, 45, 48].

The chosen Symmetric Galerkin BEM can be

deduced from the potential energy principles [6, 7,

61, 62]. This fact guarantees the positive definite

character of the strain energy computed by SGBEM, in

contrast to the classical collocational BEM, see [53,

62] for details and further references. The Boundary

Integral Equations (BIE) solved by SGBEM are the

Somigliana displacement and traction identities, writ-

ten for each particular subdomain Xg separately:

1

2
u

g
kðxÞ ¼

Z
Cg

U
g
klðx; yÞt

g
l ðyÞdSðyÞ

�
Z
�

Cg
T

g
klðx; yÞu

g
l ðyÞdSðyÞ; for a.a. x 2 Cg

u [ CC;

ð38aÞ

1

2
t
g
kðxÞ ¼

Z
�

Cg
T

g�
kl ðx; yÞt

g
l ðyÞdSðyÞ

�
Z
¼

Cg
S

g
klðx; yÞu

g
l ðyÞdSðyÞ; for a:a: x 2 Cg

t :

ð38bÞ

The integral kernels in the above equations are

given by the (weakly singular) Kelvin fundamental

solution U
g
ijðx; yÞ—the response of the elastic plane to

a point load, and the associated derivative kernels

obtained by the differential traction operator applied

with respect to one or both variables—the strongly

singular kernels T
g
ijðx; yÞ and T

g�
ij ðx; yÞ and the hyper-

singular kernel S
g
ijðx; yÞ. It should also be noted that the

free-term coefficients 1
2

are valid only at smooth

boundary parts. Due to the integral kernel singulari-

ties, the integrals denoted by
R
�C and

R
¼C stand for the

Cauchy principal value and the Hadamard finite part of

the integral, respectively.

As follows from the previous explanations, the

SGBEM code is used merely to elastic strain energy

computation in the bulk and does not include the

solution of the whole interface problem, which is left

to the suitable minimization algorithm, see also [38,

44, 45, 48].

Applying the standard SGBEM approach [61, 62]

to (38) together with the boundary conditions from

Sect. 2, we obtain the following equation:

0 ¼
Z

Cg
u

ug
j ðyÞ

�
�
Z

Cg
u

U
g
jiðy; xÞt

g
i ðxÞdxSþ

Z
Cg

t

T
g
jiðy; xÞu

g
i ðxÞdxS�

Z
CC

U
g
jiðy; xÞt

g
i ðxÞdxS

þ
Z

CC

T
g
jiðy; xÞu

g
i ðxÞdxSþ

� 1

2
w

g
j ðyÞ þ

Z
�

Cg
u

T
g
jiðy; xÞw

g
i ðxÞdxS

�	
dyS

þ
Z

Cg
t

wg
j ðyÞ

�Z
Cg

u

T
g�
ji ðy; xÞt

g
i ðxÞdxS�

Z
¼

Cg
t

S
g
jiðy; xÞu

g
i ðxÞdxSþ

Z
CC

T
g�
ji ðy; xÞt

g
i ðxÞdxS

�
Z

CC

S
g
jiðy; xÞu

g
i ðxÞdxS�

Z
Cg

u

S
g
jiðy; xÞw

g
i ðxÞdxS

	
dyS

þ
Z

CC

ug
j ðyÞ

�
�
Z

Cg
u

U
g
jiðy; xÞt

g
i ðxÞdxSþ

Z
Cg

t

T
g
jiðy; xÞu

g
i ðxÞdxS�

Z
CC

U
g
jiðy; xÞt

g
i ðxÞdxS

þ
� 1

2
u

g
j ðyÞ þ

Z
�

CC

T
g
jiðy; xÞu

g
i ðxÞdxS

�
þ
Z

Cg
u

T
g
jiðy; xÞw

g
i ðxÞdxS

	
dyS:

ð39Þ
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The weighted formulation of the BIE system (39) can

be rewritten in a compact and transparent form by

introducing the following operator notation:

xgT
q Zg

qrv
g
r ¼

Z
Cg

q

xg
j ðyÞ

Z
Cg

r

Z
g
jiðy; xÞv

g
i ðxÞdxS

� 	
dyS;

ð40Þ

where x stands for u or w; v stands for u or t; q and r

stand for u; t or c; and Z stands for U; T; T� or S; and

where the inner integral can be regular, weakly

singular, Cauchy principal value or Hadamard finite

part integral. Then, (39) reads

0 ¼ ug T
u

�
� Ug

uutgu þ Tg
utu

g
t � Ug

uctgc þ Tg
ucug

c

þ 1

2
Ig

uu þ Tg
uu

� 	
wg

	

þ wg T
t Tg�

tu tgu � Sg
ttu

g
t þ Tg�

tc tgc � Sg
tcug

c � Sg
uuwg

� �

þ ug T
c

�
� Ug

cutgu þ Tg
ctu

g
t � Ug

cctgc

þ 1

2
Ig

cc þ Tg
cc

� 	
ug

c þ Tg
cuwg

	
; ð41Þ

or equivalently in a matrix-operator form

ug
u

wg
t

ug
c

0
@

1
A
> �Ug

uu Tg
ut �Ug

uc

Tg�
tu �Sg

tt Tg�
tc

�Ug
cu Tg

ct �Ug
cc

0
@

1
A tgu

ug
t

tgc

0
@

1
A

¼
ug

u

wg
t

ug
c

0
@

1
A
> �1

2
Ig

uu�Tg
uu �Tg

uc

Sg
uu Sg

tc

�Tg
cu �1

2
Ig

cc�Tg
cc

0
BBB@

1
CCCA

wg

ug
c

� 	
:

ð42Þ

In the previous relations, Ig denotes the identity

operator with the subscripts specifying the part of the

boundary where it is restricted. The functions ug and

wg represent the virtual tractions and displacements

respectively, and the system in (42) has to be satisfied

for any virtual functions.

