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Abstract This work is an in-depth analysis of

frictional phenomena including macroscopic stick–

slip and mode coupling instabilities, which can occur

at different scales ranging from earthquakes to vibra-

tional issues in machining processes. The paper

presents a comparison between experimental obser-

vations of frictional macroscopic behaviours repro-

duced in a dedicated laboratory set-up and numerical

simulations, obtained by transient finite element

simulations able to reproduce the contact dynamics.

The explicit finite element code PLASTD has been

used to perform numerical transient analysis of two

elastic bodies in frictional contact. On the other hand

an experimental set-up has been used to investigate the

macroscopic response of two blocks of polycarbonate

in relative motion, highlighting how the contact

frictional behaviour is affected by the imposed

boundary conditions. Time evolution of global contact

forces has been investigated; macroscopic stick–slip,

modal instability behaviours and the transition to

continuous sliding as a function of the system

parameters have been observed. The frequency and

time analysis of experimental phenomena exhibits a

good agreement with numerical results obtained

through transient contact simulations. The numerical

analysis allows for explaining the interaction between

local contact behaviour and system dynamics, which is

at the origin of the different frictional scenarios. Maps

of the instability scenarios are drawn as a function of

boundary conditions or system parameters.
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1 Introduction

Contact instability phenomena can lead, with respect

to the system parameters (friction coefficient, material

damping, sliding velocity, contact pressure, material

properties, etc.), to strong system oscillations, discon-

tinuous motion and fastidious noise.

Some recent papers dealt with the frictional

dynamics by means of frictional models characterized

by few degrees of freedom and rigid/deformable

contact behaviour [1, 2]. This kind of modelling is

useful to better investigate global non-linear dynamics

of the system without accounting for local contact

dynamics (wear, plasticity, third body [3], local impact

[4]) by means of specific contact law or constitutive

interface model [5].

In recent years the local dynamics of frictional

contacts and its interaction with the global behaviour

of the system has been the subject of experimental and

numerical works [6–9].

Frictional contact dynamics is of major interest to

several disciplines as tribology, earth science, vibrational

mechanics and fracture mechanics. Furthermore, under-

standing the physical mechanisms that drive the onset of

sliding is of great importance to many research and

industrial applications such as disk brake squeal [10–13],

hip endoprosthesis vibrations [14], wheel rail noise

emission [15], machining tool vibrations, earthquakes [6,

16], etc. Recent experimental works [7] focused the

attention on the effect of the local dynamics [17] at the

contact interface, observing [18] the evolution of

precursors (interface rupture fronts) that propagate [19]

at different velocities at the onset of sliding. On the other

hand numerical works [18, 20, 21] showed how the local

interface dynamics (rupture and wave propagation)

affects the macroscopic frictional behaviour of the

system. In this context the approach commonly adopted

in seismology issues to follow the waves generated at the

contact interface [22, 23] is coupled with the structural

dynamic analysis of the mechanical system. Simulation

results [19] show that the coupling between the local

contact behaviour at interface (local dynamics) and the

global dynamics of the system can induce different

macroscopic frictional instability scenarios. By varying a

system parameter, the macroscopic frictional dynamics

can be characterized by macro stick–slip phenomena,

harmonic vibrations due to the mode coupling instability

[2, 24], or stable continuous sliding. The macro stick–slip

regime is characterized by sudden friction force drops

(sliding state) along the time, separated by periods of

elastic energy accumulation (stick state). Instead, the

modal dynamic instability can occur when a vibration

mode of the mechanical system becomes unstable, due to

frictional contact forces. Any mechanical system with

frictional can generate harmonic acoustic emission (at the

frequency of unstable mode) during the relative motion.

The numerical results in [18, 19] highlight how the

local phenomena (rupture and wave propagation)

generated during the relative motion of the elastic

bodies are directly related to the macroscopic response

of the system (macro stick–slip, mode coupling,

continuous sliding,…). Thus, the frictional behaviour

is not exclusively a property of the materials in contact

but it’s a more complex process, which needs to

consider the interaction between the interface dynam-

ics and the system structural response [6, 8, 25–28].

However a complete theory, which can explain the

processes involved at different scales (from atomic to

system scale) in contact issues, has not been yet

formulated. In this context, experimental analyses

with the support of numerical contact simulations can

allow to discover further and relevant aspects of

frictional contact phenomena arising during relative

motion between elastic media. This paper presents

experimental tests allowing for validating the insta-

bility contact scenario obtained numerically [19].

