
Meccanica (2014) 49:1159–1175
DOI 10.1007/s11012-013-9860-2

The onset of convection in a nanofluid saturated porous
layer using Darcy model with cross diffusion

J.C. Umavathi · Monica B. Mohite

Received: 23 April 2013 / Accepted: 9 December 2013 / Published online: 20 December 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Linear and nonlinear stability analysis for
the onset of convection in a horizontal layer of a
porous medium saturated by a nanofluid is studied.
The model used for the nanofluid incorporates the ef-
fects of Brownian motion and thermophoresis. The
modified Darcy equation that includes the time deriva-
tive term is used to model the momentum equation. In
conjunction with the Brownian motion, the nanopar-
ticle fraction becomes stratified, hence the viscosity
and the conductivity are stratified. The nanofluid is
assumed to be diluted and this enables the porous
medium to be treated as a weakly heterogeneous
medium with variation, in the vertical direction, of
conductivity and viscosity. The critical Rayleigh num-
ber, wave number for stationary and oscillatory mode
and frequency of oscillations are obtained analytically
using linear theory and the non-linear analysis is made
with minimal representation of the truncated Fourier
series analysis involving only two terms. The effect
of various parameters on the stationary and oscilla-
tory convection is shown pictorially. We also study the
effect of time on transient Nusselt number and Sher-
wood number which is found to be oscillatory when
time is small. However, when time becomes very large
both the transient Nusselt value and Sherwood value
approaches to their steady state values.
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Nomenclature

Notation
DB Brownian diffusion coefficient (m2/s)
DT Thermophoretic diffusion coefficient

(m2/s)
H Dimensional layer depth (m)
k Thermal conductivity of the nanofluid

(W/m K)
km Overall thermal conductivity of the

porous medium saturated by the
nanofluid (W/m K)

K Permeability (m2)
Ln Lewis number
NA Modified diffusivity ratio
NB Modified particle-density increment
p∗ Pressure (Pa)
p Dimensionless pressure, (p∗K)/(μαf )

Va Vadász number
γa Non-dimensional acceleration
RaT Thermal Rayleigh-Darcy number
Rm Basic-density Rayleigh number
Rn Concentration Rayleigh number
t∗ Time (s)
t Dimensionless time, (t∗αf )/H 2

T ∗ Nanofluid temperature (K)
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T Dimensionless temperature, T ∗−T ∗
c

T ∗
h −T ∗

c

T ∗
c Temperature at the upper wall (K)

T ∗
h Temperature at the lower wall (K)

(u, v,w) Dimensionless Darcy velocity
components (u∗, v∗,w∗)H/αm (m/s)

v Nanofluid velocity (m/s)
(x, y, z) Dimensionless Cartesian coordinate

(x∗, y∗, z∗)/H ; z is the vertically
upward coordinate

(x∗, y∗, z∗) Cartesian coordinates

Greek symbols
αf Thermal diffusivity of the fluid (m/s2)
β Thermal volumetric coefficient (K−1)
ν Viscosity variation parameter
ε Porosity
η Conductivity variation parameter
μ Viscosity of the fluid
ρ Fluid density
ρp Nanoparticle mass density
σ Thermal capacity ratio
φ∗ Nanoparticle volume fraction
φ Relative nanoparticle volume fraction,

φ∗−φ∗
0

φ∗
1 −φ∗

0

Superscripts
∗ Dimensional variable
′ Perturbed variable
St Stationary
Osc Oscillatory

Subscripts
b Basic solution
f Fluid
p Particle

1 Introduction

Currently after a century of struggling to enhance in-
dustrial heat transfer by fluid mechanics, the limited
ability of conventional fluids such as water, oil, and
ethylene-glycol (EG) for transferring heat has been
one of the major challenges in heat transfer science.
One of the ways to overcome this problem is to re-
place these conventional fluids with advanced fluids
with higher thermal conductivity. These so-called ad-
vanced fluids were supposed to be merely theoretical
fluids for a long time before the rapid development
of nanotechnology. Nanotechnology brought back the

hope for developing an efficient heat exchanger for
introducing a new branch of fluids called nanofluids.
Nanofluids are produced by dispersing small quanti-
ties of metal or semi-metal particles with dimensions
of up to 100 nm into a typical base fluid such as water,
oil, or EG. The main idea goes back to Maxwell’s [1]
study. He showed the possibility of increasing ther-
mal conductivity of a fluid-solid mixture by having
a greater volume fraction of solid particles. Particles
with dimensions of micrometers or even millimeters
were used. Those particles caused several problems
such as abrasion, clogging, and pressure losses. Choi
et al. [2] quantitatively analyzed some potential ben-
efits of nanofluids on heat transfer enhancement, on
reducing size, weight, and cost of thermal equipment,
while incurring little or no penalty in the form of a
pressure drop. Researchers have demonstrated that ox-
ide ceramic nanofluids consisting of CuO or Al2O3

nanoparticles on water or EG exhibit enhanced ther-
mal conductivity (Lee et al. [3]). On the other hand,
larger particles with an average diameter of 40 nm
led to an increase of less than 10 % (Lee et al. [3]).
Furthermore, the effective thermal conductivity of a
metallic nanofluid increased by up to 40 % for a
nanofluid consisting of EG containing approximately
3 % vol. of a Cu nanoparticle of a mean diameter of
less than 10 nm (Choi et al. [2]). Different concepts
have been proposed to explain this enhancement in
heat transfer and also to predict the effective thermal
conductivity of the nanofluids.