The symmetric BIE system (42) will be solved

numerically by SGBEM. To this end, each boundary

Cg is discretized by a boundary element mesh with the

maximum size of the elements denoted by h. Then, the

functions defined on Cg are approximated by contin-

uous linear boundary elements [39] allowing discon-

tinuities of tractions at the element junctions if

required. Thus, the approximation formulas can be

written in the form

ugðxÞ ¼
X

p

Ng
wpðxÞu

g
p; tgðxÞ ¼

X
l

Ng
ulðxÞt

g
l ; ð43Þ

where Ng
wpðxÞ and Ng

upðxÞ, respectively, are matrices

containing the shape functions of displacements and

tractions associated to node p at xg
p 2 Cg, and ug

p and tgp,

respectively, are vectors containing the components of

the displacement and traction vector at the node p. Let

ug, wg, and tg, respectively, denote the vectors

containing all unknown nodal displacements, all

prescribed nodal displacements, and all unknown

nodal tractions associated to Cg. Let the subvectors

of the nodal unknowns at the boundary parts Cg
u, Cg

t

and CC, respectively, be distinguished by the same

subscripts u, t, and c. The set of vectors of virtual

functions wg and ug can be chosen to be equal to shape

functions associated to each nodal unknown and

extended by zero to the whole boundary. Such a

choice leads to the symmetric square matrix of the

following system of linear algebraic equations:

�Ug
uu Tg

ut �Ug
uc

TgT
tu �Sg

tt TgT
tc

�Ug
cu Tg

ct �Ug
cc

0
B@

1
CA

tgu
ug

t

tgc

0
B@

1
CA

¼

� 1

2
Mg

uu � Tg
uu �Tg

uc

Sg
uu Sg

tc

�Tg
cu � 1

2
Mg

cc � Tg
cc

0
BBBB@

1
CCCCA

wg

ug
c

� 	
: ð44Þ

The elements of the submatrices denoted with letters

U, T and S are formed by double integrals including

the integral kernel denoted by the same letter as is

usual in SGBEM. The square 2
 2 submatrices,

associated to nodes p and l, of the mass matrices Mg
rr ,

with r being u or c, are formed by the integrals:

ðMg
uuÞlp ¼

Z
Cg

u

Ng>
ul ðxÞN

g
wpðxÞdxS;

ðMg
ccÞlp ¼

Z
CC

Ng>
ul ðxÞN

g
wpðxÞdxS:

ð45Þ

3.4 Minimization algorithm

Once all the boundary data (displacements and

tractions) are obtained from the solution of (44) for

each subdomain, the energiesHk from (28) orHk
p and

Hk
f from (33) can be calculated. It is worth seeing how
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to calculate these energies for a given discretization.

For the sake of brevity, it will be shown for the case of

Hk only, whereas Hk
p and Hk

f are evaluated similarly.

Prior to the calculation, let us reconsider the

nonsmooth terms in Rðf� fk�1; p� pk�1Þ, cf. (2).

The first one with f does not cause any problem

because f must be non-increasing fk�1� f according

to (2), thus jf� fk�1j ¼ fk�1 � f. For the second term,

a classical trick of removing the absolute values and

replacing them by additional unknowns with restric-

tions is used [4], relying on a polyhedral epigraph of

this term obtained after discretization in the present 2D

case. The solution of the original problem with R is

equivalent to the solution with the following func-

tional eR:

eRðf� fk�1; lÞ ¼
Z

CC

Gd fk�1 � f
� �

þ l
� �

dS ð46aÞ

and the following unilateral affine constraints

0� f� fk�1; ð46bÞ

l� ryieldp� � ryieldp
k�1; ð46cÞ

lþ ryieldp� ryieldp
k�1: ð46dÞ

In the present disretization, the approximation

formulas for the damage parameter f, plastic slip p
and auxiliary parameter l given by the pertinent

boundary-element mesh are considered; it is worth

noting that using piecewise constant boundary ele-

ments for plasticity variables leads directly to element-

wise decoupling of (46c) and (46d). The approxima-

tion formulas can be written in the form

fðxÞ ¼
X

m

NfmðxÞfm; pðxÞ ¼
X

m

NpmðxÞpm;

lðxÞ ¼
X

m

NlmðxÞlm;
ð47Þ

where NfmðxÞ;NpmðxÞ;NlmðxÞ, respectively, are shape

functions of the damage, plastic slip, and auxiliary

parameters associated to the node m, while fm; pm; lm

are the pertinent nodal unknowns.