The first part of the paper shows the results obtained

by the experimental analysis of two polycarbonate

blocks in sliding motion. As a function of system

parameters the same system exhibits different behaviour

switching from macro stick–slip phenomena to mode

coupling instability up to stable continuous sliding. A

different structural response (vibrations amplitude,

excited frequencies and accelerations) of the system

has been observed as a function of system parameters.

The second part of the paper shows the comparison

between numerical and experimental analysis as a

function of same system key parameters. A contact

law that considers the coefficient of friction as a

function of the adherence time is accounted for in the

finite element model, in order to simulate the frictional

behaviour of the polycarbonate blocks.

With respect to recent literature, the presented

results allow to validate experimentally the general-

ization of the frictional contact scenarios between two

bodies in frictional contact, showing how the local

contact dynamics (rupture and wave propagation) can

make switch the system macroscopic frictional
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behaviour from macroscopic stick–slip to mode cou-

pling instability or continuous stable sliding. The

correlation with numerical results allows to explain

this behaviour just accounting for the local dynamics

at the contact and a simple Coulomb contact law,

rather than introducing ‘‘ad-hoc’’ contact or interface

laws to match the experimental evidences.

While the numerical simulations allow for the

understanding of the physical phenomena and inves-

tigating the coupling between contact and system

dynamics, the experimental results allow for validat-

ing the numerical findings.

2 Experimental set-up

This section presents a description of the experimental

test bench used to provide the relative motion of two

elastic bodies in contact under well controlled bound-

ary conditions.

Two blocks of polycarbonate (Fig. 1) have been

used to carry out the experimental tests. The material

and geometrical properties of the polycarbonate

blocks are reported in the following table:

The dimensions of the specimens (Table 1) are set

in order to obtain a better planarity of the two contact

surfaces and a considerable average contact pressure.

The contacting faces of the two blocks have been

polished and each contact face has been cleaned by

ethyl alcohol before of performing the tests.

The set-up (a simplify scheme is reported in Fig. 1)

is rigidly linked at a seismic mass (5,000 kg). The

upper specimen is fixed to the mobile part of the set-up

that provides the translation displacement (along x

direction) through hydraulic cylinders, controlled in

position with a linear encoder. The lower specimen is

bonded to the fixed part (along x) and the normal load

(along y direction) is applied through a hydraulic

piston, controlled in force. A tri-axial piezoelectric

force transducer records the tangential and normal

force both in the preload phase and during the relative

motion. A piezoelectric accelerometer (Fig. 1) is

positioned on the support of the lower specimen to

measure the tangential acceleration during tests. In the

first phase of each test, the lower and upper specimens

are put in contact applying a compressive normal force

FN; afterward a constant velocity is imposed on the

upper specimen to bring the blocks in frictional

relative motion. The global signals, tangential force,

normal forces, tangential acceleration and imposed

displacement have been recorded with a sample

frequency of 50 kHz by the OROS acquisition system.

The translational velocity is imposed to the slider

block by a linear hydraulic displacement system with

high resolution in order to avoid artificial stick–slip

phenomena induced by the set-up control system. The

X

YBody 1
Body 2

V

Accelerometer

V

F

Fig. 1 A general scheme of

the experimental set-up: 1

hydraulic cylinder, 2

hydraulic piston, 3 force

transducer, 4 specimens of

polycarbonate

Table 1 Material and geometrical properties of polycarbonate

specimens

Polycarbonate

Length (mm) 30

Width (mm) 10

Thickness (mm) 5

Density (kg/m3) 1,190

Young modulus (GPa) 2.65

Poisson coefficient 0.4
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set-up allowed imposing at the system the opportune

(constant) boundary conditions in order to obtain

reproducible results and to perform a comparison with

numerical results.

An experimental parametrical analysis, as function

of the slider velocity and the normal load, has been

performed. Four different values of normal force have

been tested, 150, 450, 750, 1000 N, corresponding to

an average contact pressure of 1, 3, 5, 6.6 MPa

respectively. For each value of the normal load, the

slider velocity has been ranged between 10 mm/s and

2 lm/s with a maximum total displacement of 5 mm.

This set-up allowed observing different macroscopic

frictional behaviours when two simple elastic media

are in relative motion under frictional contact.

3 Observation of frictional behaviours

This section presents the different macroscopic fric-

tional behaviours observed between the two elastic

bodies, when the relative translational velocity is

varied. Experimental tests have been performed

ranging the velocity of the upper slider block, while

the normal load is fixed to 750 N in order to obtain an

average contact pressure of 5 MPa. At the end of the

section the effect of normal load and imposed

horizontal velocity on the contact scenarios is

discussed.

3.1 Macro stick–slip instability

Figure 2 shows the results for an imposed translational

velocity of 1 mm/s. The blue and green curves show

respectively the tangential and normal global forces

recorded by the force transducer. The black curve

represents the imposed displacement in order to have

constant translational velocity along the x direction.