The effective thermal conductivity increment may
also depend on the shape of nanoparticles as dis-
cussed by [4–6]. They proposed a differential effec-
tive medium theory based on Bruggeman’s model (Ke-
blinski et al. [7]) to approximate the effective thermal
conductivity of nano-dispersion with non-spherical
solid nanoparticles with consideration of the interfa-
cial thermal resistance across the solid particles and
the host fluids. They found that a high enhancement
of effective thermal conductivity can be gained if the
shape of nanoparticles deviates greatly from spheri-
cal. Many of the researchers suggested altogether new
mechanisms for the transport of thermal energy (Ke-
blinski et al. [7]). The subsequent simulation work
from the same group of investigators concludes that
these mechanisms do not contribute considerably to
heat transfer. Koo and Kleinstreuer [8] found that the
role of Brownian motion is much more significant than
the thermophoretic and osmophoretic motions. In con-
clusion, some investigators believe that nanoparticle
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aggregation plays an important role in thermal trans-
port due to their chain shape but some others believe
that the time-dependent thermal conductivity in the
nanofluids proves the reduction of thermal conductiv-
ity by passing time due to clustering of nanoparticles
with time (Karthikeyan et al. [9]).

Vadász [10] showed that heat transfer enhance-
ment may be caused by a transient heat conduction
process in nanofluids. Experiments demonstrate that
a nanofluid thermal conductivity depends on a great
number of parameters, such as the chemical composi-
tion of the solid particle and the base fluid, surfactants,
particle shape, size, concentration, polydispersity, etc.,
though the exact variation trend of the conductivity
with these factors has not yet been found. Addition-
ally, the temperature influences the thermal conduc-
tivity of a nanofluid as shown in several studies that
have been carried out to see that effect on CuO, Al2O3,
TiO2, ZnO dispersed nanofluids by Yu et al. [11] and
Karthikeyan et al. [9]

Eastman et al. [12] conducted a comprehensive re-
view on thermal transport in nanofluids to conclude
that a satisfactory explanation for the abnormal en-
hancement in thermal conductivity and viscosity of
nanofluids needs further studies. Buongiorno [13]
conducted a comprehensive study to account for
the unusual behavior of nanofluids based on inertia,
Brownian diffusion, thermophoresis, diffusiophore-
sis, Magnus effects, fluid drainage and gravity set-
tling, and proposed a model incorporating the effects
of Brownian diffusion and the thermophoresis. With
the help of these equations, studies were conducted
by Kim et al. [14] and more recently by Nield and
Kuznetsov [15].

Poromechanics is the study of porous materials
whose mechanical behavior is significantly influenced
by the pore fluid. Poromechanics is relevant to disci-
plines as varied as geophysics, biomechanics, phys-
ical chemistry, agricultural engineering or materials
science. It the porous materials and the fields con-
cerned are many, their unity lies in the fact that they
are all subject to same coupled processes: hydro-
diffusion and subsidence, hydration and swelling, dry-
ing and shrinkage, heating and build-up of pore pres-
sure, freezing, and spalling, capillary and cracking.
Coussy [16] gave a unified and systemic continuum
approach to poromechanics. Following the approach
of Biot [17], Coussy developed two concepts of con-
tinuum mechanics of solids to poromechanics. The

first concept is to consider the porous medium as the
superposition of several continua that move with dis-
tinct kinematics, while mechanically interacting and
exchanging energy and matter. Since the formulation
of the constitutive equations of any solid requires its
deformation to be referred to an initial configuration,
the second concept is to transport the equations gov-
erning the physics of the superposed fluid and solid
continua from their common current configuration to
an initial reference configuration related to the solid
skeleton. Following concepts of Coussy [16], Scia-
rra and Coussy [18], Sciarra et al. [19] and Madeo
et al. [20] developed the theory of second gradient
poromechanics.

The problem under study deals with the linear
and nonlinear stability for the onset of convection
in a horizontal layer of a porous medium saturated
by a nanofluid. In the formulation of the problem,
the Brownian motion and thermophoresis are ignored.
However the effect of the variation of thermal con-
ductivity and viscosity with nanofluid particle frac-
tion using the theory of mixtures with cross diffusion
is examined, following the approach of Tiwari and
Das [21]. It is assumed that the nanofluid is diluted so
that the nanofluid volume fraction is small compared
with unity. Then the basic solution is such that this
fraction is a linear function of the vertical coordinate.
Thus, to a first approximation, the thermal conductiv-
ity and the viscosity can be taken as weak functions of
the vertical coordinate. This means that we can treat
the problem as one involving a weakly heterogeneous
porous medium using an approach developed by the
authors (see the papers surveyed by Nield [22]) to ob-
tain an approximate analytical solution.