The energy Hk, from the problem (28) defined

by (1) and (46) and discretized by (43) and (47) then

reads

with the constraintsX
q

NAB
n pquB

n q � uA
n p� 0 for all pertinent p; ð49aÞ

0� fm� fk�1
m for all pertinent m; ð49bÞ

lm � ryieldpm� � ryieldp
k�1
m for all pertinent m;

ð49cÞ

lm þ ryieldpm� ryieldp
k�1
m for all pertinent m;

ð49dÞ

where NAB
n pq ¼ NB

wn qðxA
p Þ. In (48), N

g
ws p and N

g
wn p are

the shape functions like those in N
g
wp approximating

the normal and tangential displacements, respectively.

The minimization of the energy Hk is split into

two parts, using AMA. The minimization procedure

with respect to u and p (2b of AMA) can utilize any

relevant quadratic programming approach with

inequality constraints. Analogously, a similar mini-

mization procedure with respect to f can be applied

Hkðu; f; pÞ ¼
Z

CA

1

2

X
p

NA
wpðxÞuA

p �
X

l

NAðxÞtAl dSþ
Z

CB

1

2

X
q

NwqðxÞuB
q �
X

r

NBðxÞtBr dS

þ
Z

CC

�X
m

NfmðxÞfm

�
1

2
kn

�X
q

NB
wn qðxÞuB

n q �
X

p

NA
wn pðxÞun p

�2

þ 1

2
ks

�X
q

NB
ws qðxÞuB

s q �
X

p

NA
p ðxÞuA

s p �
X

m

NpmðxÞpm

�2
�
þ 1

2
kH

�X
m

NpmðxÞpm

�2
�

dS

þ
Z

CC

�
1

2
k0

hX
m

rsNðxÞð Þfm

i2

þ 1

2
k1

hX
m

rsNpmðxÞð Þpm

i2
�

dS

þ
Z

CC

�
G
�X

m

NfmðxÞ fk�1
m � fm

� ��
þ
X

m

NlmðxÞlm

�
dS

ð48Þ
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with a modification that the constraints are box type,

see (49b).

It may be useful to reformulate the problem in such a

way that the restrictions (49) change to bound constraints

sometimes also called box constraints. The pair of

constraints (49c) and (49d) for each node can be replaced

using the following substitution for the nodal values

x1 m ¼ lm � ryieldpm; x1 m� 0;

x2 m ¼ lm þ ryieldpm; x2 m� 0:
ð50Þ

The system (49a) provides l linearly independent

constraints which can be written in a matrix form as

ðNAB
n � IAÞ uB

n

uA
n

� 	
� 0

0

� 	
; ð51Þ

with the identity matrix IA. The inequality is defined

by a full row-rank matrix. Thus, according to [17],

introducing new variables y and z leads to

uB
n

uA
n

 !
¼ NAB

n

� �>
�IA

 !
NAB

n NAB
n

� �>þIA
� ��1

y

þ KB

KA

 !
z; with y� 0; ð52Þ

where columns of each Kg span the null-space of

NAB
n ;�IA

� �
. We have thus the same number of bound

constraints as provided by more general restrictions (49a).

The discretized functional (48), with some of the

variables fixed according to the current phase of AMA,

can be expressed in a general matrix form as

HkðyÞ ¼ 1

2
y>Ay� b>y;

�1� ylow� y� yup� þ1:
ð53Þ

The bounds ylow and yup depend on the problem to be

solved and, as indicated, some of them may be infinite,

meant as no restriction being applied for the pertinent

component of y. The constrained minimum is then

denoted by yk. The standard algorithms use the matrix

A explicitly which however is not calculated in the

present approach. Nevertheless, the terms which arise

from the first two integrals in the right-hand side

of (48) provide the energy and calculating their

derivative with respect to the unknown u they provide

a projected traction M>t with M defined as in (45).

This projected traction can naturally be calculated in

the SGBEM algorithm, and in equation (53) is in fact

represented by the product Ay without explicit

knowledge of A. Thus, each time the CG algorithm

requires a matrix-by-vector product a system from

SGBEM is solved. The influence matrices of SGBEM,

however, do not have to be calculated more then once

in all the solution process, as they are the same for all

iterations and all time steps, considering only small

displacements.

Conjugate gradient (CG) based algorithms with

bound constraints [17] are used in the minimization

procedures. Let us summarize briefly the main aspects

of such methods. They naturally require an initial

estimate of yk which can be chosen, e. g., from the

previous time step. The gradient g ¼ Ay� b, or

strictly speaking a projected gradient gP, has to be

calculated for this estimate and also during the

minimization algorithm as its norm may be a measure

of the accuracy of the pertinent iteration—the exact

solution has vanishing projected gradient.

The projected gradient gP is a part of the gradient

enabling the functional Hk to be minimized with

respect to the constraints along the opposite direction.

This is important in the situations where the particular

iteration solution satisfies some bound constraints as

equalities. The pertinent coordinates of the iteration

solution are called active.

The gradient g is composed of several parts.

Working directly with the components of the gradient

is an advantage of the bound constraints, unlike the

more general restrictions which were avoided accord-

ing to the aforementioned explanations. The first part

of the gradient g is the free gradient gF which is equal

to the gradient g only for non-active components, the

active components are equal to zero. The second one is

the chopped gradient gC which is equal to zero for non-

active components. For the active components, it may

also be equal to zero if the sign of the gradient component

does not enable constrained minimization in the opposite

direction, it means that for the lower bounds it is nonzero

only for the negative active components of g, and for the

upper bounds it is nonzero only for the positive active

components of g. Projected gradient is then a sum of

the free and chopped gradients: gP ¼ gF þ gC. The

remaining possibly nonzero part of the gradient g is

not required for the constrained minimization.