First, a normal force along y direction is applied to the

system in order to obtain an initial average normal

pressure of 5 MPa. After this preload phase, not

reported in figure, a constant velocity is imposed to the

body 2 (Fig. 1).

After a first ramp due to the tangential loading

phase, the curve of tangential force (Fig. 2) exhibits

periodic drops and subsequent ramps along the

recorded time. Each increase of the tangential force

(increase of elastic energy stored in the system) is

followed by a sudden drop due to the following macro-

slip at the contact surface [18]. The slope of the initial

tangential curve is function of the tangential stiffness

of the whole system during the tangential loading
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Fig. 2 Imposed displacement (up); normal (y direction) force and tangential (x direction) force (down). Experimental data obtained

with the following parameters: imposed slider velocity 1 mm/s and normal load 750 N
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phase. During each load phase, until the tangential

force reaches the maximum value, the bodies are

globally still in adherence status while some contact

zones can switch in sliding state before the macro-slip

due to the interface rupture propagation (precursors)

as shown in [6, 18, 29].

Then, a sudden macroscopic slip occurs with the

consequent drop of the tangential force. The sliding of

the whole interface is due to the rupture and wave

generation and propagation at the contact interface

[18] that produces the release of the elastic energy

stored in the system during the loading (sticking)

phase.

The sudden macro slip of the contact interface

represents an impulsive excitation for the system and

the generated vibrations, measured at the piezoelec-

tric accelerometer (see Fig. 5a), are related to the

dynamic response of the whole set-up. Figure 5b

shows the spectrum of the acceleration signal for a

time interval D1, i.e. a time period between two

macro slip, characterized by the response to the

impulsive (force drops) system excitation, where the

first natural frequencies (110, 600, 900, 1500,

2400 Hz) of the whole system are excited. On the

other hand the spectrum in Fig. 5c is referred to time

interval D2 and shows a superposition of the super-

harmonics of the stick–slip frequency (50 Hz)

together with the excited system natural frequencies.

Thus, the macroscopic frictional behaviour, charac-

terized by periodic drops of tangential force and

referred in literature as stick–slip [7], is originated by

the local contact rupture propagation that excites the

whole system dynamics. The propagation of the

contact waves and the interaction with the structural

dynamics play a key role into defining the frictional

behavior of two elastic media in relative motion. This

kind of frictional instability can occur in any

mechanical system with frictional interfaces and it

is also referred as the main mechanism at the origin

of earthquakes [30].

3.2 Mode coupling instability

Increasing the driving velocity and maintaining fixed

the normal force (750 N), the macroscopic frictional

behaviour changes its pattern (Fig. 3). Figure 3 shows

the system behaviour for an imposed translational

velocity equals to 5 mm/s. After the preload phase, the

translational velocity is imposed and the tangential

force (green curve in Fig. 3) reaches its maximum

value higher than the mean tangential force at steady

state. Then, after the first macroscopic slip, the system

shows large oscillations of the global frictional force

around its mean constant value (green curve in Fig. 3).

Furthermore the recorded acceleration highlights the

typical behaviour of mode coupling instability (see

Fig. 5d): a first phase (time interval D1 in Fig. 5d) with

an initial exponential increase of oscillations and

harmonic spectrum at the unstable natural frequency

followed by a second phase where the response is

bounded to a limit cycle (time interval D2 in Fig. 5d).

The spectrum of the first phase (Fig. 5e) shows a main

frequency peak, representing the fundamental har-

monic at 110 Hz. The relatively low frequency of the

vibrations is associated to an unstable mode of the

whole experimental set-up. The spectrum in the

second phase (Fig. 5f) shows the main harmonic at

110 Hz and the respective super-harmonics of the

signal, due to the contact non-linearities that bound the

vibration. The harmonic vibrations in Fig. 5f, induced

by frictional contact forces, are typical of mode

coupling instability [19, 24]. In fact, when the two

bodies are in relative motion the contact forces can

excite an unstable mode of the system [19] and, after

an initial exponential increase of the vibration, a limit

cycle is reached; the acceleration signal in Fig. 5d

shows the exponential increasing until the material

damping and contact non-linearities stabilize the

system response. This kind of contact scenario,

typically studied in brake or clutch systems, has been

experimentally highlighted also here for general

mechanical system under frictional contact. The same

contact scenario has been analysed numerically in [19]

where the interaction between local behaviour at the

contact and system dynamics has been analysed as a

function of the material damping.