2 Analysis

2.1 Conservation equations

We select a coordinate frame in which the z-axis is
aligned vertically upwards. We consider a horizon-
tal layer of fluid confined between the planes z∗ = 0
and z∗ = H . Asterisks are used to denote dimensional
variables. Each boundary wall is assumed to be per-
fectly thermally conducting. The temperatures at the
lower and upper boundary are taken to be T ∗

0 + ΔT ∗
and T ∗. The Oberbeck Boussinesq approximation is
employed. In the linear stability theory being applied
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here, the temperature change in the fluid is assumed
to be small in comparison with T ∗

0 . The conservation
equations for the total mass, momentum, thermal en-
ergy and nanoparticles takes the form as

∇∗.v∗
D = 0 (1)

ρ

ε

∂v∗
D

∂t∗
= −∇∗p∗ − μeff

K
v∗
D + ρg (2)

(ρc)m
∂T ∗

∂t∗
+ (ρc)f v∗

D.∇∗T ∗

= km∇∗2T ∗ + ε(ρc)p

×
[
DB∇∗φ∗.∇T ∗ + DT

∇T ∗.∇T ∗

T ∗

]
(3)

∂φ∗

∂t∗
+ 1

ε
v∗
D.∇∗φ∗ = DB∇∗2φ∗ + DT

T ∗
C

∇∗2T ∗ (4)

Here, v∗
D = (u∗, v∗,w∗) is the nanofluid Darcy veloc-

ity, ρ is the overall density of the nanofluid, which we
now assume to be given by ρ = φ∗ρp +(1−φ∗)ρ0[1−
βT (T ∗ − T ∗

0 )], where ρp is the particle density, ρ0 is
a reference density for the fluid, and βT is the thermal
volumetric expansion. c is the fluid specific heat (at
constant pressure), km is the overall thermal conduc-
tivity of the porous medium saturated by the nanofluid,
and cp is the nanoparticle specific heat of the material
constituting the nanoparticles. km = εkeff + (1 − ε)ks

where ε is the porosity, keff is the effective conductiv-
ity of the nanofluid (fluid plus nanoparticles), and ks is
the conductivity of the solid material forming the ma-
trix of the porous medium. φ∗ is the nanoparticle vol-
ume fraction, T ∗ is the temperature, DB is the Brown-
ian diffusion coefficient, and DT is the thermophoretic
diffusion coefficient.

We now introduce the viscosity and the conductiv-
ity dependence on nanoparticle fraction. Following Ti-
wari and Das [21], we adopt the formulas, based on a
theory of mixtures,

μeff

μf

= 1

(1 − φ∗)2.5
(5)

keff

kf

= (kp + 2kf ) − 2φ∗(kf − kp)

(kp + 2kf ) + φ∗(kf − kp)
(6)

Here kf and kp are the thermal conductivities of the
fluid and the nanoparticles, respectively.

Equation (5) was obtained by Brinkman [23],
and Eq. (6) is the Maxwell-Garnett formula for a

suspension of spherical particles that dates back to
Maxwell [24].

In the case where φ∗ is small compared with unity,
we can approximate these formulas by

μeff

μf

= 1 + 2.5φ∗,

keff

kf

= (kp + 2kf ) − 2φ∗(kf − kp)

(kp + 2kf ) + φ∗(kf − kp)

= 1 + 3φ∗ (kp − kf )

(kp + 2kf )

(7)

We assume that the temperature and the volumet-
ric fraction of the nanoparticles are constant on the
boundaries. Thus the boundary conditions are

w∗ = 0, T ∗ = T ∗
0 + ΔT ∗,

φ∗ = φ∗
0 at z∗ = 0, w∗ = 0, T ∗ = T ∗

0 , (8)

φ∗ = φ∗
1 at z∗ = H

We introduce dimensionless variables as follows. We
define

(x, y, z) = (
x∗, y∗, z∗)/H, t = t∗αm/σH 2,

(u, v,w) = (
u∗, v∗,w∗)H/αm,

p = p∗K/μf αm,

φ = φ∗ − φ∗
0

φ∗
1 − φ∗

0
, T = T ∗ − T ∗

0

ΔT ∗

(9)

where

αm = km

(ρcp)f
, σ = (ρcp)m

(ρcp)f

We also define

μ̃ = μeff

μf

, k̃p = kp

kf

, k̃s = ks

kf

,

k̃ = km

kf

(10)

From Eqs. (7), and (10), we have

μ̃ = 1 + 2.5
[
φ∗

0 + φ
(
φ∗

1 − φ∗
0

)]
,

k̃ = ε

{
1 + 3

[
φ∗

0 + φ
(
φ∗

1 − φ∗
0

)] k̃p − 1

k̃p + 2

}
+ (1 − ε)k̃s

(11)

Then Eqs. (1)–(4), and (8) takes the form:

∇.v = 0 (12)
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(
γa

∂v
∂t

+ ∇p + Rmêz − RaT T êz + Rnφêz

)
+ μ̃v

= 0 (13)

∂T

∂t
+ v.∇T = k̃∇2T + NB

Ln
∇φ.∇T

+ NANB

Ln
∇T .∇T (14)

1

σ

∂φ

∂t
+ 1

ε
v.∇φ = 1

Ln
∇2φ + NA

Ln
∇2T (15)

w = 0, T = 1, φ = 0 at z = 0,

w = 0, T = 0, φ = 1 at z = 1
(16)

Here

γa = ε

σVa
, Ln = αm

DB

, Va = ε2 Pr

Da
,

Pr = μf

ραm

, Da = K

H 2
,

RaT = ρ0gK(1 − φ∗
0 )βT HΔT ∗

μf αm

,

Rm = [ρpφ∗
0 + ρ0(1 − φ∗

0 )]gKH

μf αm

,

Rn = (ρp − ρ0)(φ
∗
1 − φ∗

0 )gKH

μf αm

,

NA = DT ΔT ∗

DBT ∗
c (φ∗

1 − φ∗
0 )

,

NB = (ρc)p(φ∗
1 − φ∗

0 )

(ρc)f
.