The used CG based algorithms generally obey the

following scheme (CG iteration denoted by numbers

in parentheses):
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The CG algorithm is not mentioned explicitly as it can

be found together with all necessary details of the

constrained minimization e.g. in [17].

4 Numerical examples

The present formulation of both solution concepts has

been tested numerically.

In the examples presented, there is only one

rectangular domain bonded, along its bottom side, to

a rigid foundation by a thin adhesive layer. In the first

example, the geometry and load configuration are

motivated by the pull-push shear test known in several

engineering applications. The plane strain problem

configuration is shown in Fig. 3. In the second

example, the deformed body is the same. Its loading

configuration leads to a receding contact after the

rupture of the interface, see Fig. 4.

The dimensions of the bulk layer are L ¼ 250 mm

and h ¼ 12:5 mm. It is considered that prior to loading

this bulk layer is glued to the support along a part of its

bottom side in the extent of Lc ¼ 225 mm for the shear

test and along the whole bottom side for the contact

test, Lc ¼ L, for the latter the loading is restricted to a

part of the top side with Lw ¼ 0:3L. This bulk layer is

made of aluminum with Young’s modulus

E ¼ 70 GPa and Poisson’s ratio m ¼ 0:35. The adhe-

sive material is epoxy resin, with Young’s modulus

Ee ¼ 2:4 GPa and Poisson’s ratio me ¼ 0:33. Consid-

ering the adhesive layer thickness he ¼ 0:2 mm, the

corresponding stiffness parameters are computed

following [59] as kn ¼ Eeð1�meÞ
heð1þmeÞð1�2meÞ ¼ 18 TPa m�1

and ks

kn
¼ 1�2me

2ð1�meÞ ¼ 0:25.

The parameters that govern the crack growth in the

adhesive layer are: the fracture energy in Mode I

Gd ¼ 10 J m�2, plastic yield stress

ryield ¼ 0:56
ffiffiffiffiffiffiffiffiffiffiffiffi
2ksGd

p
¼ 5:31 MPa. The hardening

slope for plastic slip is kH ¼ ks=9, the gradient

parameters are k0 ¼ 10 lJ and k1 ¼ 0 J m�2.

The spatial discretization is also the same for both

test cases. Four boundary element meshes are used,

each with a particular time-step. The coarsest spatial

mesh includes a uniform boundary element meshes

along the horizontal sides with element length

‘ ¼ 8:333 mm and two elements along the vertical

sides. In this coarsest mesh the time step s ¼ 1:2

10�3 is used for ES and s ¼ 1:2
 10�4 for MDLS, as

it is expected to converge slower. This discretization is

1. Initiation: j=1, choose y(j), calculate g and its parts gP , gF and gC , initiate mini-
mization direction p=gP .

2. While gP ε do:

(a) According to the norms of gF and gC select minimization:
i. Case: gF is more significant – a try with a CG step: y(try) minimizes Hk

from y(j) in the direction of −p
A. If y(try) satisfies all the constraints – a standard CG step: y(j+1)=y(try),

calculate new minimization direction p from the CG algorithm.
B. If y(try) fails in some constraints – expand the active set: y(j+1) is found

from y(j) in the direction of −p up to or down to the closest bound,
re-initiate minimization direction p=gF

ii. Case: gC is more significant – make free some active components
y(j+1) minimizes Hk from y(j) in the direction of −gC , re-initiate minimiza-
tion direction p=gF .

(b) j=j+1.

3. yk=y(j).

Fig. 3 Geometry for the

model of the shear test used

in Sect. 4.1
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denoted N ¼ 30 according to the number of elements

along the bottom side of C. The refined meshes are

denoted subsequently as N ¼ 60, N ¼ 120 and

N ¼ 240: the lengths of all the boundary elements

and also the time steps are divided by two with respect

to the previous coarser discretization, it means that

they are respectively s ¼ 6
 10�4; s ¼ 3
 10�4 and

s ¼ 1:5
 10�4 for ES and s ¼ 6
 10�5, s ¼ 3

10�5 and s ¼ 1:5
 10�5 for MDLS.

4.1 Shear test

The loading is applied on the right-hand side of the

aluminum bulk layer Cu, where the prescribed

displacements w1 are increasing during the loading

process, whereas w2 ¼ 0. The first-increment of the

displacement is given by w1
1 ¼ s mm and it is further

multiplied by a factor k equal to the number of the time

step changing from an initial value k ¼ 1 until the total

breakage of the interface occurs.

The process of debonding is controlled by energies,

thus a graph of particular energies is shown in Fig. 5.

The total energy consists of both bulk and interface

stored energies and also of the energy dissipated which

are plotted in the graph. The stored energy has initially

quadratic behaviour which changes at points where

some plasticity or damage occur. The most apparent

change is observable for the first partial debonding—

jumps in both stored and dissipated energies. The

graph shows that ES makes the structure to break

earlier, even the total rupture of the interface in ES

occurs before the damage was initialized in MDLS.

The first plastic slip appears before the crack initiation,

the time of its initiation is observable on the graph by a

continuous increase of dissipated energy and appears

at the more or less same moment for both solution

concepts.