3.3 Stable continuous sliding

Considering the same mechanical system, Fig. 4

shows its macroscopic behaviour during relative

motion obtained for a translational velocity of

10 mm/s, while the normal load is fixed to 750 N.

First, the tangential force reaches its maximum value,

higher than the tangential force at the steady state;

afterwards the entire system remains in sliding status

and the frictional force stabilizes (decaying oscilla-

tions) reaching a steady value. On the other hand, the
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acceleration signal in Fig. 5g shows typical decaying

oscillations due to the initial drop of tangential force

(Fig. 4); the spectrum of the signal in this first phase

(Fig. 5h) shows how the decaying oscillations are

related to the first natural frequencies of the set-up.

Afterwards the system response is stable and no

relevant oscillations can be observed from the

recorded signal and its related spectrum (Fig. 5i).

In this case the relative motion between the two

bodies of polycarbonate can be considered stable and
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Fig. 3 Imposed displacement (up); normal (y direction) force and tangential (x direction) force (down). Experimental data obtained

with the following parameters: imposed slider velocity 5 mm/s and normal load 750 N
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Fig. 4 Imposed displacement (up); normal (y direction) force and tangential (x direction) force (down). Experimental data obtained

with the following parameters: imposed slider velocity 10 mm/s and normal load 750 N
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the structural dynamics of the system is not excited

(not relevant oscillations), as it can be observed from

the measured tangential force and acceleration.

3.4 Discussion on contact behaviours: frictional

scenario map

The experimental results highlighted how a simple

frictional system can exhibit different macroscopic

contact scenarios (macro stick–slip, mode coupling

instability, stable continuous sliding) as a function of

the boundary conditions. Figure 5 shows as the

frictional contact forces can excite the system dynam-

ics differently, when increasing the imposed velocity.

The macroscopic behaviour of the system can be

characterized by intermittent interface motion and

impulsive excitation of the system (macro stick–slip

instability in Fig. 5a), continuous sliding at the

interface with harmonic vibration of the system (mode

coupling instability in Fig. 5d) or continuous stable

sliding state (Fig. 5g). In particular, the spectrum of

the tangential acceleration during the macro stick–slip

scenario (Fig. 5c) highlights how the system vibration

amplitude is lower with respect to the amplitude of the

acceleration in the limit cycle during mode coupling

instability (Fig. 5f). Furthermore, in the first case the

system behaviour is characterized by intermittent

interface motion, while in the second case the system

can be considered in continuous sliding state with

large periodical oscillations of the local contact forces,

up to reach local changes in the contact status (local

stick or detachment) [18, 19].

The same transition from stable continuous sliding

state to macro stick–slip instability has been also

observed experimentally as a function of initial normal

load, ranging from 150 N (1 MPa) up to 1,000 N

(6.6 MPa), maintaining fixed the imposed horizontal

velocity (Fig. 6). The experimental parametrical ana-

lysis, carried out on the two blocks of polycarbonate as

a function of boundary conditions allowed for drawing

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 5 Frictional instability map with normal load equal to

750 N. a–c Macro stick–slip instability for V = 1 mm/s;

d–f mode coupling instability for V = 5 mm/s; g–i stable

continuous sliding for V = 10 mm/s. Alongside each contact

scenario (acceleration signals) the spectrum related to different

time period D1 and D2 is shown
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a contact scenarios map of the system. Figure 6

highlights the role of normal load and imposed

velocity into the switching from macroscopic stick–

slip instability and continuous sliding behaviour with

or without mode coupling instability. For low normal

load (low average contact pressure) the system is

characterized by stable behavior for the whole

imposed velocity range (between 2 lm/s and

10 mm/s). Increasing the normal load the system

starts to exhibit unstable contact behavior for relative

low imposed velocity, as shown in Fig. 6. Similar

maps of the frictional behavior can be drawn numer-

ically for other system parameters, as shown in [19].

4 Comparison between experimental

and numerical results

This section presents the comparison with results

obtained by transient contact non-linear simulations,

carried out to analyse the contact dynamics of elastic

media in frictional contact. Numerical analyses have

been performed in order to investigate the coupling

between the local contact dynamics and the dynamic

response of the whole system. The different macro-

scopic scenarios between elastic media under frictional

contact have been obtained as a function of system

parameters. A good agreement between numerical and

experimental scenarios is presented, showing compa-

rable behaviours as a function of boundary conditions

(normal load and imposed velocity).

4.1 Finite element model: geometry and contact

formulation

The 2D model (plane strain deformation) consists

of two isotropic elastic finite media separated by a

frictional interface (Fig. 7); at each node of the

contact interface is imposed the friction law (see

Sect. 4.2). The material and geometrical properties

of the numerical model are listed in Table 2. A

force distribution along y axis, giving a global

force F, is applied at the bottom of the body 2.