The parameter γa is the non-dimensional acceleration
coefficient, Ln is a Lewis number, Va is a Vadász num-
ber, Pr is the Prandtl number, Da is the Darcy num-
ber and RaT is the familiar thermal Rayleigh–Darcy
number. The new parameters Rm and Rn may be re-
garded as a basic-density Rayleigh number and a con-
centration Rayleigh number, respectively. The param-
eter NA is a modified diffusivity ratio and is some
what similar to the Soret parameter that arises in cross-
diffusion phenomena in solutions, while NB is a mod-
ified particle-density increment.

Equation (13) has been linearized by neglecting a
term proportional to the product of φ and T . This as-
sumption is likely to be valid in the case of small tem-
perature gradients in a dilute suspension of nanoparti-
cles.

2.2 Basic solution

We seek a time-independent quiescent solution of
Eqs. (12)–(16) with temperature and nanoparticle vol-
ume fraction varying in the z-direction as we assume
the nanofluid to be rest at the basic state, that is a so-
lution of the form

v = 0, p = pb(z), T = Tb(z),

φ = φb(z)
(17)

Equations (13)–(15) reduces to

0 = −dpb

dz
− Rm + RaT Tb − Rnφb (18)

k̃
d2Tb

dz2
+ NB

Ln

dφb

dz

dTb

dz
+ NANB

Ln

(
dTb

dz

)2

= 0 (19)

d2φb

dz2
+ NA

d2Tb

dz2
= 0 (20)

According to Buongiorno [13], for most nanofluids
investigated so far Ln/(φ∗

1 − φ∗
0 ) is large, of order

105–106, and since the nanoparticle fraction decre-
ment is typically no smaller than 103 this means that
Ln is large, of order 102–103, while NA is no greater
than about 10. Using this approximation, the basic so-
lution is found to be

Tb = 1 − z and so φb = z (21)

2.3 Perturbation solution

We now superimpose perturbations on the basic solu-
tion. We write

v = v′, p = pb + p′, T = Tb + T ′,

φ = φb + φ′ (22)

Substitute in Eqs. (10)–(15), and linearize by neglect-
ing products of primed quantities. The following equa-
tions are obtained when Eq. (21) is used.

∇.v′ = 0 (23)(
∇p′ + γa

∂v′

∂t
− RaT T ′êz + Rnφ′êz

)
+ μ̃v′

= 0, (24)
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∂T ′

∂t
− w′ = k̃∇2T ′ + NB

Ln

(
∂T ′

∂z
− ∂φ′

∂z

)

− 2NANB

Ln

∂T ′

∂z
(25)

1

σ

∂φ′

∂t
+ 1

ε
w′ = 1

Ln
∇2φ′ + NA

Ln
∇2T ′ (26)

w′ = 0, T ′ = 0, φ′ = 0 at z = 0

and at z = 1 (27)

where now we can approximate the viscosity and con-
ductivity distributions by substituting the basic solu-
tion expression for φ, namely that given by Eq. (21),
into Eq. (11), we obtain

μ̃(z) = 1 + 2.5
[
φ∗

0 + (
φ∗

1 − φ∗
0

)
z
]
,

k̃(z) = ε

{
1 + 3

[
φ∗

0 + φ
(
φ∗

1 − φ∗
0

)
z
] k̃p − 1

k̃p + 2

}
(28)

+ (1 − ε)k̃s

It will be noted that the parameter Rm is just a measure
of the basic static pressure gradient and is not involved
in these and subsequent equations.

We now recognize that we have a situation where
properties are heterogeneous. These are now the vis-
cosity and conductivity (rather that the more usual
ones, namely permeability and conductivity) and we
can now proceed as in a number of papers by the au-
thors that are surveyed by Nield [22]. We assume that
the heterogeneity is weak in the sense that the maxi-
mum variation of a property over the domain consid-
ered is small compared with the mean value of that
property.

The six unknowns u′, v′, w′, p′, T ′, φ′ can be re-
duced to three by operating on Eq. (24) with êz curl
curl and using the identity curl curl ≡ grad div − ∇2

together with Eq. (23) and the weak heterogeneity ap-
proximation. The result (after using Eq. (28)) is

(
sγa + μ̃(z)

)∇2w′ = RaT ∇2
H T ′ − Rn∇2

H φ′ (29)

Here ∇2
H is the two-dimensional Laplacian operator

on the horizontal plane.
The differential Eqs. (24), (25), (29) and the bound-

ary conditions (27) constitute a linear boundary-value
problem that can be solved using the method of normal
modes.

We write

(
w′, T ′, φ′) = [

W(z),Θ(z),Φ(z)
]

exp(st +ilx+imy)

(30)

and substitute into the differential equations to obtain

(
μ̃(z) + γas

)(
D2 − α2)W + RaT α2Θ − Rnα2Φ

= 0 (31)

W +
(

k̃(z)
(
D2 − α2) + NB

Ln
D − 2NANB

Ln
D − s

)
Θ

− NB

Ln
DΦ = 0 (32)

1

ε
W − NA

Ln

(
D2 − α2)Θ −

(
1

Ln

(
D2 − α2) − 1

σ
s

)
Φ

= 0 (33)

W = 0, Θ = 0, Φ = 0 at z = 0 and z = 1

(34)

where

D ≡ d

dz
and α = (

l2 + m2)1/2 (35)

Thus α is a dimensionless horizontal wave number.
For neutral stability the real part of s is zero. Hence

we now write s = iω, where ω is real and is a dimen-
sionless frequency.