The plot in Fig. 6 presents the satisfaction of the

two-sided energy inequality (29) which was forced by

the BTA of ES and also of the upper estimate in (29)

which should be satisfied by MDLS. Here, a better

estimation of the energy inequality (24a) for the finer

discretizations is evident. The graph in Fig. 6(left)

presents DEest—the maximum estimated tolerance

obtained from (29), formally written in the following

way:

Elow�Eest�Eup;
DEest ¼ max Eup � Eest;Eest � Elow

� �
:

ð54Þ

For MDLS, Fig. 6(right) presents just the difference

Eup � Eest. As it was expected, the absolute values of

the differences are greater for MDLS than for ES as no

check on the lower bound, which guaranties the

stability of ES, is provided for MDLS, thought with

finer discratization the jumps are smaller.

The relation between the resultant reaction force

along the adhesive zone and the imposed horizontal

displacement is shown in Fig. 7 for the finest discret-

ization. The first sudden decrease of these forces, both

horizontal F1 and vertical F2, corresponds to the crack

initiation—ES breaks earlier then MDLS. After the

crack initiation the behaviour of the reaction forces is

different. ES provides some hardening, with some

partial breaking and an abrupt break of many elements

at the end. On the other hand, in MDLS there appears a

plateau after the initial break which may represent

some stable growth of the interface crack leading to

total debonding at the end. In fact, such a behaviour

might be expected in view of the related results of pull-

Fig. 4 Geometry for the

model of the receding

contact used in Sect. 4.2

Fig. 5 Energies of both ES and MDLS as functions of time-

dependent imposed loading for the finest discretization. In

particular, ES ruptures here about 3
 earlier than MDLS
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push shear test [13], see also [45]. The graphs also

document onset and increase of plastic slip by a

progressive decrease of the slope of the plotted

functions. Observing the results of both solution

concepts, one can wonder whether the plateau of

MDLS can be a continuation of the hardening part in

ES which could have been recognized if a full load

path had been available.

Figure 8a shows the distributions of displacements

and tractions along CC computed by SGBEM before

the crack appears at k ¼ 32, for the finest discretiza-

tion, and right after its initiation at k ¼ 33, for ES. The

normal u2 and tangential u1 displacements are plotted

scaled by a factor kn or ks, respectively, in order to

show their linear relation with tractions valid in the

elastic range. It is clearly seen that at the end point of

the interface a contact zone appears before crack

initiation and it also persists in front of the crack tip

after the crack initiation. It is the part where the normal

displacements are zero and the compressive tractions

exhibit a concentration. The tangential components of

displacements and tractions do not obey the linear

relation in the zone of the plastification in the adhesive

layer. It is also clear that after debonding the traction

along the pertinent part of CC vanishes, unless CC is in

contact.

The similar plot is made also for MDLS in Fig. 8b.

The distributions of displacements and tractions are

presented along CC before the crack appears at

k ¼ 708, for the finest discretization, and after its

initiation at k ¼ 718, for MDLS. Here, due to a smaller

time step and not abrupt change of crack length, k was

chosen to correspond to a similar time change as

plotted for ES. The distributions of the plotted

quantities are similar in form though different in

magnitudes as for MDLS the crack initiates later.

The next couple of figures documents behaviour of

the numerical solution obtained by different discret-

izations to asses the convergence rate. First, in Fig. 9,

there are plotted some detailed parts of the previous

distributions of scaled displacements for all but the

coarsest discretizations. The curves of all discretiza-

tions correspond to the same load, which is either prior

to the crack initiation or after the crack initiation in all

discretizations, thus e.g. unlike the graphs in Fig. 8 for

N ¼ 120 the graphs are obtained for k ¼ 32 and k ¼
40 for ES, and k ¼ 704 and k ¼ 800 for MDLS.

Before the crack initiation, the plotted curves are the

same, beside some approximation differences. After a

crack appears, the distributions are different for

Fig. 6 Convergence, with

refining space/time

discretization, of error in the

energy balance evolving in

time (i.e. with respect to

loading w1) for both solution

concepts

Fig. 7 Resultant force as a function of the imposed displace-

ment for both solution concepts. In particular, ES ruptures here

about 3
 earlier than MDLS
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various discretization though the shape of the curves

are similar.

An interesting difference between discretizations

and also between ES and MDLS is observed for plastic

slip in Fig. 10. For the two finest discretizations with

N ¼ 120 and N ¼ 240 in ES arises another locus of

plastic slip after crack initiation, which is not present

in the coarser one. The latter is damaged around that

locus so that plastic slip is not allowed to evolve. In the

MDLS case, however, plasticity was developed more

so that on the crack initiation it is evolved in all

discretizations. Though the load steps for both ES and

MDLS were chosen such that the extent of the

damaged interface is similar, the damage evolution

in MDLS is more continuous so that also the

distribution of plastic slip is smooth, the plateau part

of this distribution corresponds to that appeared also in

Fig. 7.

The convergence in the case MDLS on Fig. 10

seems to be slower than for ES, although we should

(a)

(b)

Fig. 8 Distribution of the scaled displacements and tractions along the glued and debonded interface before and right after the crack

initiation; the finest discretization is depicted
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emphasize that this convergence is theoretically

guaranteed [48]. Anyhow, the fractional-step algo-

rithm (33) works satisfactorily in this example and

yields stress-driven local solution (as documented in

Fig. 11) delaminating in well pronounced mixed mode

(as documented in Fig. 10).