After the preload phase, the global normal force F

is maintained constant and a translational velocity

V, along the x direction, is applied at the lower

edge of the body 2 to bring the system in relative
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of the frictional contact

scenarios as a function of

translational velocity V and

average contact pressure

Table 2 Material and geometrical properties of the numerical

model

Body 1 Body2

Length (mm) 30 30

Width (mm) 10 10

Element number 30,000 5,590

Contact element size (mm) 0.1 0.23

Young modulus (GPa) 2.65 2.65

Density (kg/m3) 1,190 1,190

Poisson ration 0.40 0.40

Material damping: alpha (1/s) 40

Material damping: beta (s) 1e-7

Simulation time step (s) 9e-9
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motion; the body 1 is maintained fixed at its upper

side.

The explicit finite element code PLASTD [31, 32]

is used to perform transient contact nonlinear simu-

lations in order to analyse the local contact dynamics

and structural response due to the system excitation by

the frictional forces. This software is designed for

large strains, large displacements, large rotations and

non-linear contact behaviour using a forward

Lagrange multiplier method for the contact between

deformable bodies. The bodies are described by a four

node quadrilateral elements with 2 9 2 Gauss quad-

rature rule and the contact algorithm uses slave nodes

and target surfaces. The elementary target segments

are described by two nodes and approximated by

bicubic splines. A forward Lagrange multiplier

method is formulated by equations of motion at time

(ti = iDt) with the displacement conditions imposed

on the slave node at time ti?1:

M€ui þ C_ui þKui þGT
iþ1ki ¼ Fi

Giþ1 Xi þ uiþ1 � uif g� 0

�
ð1Þ

where M and K are, respectively, symmetric and

positively defined matrices of mass and stiffness of the

system; C is the Rayleigh proportional damping

matrix where a is the mass damping coefficient and

b is the stiffness damping coefficient:

½C� ¼ a½M� þ b½K� ð2Þ
Xi is the coordinate vector at time ti. u, _u, €u are

respectively the vectors of nodal displacements, nodal

velocities and accelerations. Fi is the vector of external

forces. The contact algorithm uses slave nodes and

target surfaces. ki ¼ ½knkt�T contains respectively

normal and tangential contact forces acting on the

nodes at the contact surface. GT
i ¼ ½GT

n GT
t � is the

global matrix of the displacement conditions ensuring

non-penetration condition and the contact law at the

boundaries in contact. The formulation is discretized

temporally by using an explicit Newmark scheme. The

explicit Newmark scheme coupled with forward

Lagrange multiplier method allows to satisfy more

precisely the contact conditions. Furthermore explicit

method allows for better solve problems involving

impact and sliding with friction [32] and fast phe-

nomena such wave and rupture propagations at the

contact.

Because of the relative thickness of the bodies in

contact, a plane strain deformation model has been

used in order to have reasonable computational time,

which is today the main limit into solving 3D transient

non-linear contact simulations.

4.2 Definition of the friction law

In the present finite element model the coefficient of

friction is not assumed to be a constant value

(Coulomb-Amounts friction law). In fact, the exper-

imental frictional analysis, performed on polycarbon-

ate materials, highlighted as the macroscopic friction

coefficient shows relevant variations as a function of

imposed boundary conditions.

Based on frictional observations, a more realistic

friction model has been implemented in the code. In

particular, the value of the friction coefficient between

the two surfaces of polycarbonate has been observed

to be a function of the sticking (adherence) time

between the two surfaces; this behaviour is probably

due to the molecular reaction at the interface that

increase the static friction coefficient with the increase

of the adherence time.

Then, the implemented friction law describes the

local friction coefficient (imposed at each contact node

of the model) as a function of adherence time. The

definition of a reliable law of friction has been derived

as a function of the experimental tests carried out on

the polycarbonate blocks (Fig. 8).

Fig. 7 Geometry and boundary conditions of the numerical

contact model
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Figure 8 shows the curve fitting of experimental

points of the macroscopic friction coefficient, obtained

considering the performed experimental tests at an

average pressure of 5 MPa. The experimental data

(red triangles in Fig. 8) represents the static friction

coefficient calculated as the maximum ratio between

tangential force and normal force recorded during the

macro stick–slip instability behaviour for a fixed

imposed velocity. At each experimental point in Fig. 8

has been associated the adherence time calculated by

the period of the stick–slip events for each considered

imposed velocity. This assumption has been consid-

ered under the hypothesis that between two following

macro slip, observed experimentally, the contact

interface stays in adherence (stick phase).