We now employ a Galerkin-type weighted residuals
method to obtain an approximate solution to the sys-
tem of Eqs. (31)–(34). We choose as trial functions
(satisfying the boundary conditions) Wp,Θp,Φp;
p = 1,2,3, . . . and write

W =
N∑

p=1

ApWp, Θ =
N∑

p=1

BpΘP ,

Φ =
N∑

p=1

CpΦP

(36)

Substitute into Eqs. (31)–(34), and make the expres-
sions on the left-hand sides of those equations (the
residuals) orthogonal to the trial functions, thereby ob-
taining a system of 3N linear algebraic equations in
the 3N unknowns Ap,Bp,Cp , p = 1,2, . . . ,N . The
vanishing of the determinant of coefficients produces
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the eigenvalue equation for the system. One can regard
RaT as the eigenvalue. This enables us to find RaT in
terms of the other parameters.

Trial functions satisfying the boundary condition
(34) can be chosen as

Wp = Θp = Φp = sinpπz; p = 1,2,3, . . . (37)

The eigenvalue equation is

detM = 0 (38)

where,

M =
⎡
⎣M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦ (39)

and, for i, j = 1,2, . . . ,N ,

(M11)ij = −〈(
μ̃(z) + γas

)
WjD

2Wi

〉
+ α2〈(μ̃(z) + γas

)
WjWi

〉
(M12)ij = −RaT α2〈WjΘi〉
(M13)ij = Rnα2〈WjΦi〉
(M21)ij = −〈ΘjWi〉
(M22)ij = −〈

k̃(z)ΘjD
2Θi

〉 + α2〈k̃(z)ΘjΘi

〉

+ s〈ΘjΘi〉 +
(

2NANB

Ln
− NB

Ln

)
〈ΘjDΘi〉

(M23)ij = −NB

Ln
〈ΘjDΦi〉

(M31)ij = −1

ε
〈ΘjW 〉i

(M32)ij = NA

Ln

(−〈
ΦjD

2Θi

〉 + α2〈ΦjΘi〉
)

(M33)ij = 1

Ln

(−〈
ΦjD

2Φi

〉 + α2〈ΦjΦi〉
) + s

σ
〈ΦjΦi〉

Here

〈
f (z)

〉 ≡
∫ 1

0
f (z)dz. (40)

In the present case, where viscosity and conductivity
variations are incorporated, the critical wave number
is unchanged and the stability boundary becomes

RaT = 1

( J
Ln + s

σ
)α2

[
(ν + sγ a)J

(
J

Ln
+ s

σ

)
(Jη + s)

− Rnα2

ε
(Jη + s) − Rnα2NA

Ln
J

]
(41)

where

J = (
π2 + α2),

ν = 1 + 1.25
(
φ∗

1 + φ∗
0

)
,

η = ε + (1 − ε)k̃s + 3(φ∗
1 + φ∗

0 )ε

2

(
k̃p − 1

k̃p + 2

) (42)

We observe that when there is no conductivity varia-
tion (that is η = 1, as when k̃s = 1 and k̃p = 1) the
effect of viscosity variation is to increase the critical
Rayleigh number by a factor ν. The additional effect
of conductivity variation η is expressed by Eq. (42).
When k̃s = 1, the maximum value of η is 2.5(φ∗

1 +φ∗
0 )

attained when ε = 1 and k̃p → ∞.
It is worth noting that the factor ν comes from the

mean value of μ̃(z) over the range [0, 1] and the fac-
tor η is the mean value of k̃(z) over the same range.
That means that when evaluating the critical Rayleigh
number it is a good approximation to base that number
on the mean values of the viscosity and conductivity
based in turn on the basic solution for the nanofluid
fraction.

3 Linear stability analysis

3.1 Stationary mode

For the validity of principle of exchange of stabilities
(i.e., steady case), we have s = 0 (i.e., s = sr + isi =
sr = si = 0) at the margin of stability. For a first ap-
proximation we take N = 1. Then the Rayleigh num-
ber at which marginally stable steady mode exists be-
comes,

RaSt
T = (π2 + α2)2νη

α2
− Rn

(
NA + Lnη

ε

)
(43)

Finding the minimum as α varies results in

RaSt
T = 4π2νη − Rn

(
NA + Lnη

ε

)
(44)

with the minimum being attained at α = π . We recog-
nize that in the absence of nanoparticles we recover the
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well-known result that the critical Rayleigh number
is equal to 4π2. Usually when one employs a single-
term Galerkin approximation in this context one gets
an overestimate by about 3 % (e.g. 1750 instead of
1708 in the case of the standard Bénard problem) but
in this case the approximation happens to give the ex-
act result.