The scaled deformed shape of the bulk layer in ES

is shown in Fig. 12a for various load steps in

comparison with the original undeformed one. The

particular load steps selected are: the first step k ¼ 1,

the first crack observation (before and after) k ¼ 32

and k ¼ 33 (valid for the finest discretization), and all

successive crack-length changes (before and after)

until the total debonding of CC at the load-step k ¼ 60.

A similar plot is made also for MDLS in Fig. 12b.

The scale factor for the displacements is chosen the

same for both solution concepts and is equal to 2000.

Recall also that the time step for MDLS is ten times

less than for ES so that e.g. k ¼ 60 for ES corresponds

to k ¼ 600 for MDLS. The particular load steps

(a)

(b)

Fig. 9 Convergence, with refining space/time discretization, of the distribution of the scaled displacements along a part of the glued

and debonded interface: a w ¼ 9:6 lm (top) and w ¼ 12 lm (bottom), b w ¼ 21:12 lm (top) and w ¼ 24 lm (bottom)
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selected are: the first step k ¼ 1, the first crack

observation (before and after) k ¼ 710 and k ¼ 711

(valid for the finest discretization), some intermediate

load step for k = 1,200, and three load steps from the

end of the history, namely k = 1,762, k = 1,767 and

k = 1,768, the total debonding which occurred in the

next step is not plotted. Here, we can see continuous

evolution of the interface crack and also an effect of

peeling close to the end of the load history before the

total damage occurred.

Finally, the influence of the gradient-of-damage

coefficients is worth to be numerically studied. Yet,

the effects are quite expectable so we present it only

for k0 (as actually we neglected k1 in our calculations).

The parameter tends to regularize the solution so that

at each interface point the damage grows less abruptly

and in a way can affect the smoothness of a crack

propagation. More specifically, the coefficient k0, so

far considered 10 lJ, is now varied as 1 lJ, 100 lJ,

and 10 mJ. The graphs in Fig. 13 concern the case

MDLS and show the resultant interface forces for the

three new values of k0. Before the initiation of the

damage, all three graphs coincide. Then the higher

value of k0 causes the later initiation of rupture but

(a)

(b)

Fig. 10 Convergence, with

refining space/time

discretization, of

distribution of the damage

parameter f and plastic slip

p along a part of the glued

and debonded interface. In

particular, comparing the

plastic slip p, it can also be

seen that ES has

delaminated (rather

nonphysically) mostly in

less dissipative Mode I

while MDLS executed

delamination in truly mixed

mode

Fig. 11 Satisfaction of the

approximate maximum-

dissipation principle (36a)

(left) and (36b) (right) for

two discretizations; on the

finer discretization, the

differences between the left-

hand side (LHS) and the

right-hand side (RHS)

of (36) are not visible and

the approximate MDLS is

thus very well stress-driven
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simultaneously lower level of the plateau and earlier

total breakage. The smoothness of the damage

response can be clearly observed in Fig. 14. The

graphs correspond to the imposed displacement

w1 ¼ 32 lm, for which the interface is partially but

not totally damaged for all k0. The distribution of f for

small k0 contains an abrupt fall from one to zero, while

for the greatest k0 the distribution is relatively smooth.

This also influences the distribution of plastic slip

which tends to have less abrupt variations in its values

along the whole interface.

4.2 Debonding with receding contact

The load, in the form of prescribed displacements, is

applied on a part of the top side of the aluminum bulk

layer Cu. The prescribed displacements are increasing

during the loading process. The first-increment of

loading is given by w1
2 ¼ �s mm and w1

1 ¼ 0 again

with s ¼ 1:2
 10�3 for ES and with s ¼ 1:2
 10�4

for MDLS, and it is further multiplied by a factor k.

The three discretizations, both in time and space, as in

the previous example are used, in particular N ¼ 30,

N ¼ 60 and N ¼ 120.

The process of debonding is controlled by energies,

thus graphs of stored-in-adhesive and dissipated

energies are shown in Fig. 15. In the loading process,

(a)

(b)

Fig. 12 Deformed and the

undeformed original shapes

of the bulk layer for seven

selected time instants and

the finest discretization. ES

ruptures here about 3

earlier than stress-driven

MDLS, cf. also Figs. 5 and

7. Displacement depicted

magnified 2,000


Fig. 13 Resultant horizontal force as a function of the imposed

displacement for various values of the gradient-of-damage

coefficient k0 calculated for MDLS
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a large amount of the energy is stored in the bulk. This

energy is not influenced too much by the rupture of the

interface and is not plotted here for the sake of clarity.

Nevertheless, the energy stored in the adhesive

changes significantly, together with the energy

dissipated.

The ES case exhibits a too early debonding which

in fact, as will be seen later, does not cover the all

expected evolution of debonding. The energy releases

step-wise from the adhesive at the moments of some

crack length increase and releases continuously with

the evolution of plastic slip. In this type of loading, it

might be difficult to make the total damage of the

interface adhesive as the prescribed displacements is

only vertical, keeping the zero horizontal displace-

ment at the top side of the bulk layer. For finer meshes,

it took a lot of time-steps to meet the conditions of the

total rupture—the curve for the finest mesh evolve far

behind the breakage point of the coarser ones. In the

continuous case, the midpoint of the interface never

Fig. 14 Distribution of the

damage parameter f and

plastic slip p along CC for

various values of the

gradient-of-damage

coefficient k0 at one selected

time instant calculated for

MDLS

Fig. 15 Evolution of energies of both ES and MDLS as

functions of time-dependent loading for the finest discretization.