The point marked by a black dashed circle is the

dynamic friction coefficient experimentally estimated

as the ration between the tangential force and normal

load in the case of stable continuous sliding (Fig. 6),

equivalent to a nil adherence time.

The curve fitting of the experimental results led to

obtain an analytical curve of the friction contact law

able to be implemented in the numerical contact

model:

l tadhð Þ ¼ Aþ B � 1� e�C�tadh
� �

ð3Þ

where the tadh represents the adherence time; A ? B is

the static friction coefficient; A is the dynamic friction

coefficient defined precisely for tadh = 0; C is the

parameter influencing the increase or decrease of

friction coefficient in the first interval time of the

friction law as shown in Fig. 8.

The experimental analysis of the friction coefficient

highlighted some important variations of static coef-

ficient for short adherence times and a stabilization of

friction curve for high time of adherence, as shown in

Fig. 8. This kind of friction law wants, in a simple

way, to account for the complex mechanisms at the

contact interface such as adhesion, physical and

chemical actions, and viscoelastic deformations of

asperities that occur at the interface. These mecha-

nisms play a key role into define the local frictional

contact behaviour, but at the same time they are

difficult to be implemented in a numerical model [3,

33]. Nevertheless, the experimental macroscopic

measurements of the contact forces allow for defining

reliable parameters of the friction law (Eq. 3) to be

representative, as much as possible, of the local

physics at the interface.

The same behaviour of the macroscopic friction

coefficient, shown in Fig. 8, has been also observed

for the average normal pressure of 3 MPa and

6.6 MPa; then, a similar friction law has been

estimated for each values of the contact pressure,

modifying the parameters A, B, C as a function of the

experimental points (Table 3). The difference on the

friction, observed experimentally as a function of

average pressure, could be due to the effects of the real

contact pressure on the surface mechanisms listed

above.

It has been also observed that determining the

static friction coefficient from the time evolution of

tangential force underestimates the real value of

static friction coefficient [19, 29, 34]; in fact the

Fig. 8 Curve fitting of

friction contact law used

into the finite element model

for an average contact

pressure of 5 MPa
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difference between apparent (macroscopic) and real

(local) static friction coefficient is due to the local

contact dynamics at the frictional interface, which

lead to have macro-sliding for a tangential force

lower than the upper limit imposed by the friction

coefficient, as explained in the literature [18, 35].

After these considerations, in order to perform the

comparison between experimental and numerical

results obtained by the nonlinear transient analysis,

the values of static friction coefficient has been

increased of 15 % as showed by the friction law

reported in Fig. 8 (green curve).

4.3 Effect of imposed boundary conditions

This section presents a comparison between the

experimental tests and the numerical results carried

out by means of transient non-linear simulations. The

effect of the boundary conditions, horizontal velocity

and normal force (average contact pressure), has been

numerically investigated considering a 2D plane strain

model, for which the only non-linearity accounted for

is the contact behaviour (see Sect. 4.2). The black

curve in Fig. 9 shows the displacement imposed at the

lower edge of the model in order to obtain a steady

velocity of 1 mm/s; like in the experimental tests,

before applying the constant translational velocity, a

preload phase has been realized to bring the two blocks

in contact with average normal pressure of 7.6 MPa.

The simulation results highlight how the system

behaviour is characterized by stick–slip phenomena

(Fig. 9). After a first linear growth, the tangential

contact force exhibits repetitive fluctuations (ramps

and sudden drops). The released of elastic energy

during the drops produces strong vibrations into the

system. The same contact scenario characterized by

macro stick–slip has been revealed experimentally for

Table 3 Parameters of the friction law implemented in the

numerical model

Average

contact

pressure

(MPa)

A B C Max static

friction

coefficient

(A ? B)

Dynamic

friction

coefficient

(B)

3 0.14 0.20 30 0.34 0.20

5 0.16 0.135 30 0.295 0.135

6.6 0.14 0.125 35 0.265 0.125
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Fig. 9 Imposed displacement at lower edge of body 2 (up);

normal force (along y direction) and tangential force (x

direction) measured numerically at the upper edge of the body 1.

Imposed boundary condition: horizontal velocity V = 1 mm/s and

average contact pressure 7.6 MPa
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an imposed velocity of 1 mm/s and average pressure

of 6.6 MPa (Fig. 2).