3.2 Oscillatory mode

We now set s = iω, where ω = Im(ω) (ωr = 0) in
Eq. (41) and clear the complex quantities from the de-
nominator, to obtain

RaT = Δ1 + iωΔ2 (45)

For oscillatory onset Δ2 = 0 (ωi 
= 0) and this gives a
dispersion relation of the form (on dropping the sub-
script i)

b1
(
ω2)2 + b2

(
ω2) + b3 = 0 (46)

Now Eq. (45) with Δ2 = 0 gives

RaOsc
T = a0

(
a1 + ω2a2

)
(47)

where b1, b2 and b3 and a0, a1 and a2 and Δ1 and Δ2

are not presented here for brevity.
We find the oscillatory neutral solutions from

Eq. (47). It proceeds as follows: First determine the
number of positive solutions of Eq. (46). If there are
none, then no oscillatory instability is possible. If there
are two, then the minimum (over a2) of Eq. (47) with
ω2 given by (46) gives the oscillatory neutral Rayleigh
number. Since Eq. (46) is quadratic in ω2, it can give
rise to more than one positive value of ω2 for fixed
values of the parameters Rn, Ln, NA, σ , γa , ν, η. How-
ever, our numerical solution of Eq. (46) for the range
of parameters considered here gives only one positive
value of ω2 indicating that there exists only one oscil-
latory neutral solution. The analytical expression for
oscillatory Rayleigh number given by Eq. (47) is min-
imized with respect to the wavenumber numerically,
after substituting for ω2 (> 0) from Eq. (46), for var-
ious values of physical parameters in order to know
their effects on the onset of oscillatory convection.

4 Non-linear stability analysis

In order to explore how the cross diffusion co-efficient
terms affects the nonlinear development of onset of

convection in porous layer saturated with nanofluid, it
is necessary to solve the full nonlinear Eqs. (12)–(15).
However, we will in the first place consider the early
stages of nonlinear convection, when the basic struc-
ture of the convective rolls is still determined by the
behavior of the linearized solution. In the neighbor-
hood of the stability boundary, we develop the non-
linear analysis in which the amplitudes are no longer
small but finite. For simplicity, we consider the case
of two dimensional rolls, assuming all physical quan-
tities to be independent of y. Eliminating the pressure
and introducing the stream function we obtain:

(ν + sγa)∇2Ψ + RaT

∂T

∂x
− Rn

∂S

∂x
= 0 (48)

∂T

∂t
+ ∂Ψ

∂x
= η∇2T + ∂(Ψ,T )

∂(x, z)
(49)

1

σ

∂S

∂T
+ 1

ε

∂Ψ

∂x
= 1

Ln
∇2S + NA

Ln
∇2T + 1

ε

∂(Ψ,S)

∂(x, z)

(50)

We solve Eqs. (48)–(50) subjecting them to stress-
free, isothermal, iso-nanoconcentration boundary con-
ditions:

ψ = ∂2ψ

∂z2
= T = S = 0 at z = 0,1 (51)

To perform a local non-linear stability analysis, we
take the following Fourier expressions:

ψ =
∞∑

n=1

∞∑
m=1

Amn(t) sin(mαx) sin(nπz)

T =
∞∑

n=1

∞∑
m=1

Bmn(t) cos(mαx) sin(nπz) (52)

S =
∞∑

n=1

∞∑
m=1

Cmn(t) cos(mαx) sin(nπz)

Further, we take the modes (1,1) for stream function,
and (0,2) and (1,1) for temperature, and nanoparticle
concentration, to get

ψ = A11(t) sin(αx) sin(πz)

T = B11(t) cos(αx) sin(πz) + B02(t)s ∈ (2πz) (53)

S = C11(t) cos(αx) sin(πz) + C02(t) sin(2πz)

where the amplitudes A11(t), B11(t), B02(t), C11(t)

and C02(t) are functions of time and are to be de-
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termined. Taking the orthogonality condition with the
eigenfunctions associated with the considered mini-
mal model, we get

dA11(t)

dt
= 1

γaδ2

[
αRnC11(t) − αRaB11(t)

− νδ2A11(t)
]

dB11

dt
= −[

αA11(t) + ηδ2B11(t) + απA11(t)B02(t)
]

dB02

dt
= −η4π2B02(t) + απ

2
A11(t)B11(t)

dC11

dt
= −σ

[
1

ε
αA11(t) + δ2

(
C11(t)

Ln
+ NA

Ln
B11(t)

)

+ 1

ε
αA11(t)C02(t)

]

dC02

dt
= −σ

[
1

Ln
4π2C02(t) + 4π2B03(t)

NA

Ln

− aπ

2ε
A11(t)C11(t)

]

(54)

In case of steady motion d()
dt

= Di = 0, (i = 1,

2, . . . ,5) and write all Di ’s in terms of A11. Thus we
get

D1 = 1

γaδ2

[
αRnC11(t) − αRaB11(t) − νδ2A11(t)

]

D2 = −[
αA11(t) + ηδ2B11(t) + απA11(t)B02(t)

]

D3 = −η4π2B02(t) + απ

2
A11(t)B11(t)

D4 = −σ

[
1

ε
αA11(t) + δ2

[
C11(t)

Ln
+ NA

Ln
B11(t)

]

+ 1

ε
αA11(t)C02(t)

]

D5 = −σ

[
1

Ln
4π2C02(t) + 4π2B02(t)

NA

Ln

− 1

ε

aπ

2
A11(t)C11(t)

]
and

D1 = D2 = D3 = D4 = D5 = 0

(55)

The above system of simultaneous autonomous ordi-
nary differential equations is solved numerically using
Runge–Kutta–Gill method. One may also conclude

that the trajectories of the above equations will be con-
fined to the finiteness of the ellipsoid. Thus, the effect
of the parameters Rn, Ln, NA on the trajectories is to
attract them to a set of measure zero, or to a fixed point
to say.