In particular, ES ruptures here about 2
 earlier than MDLS

Fig. 16 Convergence, with

refining space/time

discretization, of the error in

the energy balance as a

function of time (through the

loading w1) for both solution

concepts
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breaks. Thus, only a part of the load history is plotted

which essentially includes the debonding of the lateral

not loaded parts of the bulk layer.

Figure 16 shows the energy tolerances provided by

the energy estimate (54) for ES and by difference

Eup � Eest for MDLS. A decreasing variation in the

energy estimation bounds for finer discretizations and

sharp peaks of these tolerances at the instants of

sudden changes at the interface can be observed. The

difference is naturally greater for the MDLS concept.

Let us look at the interface displacements and

tractions obtained by the finest discretization shown in

Fig. 17. The results are symmetric so only a half of the

interface for x1� 125 mm is shown. The first crack

appears for k ¼ 31 (w31
2 ¼ 9:3
 10�3 mm) in ES and

in fact the whole not loaded part of the bulk layer is

released. Figure 17a shows the distributions of the

scaled displacements and tractions along CC before the

crack appears, k ¼ 30, and right after its initiation. It is

clear that below Cu, where displacements are pre-

scribed (the end point of Cu is at x1 ¼ 175 mm)

compressive stresses appear in the adhesive. Close to

this zone, a small area of tensile loading can be

observed before originating a crack, see also the detail

(a)

(b)

Fig. 17 Distribution of

scaled displacements and

tractions along the glued and

debonded interface before

and right after the crack

initiation; the finest

discretization is used
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in Fig. 18, farther from this area the deformation

decreases. The crack initiation and evolution is

abrupt—the problem suddenly changes to a reced-

ing-contact phenomenon. This change is surprising

because there were almost no tractions at the end

points of the bulk layer. This could be understood

recalling the character of ES—it is a global minimum,

or its approximation.

It is interesting to observe also the tangential

components. Close to the end point of Cu, the

plastification in the adhesive developed before the

crack appears—the tangential components do not

obey the linear relation in this zone. After debonding,

the traction along the debodned part of CC vanishes,

unless CC is in contact—this is the difference in the

extent of the vanishing tangential and normal tractions

in the bottom pictures in both Fig. 17a, b.

In the ES case, some part of the deformation history

evidently misses, but this part was, however, found by

MDLS. In the latter case, the crack was initiated below

the endpoint of the load for k ¼ 697 (w697
2 ¼

0:02091 mm) and grows until k ¼ 730 (w730
2 ¼

0:0219 mm) when the unloaded part of the bulk layer

is released. Figure 17b shows the distributions of the

(a)

(b)

Fig. 18 Convergence, with

refining space/time

discretization, of the

distribution of

displacements along a part

of the glued and debonded

interface: a w ¼ 8:4 lm

(top) and w ¼ 9:6 lm

(bottom), b w ¼ 20:88 lm

(top) and w ¼ 23:4 lm

(bottom)
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scaled displacements and tractions along CC before the

crack appears, k ¼ 697, and at some intermediate time

step k ¼ 715. The difference between these two k in

fact corresponds to the time step used in the ES case.

Here, it is clear from the graphs that the crack extends

along a part of the interface where tractions are zero

and normal displacements u2 are positive. The

presence of the plastification at the end part of the

bulk layer (x1� 225) is evident as the linear relation

between scaled tangential displacement and traction is

not satisfied but the relation between the normal

components still holds.

Some aspects of the convergence with the discret-

ization refinement are illustrated in Figs. 18 and 19.

Compared to the previous example in Sect. 4.1, the

convergence for the used meshes is observed also after

the crack onset, the difference between finer meshes is

smaller than between coarser meshes with no differ-

ence for MDLS case. In particular, Fig. 18, shows the

distribution of the displacements in a part of the

bottom side of the bulk layer. In the plots, the load

steps are taken such that for none of the discretizations

a crack appears—the top plots in both Fig. 18a, b, or

the interface is broken for all the discretizations—the

bottom plots. The distribution of the plotted functions

is really similar, as it can be observed for convergent

solutions. According to the above, a small area of

tensile stretch is shown before the damage initiation.

Though not the same in magnitude, the shape of

distribution of displacements is similar both for ES

and for MDLS.

Figure 19 shows the state of damage and distribu-

tion of plastic slip for a later time step, in fact for both

solution concepts the same imposed displacement is

applied though of course at different time steps. As

expected, the damage usually achieves only one of the

limit values: undamaged ‘1’ or fully damaged ‘0’.

There is no difference for all the three discretizations.

Nevertheless, the plastic slip smoothes out for the finer

discretizations. Two hats in the distribution for ES

appear due to the step-wise breakage of the interface.

The first crack included the whole plastic zone

developed prior to the crack initiation (the right hat)

whose evolution has stopped after damage. Later,

another evolving plastic zone appeared (the left hat),

compare with Fig. 17a. In the MDLS case the crack

length increases continuously and never goes beyond

the plastic region so that the distribution of plastic slip

is not split into two parts.