Figure 10 shows the effect of the imposed hori-

zontal velocity, both experimentally and numerically,

on the macroscopic frictional behaviour. The macro-

scopic friction coefficient along the time has been

calculated as the ratio between the total tangential

force and normal force measured at the boundaries for

both numerical and experimental samples. Ranging

the imposed velocity from 10 to 1 mm/s and main-

taining fixed the normal force (average pressure of

7.6 MPa) the behaviour of the numerical system

changes its pattern (Fig. 10, right) as shown also in

the experimental measurements (Fig. 10, left). For a

translational velocity of 10 mm/s and an average

contact pressure of 7.6 MPa the numerical model

exhibits a typical stable continuous sliding behaviour

(Fig. 10d) as observed experimentally for the same

value of the sliding velocity and an average pressure of

6.6 MPa (Fig. 10a). The friction coefficient shows a

linear increase until it reaches the maximum value

and, after a sudden drop due to the released elastic
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Fig. 10 Comparison between experimental and numerical

results on transition from stable continuous sliding to macro

stick–slip instability as a function of imposed velocity V. a–

c Experimental results ranging the imposed velocity between

10 mm/s to 0.1 mm/s and average contact pressure of 6.6 MPa.

d–f Numerical results ranging the imposed velocity between 10

and 0.5 mm/s and average contact pressure of 7.6 MPa
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energy, its value stays constant. The initial drop in the

friction coefficient (related to tangential force drop)

produces an excitation that leads to decaying oscilla-

tions of the system (Fig. 10d). After this first phase of

transition from adherence to sliding state of the whole

surface, the friction coefficient stabilises itself reach-

ing a steady value of 0.125, like in the experimental

test (Fig. 10a).

Decreasing the horizontal imposed velocity, both

experimentally and numerically, the macroscopic

behaviour changes completely its pattern (Fig. 10b,

e). The drops of the tangential force along the time

produce periodic fluctuations in the macroscopic

friction curve, as shown in Fig. 10 for an imposed

velocity of 1 mm/s. Continuing to decrease the

imposed velocity for values lower than 1 mm/s and

maintaining fixed the average normal pressure the

response of the system doesn’t change its pattern: the

macroscopic contact scenarios is always characterized

by macro stick–slip phenomena (Fig. 10c, f). How-

ever Fig. 10c, f show that, both numerically and

experimentally, the amplitude of the drops of the

macroscopic friction and the time period of stick–slip

events increase when the imposed velocity is reduced.

Figure 11 shows the main effect into defining the

macroscopic response of the system when the normal

force (average contact pressure) is varied between 3

and 6.6 MPa for experimental measurements and
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Fig. 11 Comparison between experimental and numerical

results on transition from stable continuous sliding to macro

stick–slip instability as a function of average contact pressure.

a–c Experimental results ranging the average contact pressure

between 3 and 6.6 MPa and impose velocity of 1 mm/s. d–

f Experimental results ranging the average contact pressure

between 3.5 and 7.6 MPa and imposed velocity of 0.8 mm/s
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between 3.5 and 7.6 MPa for the numerical simula-

tions, while the translational velocity is maintained

fixed. For low contact pressure the system is charac-

terized by a stable continuous sliding; the friction

coefficient increases reaching the constant value of

0.20 with not relevant oscillations of the system

(Fig. 11a, d). On the other hand, increasing the contact

pressure, the system (numerically and experimentally)

switches from stable sliding to macro-stick slip

instability, showing several variations (drops) in the

macroscopic friction coefficient along the time. The

sudden drop of tangential force produces a strong

system vibration with a decaying behaviour during

each ramp, immediately after the friction drop.

For both experimental and numerical results, when

increasing further the contact pressure, the amplitude

of the drops in the friction coefficient increases

reaching a lower limit of macroscopic friction around

0.05 due to the important released of elastic energy

stored during the ramp.

It should be noticed that the decaying vibrations

excited experimentally after each force drop present

low frequency components (mainly at about 110 Hz)

due to the dynamic response of the modes of the whole

experimental set-up; in the numerical curves only

decaying oscillations at higher frequencies can be

observed and are related to the dynamics response of

the modes of vibrations of the two block of

polycarbonate.

Similarly, the differences in term of amplitude and

period of stick–slip events between experimental and

numerical tests are due to the fact that the numerical

model simulates the dynamics of two polycarbonate

blocks without accounting for the stiffness and

dynamics of the whole experimental set-up. On the

other hand the experimental setup is composed by

auxiliary parts that can’t allow defining an exact

quantitative comparison between experimental and

numerical results.

The main differences, due to the lack in modelling

of the whole set-up, is the different tangential stiffness

of the numerical and experimental systems, which

brings to a different slope of the tangential force and

consequently to different values of the time period

between successive stick–slip events.

Another not negligible difference is the presence of

the set-up modes at lower frequencies which brings to

the low frequency oscillations recorded in the exper-

imental test and not observable in the numerical

curves.