5 Heat and nanoparticle concentration transport

The thermal Nusselt number, Nu is defined as

Nu(t) = Heat transport by (conduction + convection)

Heat transport by conduction

= 1 +
[ ∫ 2π

0
∂T
∂z

dx∫ 2π/a

0
∂TB

∂z
dx

]
z=0

Substituting expressions (21) and (53) in above equa-
tion we get

Nu(t) = 1 − 2πB02(t)

The Sherwood number (nanoparticle concentration
Nusselt number), Sh is defined similar to the thermal
Nusselt number. Following the procedure adopted for
arriving at Nu(t), one can obtain the expression for
Sh(t) in the form:

Sh(t) = (
1 − 2πC02(t)

) + NA

(
1 − 2πB02(t)

)

6 Results and discussions

The expressions of thermal Rayleigh number for
stationary and oscillatory convections are given by
Eqs. (43) and (47) respectively. Figures 1a–1d show
the effect of various parameters on the neutral stabil-
ity curves for stationary convection for Rn = −0.1,
Ln = 200, NA = −5, σ = 10, ε = 0.9, ν = 1, η = 1
with variation in one of these parameters. The ef-
fect of nanoparticle concentration Rayleigh number
Rn is shown in Fig. 1a. It is shown that the thermal
Rayleigh number decreases with increase in nanopar-
ticle concentration Rayleigh number Rn, which means
that nanoparticle concentration Rayleigh number Rn
destabilizes the system. It should be noted that the
negative value of Rn indicates a bottom-heavy case,
while a positive value indicates a top-heavy case. The
effect of Lewis number Ln on the thermal Rayleigh
number is shown in Fig. 1b. One can see that the ther-
mal Rayleigh number increases with increase in Lewis
number, indicating that the Lewis number stabilizes
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Fig. 1 Neutral curves on stationary convection for different values of (a) nanoparticle concentration Rayleigh number Rn, (b) Lewis
number Ln, (c) viscosity ratio ν, (d) conductivity ratio η

the system. The effect of viscosity ratio ν and con-
ductivity ratio η on the thermal Rayleigh number is
depicted in Figs. 1c and 1d respectively, these figures
show that as ν and η increases, RaT increases which
indicates that ν and η will stabilize the system. The ef-
fect of concentration Rayleigh number Rn and Lewis
number Ln on thermal Rayleigh number RaT for sta-
tionary convection show the similar results obtained
by Long Sheu [25].

Figures 2a–2h display the variation of thermal
Rayleigh number for oscillatory convection with re-
spect to various parameters. In Fig. 2a it is seen that
for negative values of Rn (bottom-heavy case) the ther-
mal Rayleigh number decreases as Rn increases which
will advance the onset of convection. As the Lewis
number Ln increases the thermal Rayleigh number
RaT decreases as seen in Fig. 2b which imply that
Lewis number Ln destabilizes the system. The mod-

ified diffusivity ratio NA do not show any affect on
the oscillatory convection (Fig. 2c). From Fig. 2d, one
can reveal that the porosity ε destabilizes the system
for oscillatory convection, that is, an increase in ε de-
creases the thermal Rayleigh number. As the thermal
capacity ratio σ increases, the thermal Rayleigh num-
ber also increases as can be observed in Fig. 2e, which
implies that σ has a stabilizing effect on the system
for oscillatory convection. The effect of viscosity ratio
ν and conductivity ratio η on thermal Rayleigh num-
ber is depicted in Figs. 2f and 2g respectively. From
these figures one can conclude that both ν and η in-
creases the thermal Rayleigh number for oscillatory
convection thus delaying the onset of convection. The
effect of Vadász number Va on thermal Rayleigh num-
ber is depicted in Fig. 2h. From this figure one can
see that as Va increases the thermal Rayleigh number
decreases thus Va destabilizes the system. The effect
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Fig. 2 Neutral curves on oscillatory convection for different values of (a) nanoparticle concentration Rayleigh number Rn, (b) Lewis
number Ln, (c) modified diffusivity ratio NA, (d) porosity ε, (e) thermal capacity ratio σ , (f) viscosity ratio ν, (g) conductivity ratio η,
(h) Vadász number Va

of concentration Rayleigh number Rn, Lewis number

Ln and thermal capacity ratio σ on thermal Rayleigh

number RaT for oscillatory convection show the simi-

lar results obtained by Long Sheu [25].

The nonlinear analysis provides not only the on-

set threshold of finite amplitude motion but also the

information of heat and mass transports in terms of

Nusselt Nu and Sherwood Sh numbers. The Nu and Sh

are computed as the functions of RaT , and the varia-

tions of these non-dimensional numbers with RaT for

different parameter values are depicted in Figs. 3a–

3d and 4a–4e respectively. In Figs. 3a–3d and 4a–4e
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Fig. 2 (Continued)

Fig. 3 Variation of Nusselt number Nu with critical Rayleigh Number for different values of (a) nanoparticle concentration Rayleigh
number Rn, (b) Lewis number Ln, (c) viscosity ratio ν, (d) conductivity ratio η

it is observed that in each case, Sherwood number is

always greater than Nusselt number and both Nus-

selt number and Sherwood number start with the con-

duction state value 1 at the point of onset of steady

finite amplitude convection. When RaT is increased

beyond RaTc , there is a sharp increase in the values

of both Nu and Sh. However further increase in RaT

will not change Nu and Sh significantly. It is to be
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Fig. 4 Variation of Sherwood number Sh with critical Rayleigh Number for different values of (a) nanoparticle concentration Rayleigh
number Rn, (b) Lewis number Ln, (c) modified diffusivity ratio NA, (d) viscosity ratio ν, (e) conductivity ratio η

noted that the upper bound of Nu is 3 (similar results

were obtained by Malashetty et al. [26]). It should

also be noted that the upper bound of Sh is not 3

(similar results were obtained by Bhadauria and Agar-

wal [27]). The upper bound of Nu remains 3 only for

both clear and nanofluid. Whereas, the upper bound

for Sh for clear fluid is 3 but for nanofluid it is not
fixed.