As we mentioned in the previous example, it is

difficult (and even not always automatic) to guarantee

the convergence in the MDLS case towards truly

stress-driven local solutions. Therefore, it is again

worth checking a-posteriori approximate maximum

dissipation principle (36). Like in the previous exam-

ple in Fig. 11, now Fig. 20 shows the differences in

(36). The differences are however greater then in the

previous example, which is not much surprising

(a)

(b)

Fig. 19 Convergence, with

refining space/time

discretization, of the

distribution of the damage

parameter f and scaled

plastic slip p along a part of

the glued and debonded

interface for w ¼ 30 lm
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because this example exhibits clear tendency of

delaminating bigger portion of CC at once and then

some rupture may happen under sub-critical driving

force and the maximum-dissipation principle may

tend to be not completely satisfied, even though it need

not be related to unphysically too-early ruptures. This

is therefore an interesting example where these effects

seem to be slightly visible and it is worth observing

spatial distribution along CC of the residua in AMDP

(37) counted for t ¼ T to see where this possible

deviation from the IMDP occurred. To this goal, we

can re-write AMDP (37) as:

DRf;sðTÞ ¼
Z

CC

�
Gd

�
fK
s � f0

�
�
XT=s
k¼1

f k�1
s ðfk

s � fk�1
s Þ

	
dS;

f k
s 2 �ofEðuk

s; f
k�1
s ; pk

sÞ;
ð55aÞ

DRp;sðTÞ ¼Z
CC

�XT=s
k¼1

ryield



pk
s � pk�1

s



� gk�1
s ðpk

s � pk�1
s Þ

	
dS;

gk
s 2 �opEðuk

s; f
k
s; p

k
sÞ;

ð55bÞ

and we can then display the integrands in (55) as a function

of x 2 CC. This is done in Fig. 21 even for three

different discretizations, but it seems to reveal quite

nice numerical convergence so that, expectedly, the

maximum-dissipation principle is well satisfied even

in this relatively sophisticated experiment. Again, it

documents that the fractional-step-type algorithm (33)

efficiently calculated stress-driven local solution.

Finally, the scaled deformed shape of the bulk layer

is shown in Fig. 22 for various load steps and the finest

Fig. 20 Satisfaction of the

approximate maximum-

dissipation principle (36a)

(left) and (36b) (right) for

two discretizations

Fig. 21 Convergence, with

refining space/time

discretization, of the

integrands in (55),

documenting spatial

distribution along CC of the

numerical error of the

approximate Hill maximum

dissipation principle for the

damage parameter f (left)

and plastic slip p (right)
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discretization in comparison with the original unde-

formed one. The particular load steps selected for ES

are: the first step k ¼ 1, the first crack observation

(before and after) k ¼ 30 and k ¼ 31 and a successive

crack length change k ¼ 45. The total debonding of

CC which occured at the load-step k = 1,695 is not

plotted as it seems physically unrealistic. For MDLS

the plotted data correspond to: the first step k ¼ 1, the

step right before the first crack observation k ¼ 697,

an intermediate state for k ¼ 715 and two time steps

k ¼ 729 and k ¼ 730 which correspond to debonding

of the whole not loaded part, just before and after,

respectively. As mentioned above, the loading causes

receding contact after debonding.

5 Conclusions

An energy-based model for interface debonding with a

fracture-mode-sensitive crack growth under rate-inde-

pendent conditions has been considered. The sensitiv-

ity of the model to opening Mode I and shearing Mode

II cracks has been achieved by considering two

internal variables along the interface: damage

parameter f and plastic slip p, the latter being inactive

in Mode I. The numerical implementation of spatial

discretization via SGBEM has permitted the whole

problem to be defined only by the boundary and

interface data. Two solution concepts have been

applied and compared in the numerical analysis: The

energy-conserving concept of energetic solution (ES)

and a stress-driven, maximally-dissipative local-solu-

tion concept (MDLS). Simple two-dimensional exam-

ples have validated the model and have shown that it

provides expected results: typically, due to ES’s

search for global minimizers of the energetic func-

tional, they may rupture earlier under less work of

external loading (thus dissipating less energy, exhib-

iting sometimes unphysical tendency to prefer less

dissipative Mode I) than MDLS’s. Examples of such

not entirely realistic responses are on Fig. 12a and

22a. While for the used MDLS concept, some of the

expected responses have been achieved together with

a-posteriori validation of (an approximate variant of

an integrated version of) the Hill’s maximum-dissi-

pation principle. Another possibility of elimination or

reducing of the undesired attributes of ES includes

adding a small viscosity similarly as in [42] for mixed-

(a)

(b)

Fig. 22 Deformed and the

undeformed original

undeformed shapes of the

bulk layer for various time

instances and the finest

discretization. ES ruptures

here about 2
 earlier than

the stress-driven (i.e.

MDLS) one, cf. also Fig. 15.

Displacement depicted

magnified 150


Meccanica (2014) 49:2933–2963 2961

123



mode insensitive variant, although it is computation-

ally very difficult to obtain as documented in [45], and

is intended to discuss it in future releases.
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lides. CR Acad Sci Paris Ser II 300:709–714
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