Nevertheless, the effect of the impose boundary

conditions recovered by means of the numerical

simulations, exhibits a good agreement with the

experimental results. The experimental transition from

stable continuous sliding to macroscopic stick–slip for

the polycarbonate blocks has been obtained for the

same trend of the boundary conditions.

The performed simulations allowed to draw a

numerical map of possible contact scenarios

(Fig. 12), showing the good qualitative agreement

with the experimental map in Fig. 6. The missing of

the mode coupling instabilities in the numerical map is
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due to the missing of the unstable mode of the whole

set-up at 110 Hz. In fact, the complex eigenvalue

analysis [19] of the numerical model of the polycar-

bonate blocks alone doesn’t predict unstable system

modes. The unstable mode recovered experimentally

(see Sect. 3.2) is a lower frequency mode of the set-up,

which is not modelled in the numerical analysis.

Moreover, the numerical map of the instability

scenarios wants to give just the trend of the frictional

scenarios as a function of the system parameters, as

showed as well in [19] as a function of the material

damping. In fact, the effect of all the system param-

eters are deeply interdependent and the boundary of

these maps, calculated for a given system configura-

tion, can vary as a function of the other system

parameters.

5 Conclusions and perspectives

Contact frictional scenarios of two media in relative

displacement have been investigated both by experi-

mental tests and numerical simulations. The tests

performed by the experimental set-up highlight the

complex phenomena arising when two media are in

frictional sliding. The same system with respect to

different boundary conditions, such as imposed hor-

izontal velocity or average contact pressure, switches

its macroscopic frictional behaviour from macro

stick–slip instability to mode coupling instability with

harmonic vibrations, up to stable continuous sliding. A

frictional scenario map, found numerically as a

function of the material damping in [19], has been

here drawn experimentally and numerically as a

function of the boundary conditions.

The mode coupling contact instability, investigated

mostly in brake squeal, has been highlighted here for

two general elastic bodies in frictional relative motion.

Experimental tests confirms how the macroscopic

response of a simple elastic system with frictional

interface is mainly influenced by local frictional

dynamics (propagation of contact waves and rupture

fronts) and conversely [18].

From the experimental data obtained by frictional

tests on polycarbonate, an appropriate friction law

with adherence time dependence has been defined.

Non-linear transient simulations highlighted the same

experimental transition range from stable sliding to

macroscopic stick–slip as a function of the key

parameters. The presented numerical nonlinear model,

in which only the contact nonlinearities have been

considered, confirms a good agreement with the

macroscopic frictional behaviour obtained by the

experiments.

The numerical simulations, validated here by the

experimental results, allows for investigating the

coupling between the local dynamics (rupture and

wave nucleation and propagation) and the dynamic

response of the system (modes of vibrations). This

interaction is at the origin of the selection between the

possible macroscopic frictional behaviour of the

system [19, 20].

In future works experimental parametrical analyses

will be performed in order to investigate the role of

other key parameters such as material properties,

surface roughness and other boundary conditions.

Nowadays, the measurement of the local dynamics at

the contact is one of the main challenges. At the same

time a further numerical investigation is being devel-

oped to have a more quantitative comparison by

adding the stiffness and mass of the experimental set-

up in the numerical model.

References

1. Andreaus U, Casini P (2001) Dynamics of friction oscilla-

tors excited by a moving base and/or driving force. J Sound

Vib 245:685–699

2. Hoffmann N, Fischer M, Allgaier R, Gaul L (2002) A

minimal model for studying properties of the mode-cou-

pling type instability in friction induced oscillations. Mech

Res Commun 29:197–205

3. Renouf M, Cao HP, Nhu VH (2011) Multiphysical model-

ing of third-body rheology. Tribol Int 44:417–425

4. Andreaus U, Casini P (2002) Friction oscillator excited by

moving base and colliding with a rigid or deformable

obstacle. Int J Non-Linear Mech 37:117–133

5. D’Annibale F, Luongo A (2013) A damage constitutive

model for sliding friction coupled to wear. Contin Mech

Thermodyn 25:503–522

6. Rubinstein SM, Cohen G, Fineberg J (2007) Dynamics of

precursors to frictional sliding. Phys Rev Lett 98:226103

7. Voisin C, Renard F, Grasso J-R (2007) Long term friction:

from stick–slip to stable sliding. Geophys Res Lett

34:L13301

8. Rubinstein SM, Cohen G, Fineberg J (2004) Detachment

fronts and the onset of dynamic friction. Nature

430:1005–1009

9. Rubinstein SM, Cohen G, Fineberg J (2009) Visualizing

stick–slip: experimental observations of processes govern-

ing the nucleation of frictional sliding. J Phys D 42:214016

Meccanica (2015) 50:649–664 663

123
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