In Figs. 3a and 4a we observe that as the con-
centration Rayleigh number Rn increases, the value
of Nu and Sh decreases, thus showing a decrease in
the rate of heat and mass transport. Figures 3b and
4b shows that as Lewis number increases both Nu
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Fig. 5 Transient Nusselt number Nu with time for different values of (a) nanoparticle concentration Rayleigh number Rn, (b) Lewis
number Ln, (c) modified diffusivity ratio NA, (d) viscosity ratio ν, (e) conductivity ratio η, (f) Vadász number Va

and Sh decreases, which imply that increasing the

Lewis number suppresses the heat and mass trans-

port. We observe that on increasing modified diffusiv-

ity ratio NA, there is no effect on the Nusselt number,

whereas in Fig. 4c we observe that on increasing mod-

ified diffusivity ratio NA it increases the Sherwood
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Fig. 6 Transient Sherwood number Sh with time for different values of (a) nanoparticle concentration Rayleigh number Rn, (b) Lewis
number Ln, (c) modified diffusivity ratio NA, (d) viscosity ratio ν, (e) conductivity ratio η, (f) Vadász number Va



1174 Meccanica (2014) 49:1159–1175

number (which is similar result observed by Bhadauria
and Agarwal, [27]). As the viscosity ratio ν (Figs. 3c
and 4d) and conductivity ratio η (Figs. 3d and 4e) in-
creases, both the Nu and Sh decreases implying that ν

and η suppresses the heat and mass transports.
The linear solutions exhibit a considerable variety

of behavior of the system, and the transition from lin-
ear to non-linear convection can be quite complicated,
but interesting to deal with. A time dependent results
needs to be studied to analyze the same. The transi-
tion can be well understood by the analysis of Eq. (54)
whose solution gives a detailed description of the two
dimensional problem. The autonomous system of un-
steady finite amplitude equations is solved numeri-
cally using the Runge-Kutta method. The Nusselt and
Sherwood numbers are evaluated as the functions of
time t , the unsteady transient behavior of Nu and Sh
is shown graphically in Figs. 5a–5f and 6a–6f respec-
tively.

These figures indicate that initially when time is
small, there occur large scale oscillations in the values
of Nu and Sh indicating an unsteady rate of heat and
mass transport in the fluid. As time passes by, these
values approaches to their steady state values corre-
sponding to a near convection stage.

Figure 5a depicts the transient nature of Nusselt
number on nanoparticle concentration Rayleigh num-
ber Rn. It is observed that as Rn increases Nu de-
creases, thus showing a decrease in the heat transport,
which is the similar result observed by Agarwal et al.
[28]. From Figs. 5b, 5d, 5e and 5f we observe that as
Lewis number, viscosity ratio, conductivity ratio and
Vadász number increases the Nu decreases indicating
that there is retardation on heat transport. The mod-
ified diffusivity ratio enhances the heat transport as
seen in Fig. 5c.

It is seen from Figs. 6a, 6d, 6e and 6f that as
nanoparticle concentration Rayleigh number Rn, vis-
cosity ratio ν, conductivity ratio η and Vadász num-
ber Va increases the Sherwood number (concentration
Nusselt number) decreases, which implies the sup-
press of mass transport. The mass transport is en-
hanced for Lewis number Ln and modified diffusivity
ratio NA as seen in Fig. 6b and 6c respectively.

7 Conclusions

We considered linear and non-linear stability anal-
ysis in a horizontal porous medium saturated by a

nanofluid, heated from below and cooled from above,
using Darcy model which incorporates the effect of
Brownian motion along with thermophoresis. Further
the viscosity and conductivity dependence on nanopar-
ticle fraction was also adopted following Tiwari and
Das [21]. Linear analysis has been made using normal
mode technique. However for weakly nonlinear analy-
sis truncated Fourier series representation having only
two terms is considered. We draw the following con-
clusions

1. For stationary convection Lewis number, viscosity
ratio and conductivity ratio has a stabilizing effect
while nanoparticle concentration Rayleigh number
destabilize the system.

2. For oscillatory convection thermal capacity ra-
tio, viscosity ratio and conductivity ratio stabi-
lizes the system whereas nanoparticle concentra-
tion Rayleigh number, Lewis number, porosity, and
Vadász number destabilizes the system.

3. For steady finite amplitude motions, the heat and
mass transport decreases with increase in the val-
ues of nanoparticle concentration Rayleigh num-
ber, Lewis number, viscosity ratio and conductivity
ratio. The mass transport increases with increase in
modified diffusivity ratio and Vadász number.

4. The transient Nusselt number and Sherwood num-
ber increases with increase in Lewis number and
modified diffusivity ratio and decreases with nano-
particle concentration Rayleigh number, viscosity
ratio and conductivity ratio.

5. The effect of time on transient Nusselt number
and Sherwood number is found to be oscillatory
when time is small. However, when time becomes
very large both the transient Nusselt and Sherwood
value approaches to their steady state values.
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