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Abstract An analytic study for thermoelastic bend-
ing of a functionally graded material (FGM) cylindri-
cal shell subjected to a uniform transverse mechani-
cal load and non-uniform thermal loads is presented.
Based on the classical linear shell theory, the equations
with the radial deflection and horizontal displacement
are derived out. An arbitrary material property of the
FGM cylindrical shell is assumed to vary through the
thickness of the cylindrical shell, and exact solution of
the problem is obtained by using an analytic method.
For the FGM cylindrical shell with fixed and simply
supported boundary conditions, the effects of mechan-
ical load, thermal load and the power law exponent on
the deformation of the FGM cylindrical shell are ana-
lyzed and discussed.
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1 Introduction

Cylindrical shell is a kind of broad engineering back-
ground shell structure or component. For example,
it can be a barrel, and also can be used as a va-
riety of chemical systems and boiler system piping.
In many cases, these structures are working in high-
temperature gradient environments. FGM are micro-
scopically inhomogeneous materials, by choosing spe-
cific manufacturing processing, the property of the
produced FGMs may vary from points to points or
from layers to layers. Therefore, FGM has been widely
applied to such structural components working in high
temperature environments.

Many studies for FGM cylindrical structures are
available in the literatures, by means of the Bolotin’s
method, Ng et al. [1] presented a formulation for the
dynamic stability analysis of FGM shells under har-
monic axial loading. Based on the first order shell
theory, Sofiyev et al. [2, 3] studied the dynamic sta-
bility of FGM cylindrical shells subjected to exter-
nal pressure and moving loads. Zhu et al. [4] pre-
sented a three-dimensional theoretical analysis of the
dynamic instability region of FGPM cylindrical shells.
Applying with the general analytical expressions of
natural frequency and mode-shape solutions given by
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functional variation and characteristic value analy-
sis, Cao and Wang [5] gave free vibration analy-
sis of FGM cylindrical shells with holes. Embedding
isotropic FGM cylindrical shell in a boundless fluid-
saturated porous elastic medium, Hasheminejad and
Rajabi [6] investigated the two-dimensional dynamic
interaction of progressive plane seismic waves. By us-
ing the method of power series expansion of contin-
uous displacement components, Matsunaga [7] pre-
sented a two-dimensional higher-order deformation
theory for vibration and buckling problems of FGM
cylindrical shells. Based on the first-order shear de-
formation theory, the Hamilton’s principle and the
Maxwell equation, Sheng and Wang [8] presented
the coupling equations to govern the electric poten-
tial and displacements of FGM cylindrical shells with
surface-bonded PZT piezoelectric layer subjected to
moving loads. Pradhan et al. [9] presented investi-
gation of the vibration of a FGM cylindrical shell
made up of stainless steel and zirconia. By using the
power series method, Vel [10] obtained exact elas-
ticity solution for the vibration of FGM anisotropic
cylindrical shells. Huang et al. [11] investigated buck-
ling behaviors of FGM cylindrical shells subjected
to pure bending load. An analytic solution to the
axisymmetric problem of a long, radially polarized,
FGM hollow cylinder rotating about its axis at a con-
stant angular velocity was given by Dai et al. [12].
Asemi et al. [13] considered a thick short length FGM
hollow cylinder under internal impact loading. Us-
ing the Galerkin method, Najafov et al. [14] inves-
tigated the torsional vibration and stability problems
of FGM orthotropic cylindrical shells in the elastic
medium. Based on the generalized differential quadra-
ture method, Tornabene and Viola [15] presented static
analysis of FGM doubly-curved shells and panels of
revolution.

For the thermal problem of FGM cylindrical struc-
tures, Jabbari et al. [16–18] investigated analytical
methods for analysis of uncoupled thermoelasticity on
FGM hollow cylinder. Haddadpour et al. [19] investi-
gated free vibration analysis of FGM cylindrical shells
including thermal effects. An algorithm for investiga-
tion of nonlinear systems by the transfinite element
method was presented by Azadi and Shariyat [20]. Dai
and Zheng [21] studied buckling and post-buckling
behaviors of a laminated FGM cylindrical shell with
the piezoelectric fiber reinforced composite actuators
subjected to thermal and axial compressed loads. By

means of the Meshless Local Petrov-Galerkin Method,
Sladek et al. [22] presented the thermal analysis of
Reissner-Mindlin shallow shells with FGM proper-
ties, Hosseini et al. [23, 24] investigated the cou-
pled thermoelasticity analysis and thermoelastic wave
propagation analysis for FGM thick hollow cylin-
ders. Shen et al. [25–32] presented series of post-
buckling analysis and nonlinear vibration study for
cylindrical shells in thermal environments. Based on
the Donnell’s shell theory, Wu et al. [33] discussed
the problems of thermal buckling in axial direction
of FGM cylindrical shells. Pelletier and Vel [34] ob-
tained an exact solution of FGM cylindrical shells
by using the power series expansion and semi-inverse
method, and focused on analyzing the volume frac-
tion of different material’s effects on the results. Zhang
et al. [35] presented the nonlinear dynamical analy-
sis of a clamped-clamped FGM cylindrical shell sub-
jected to an external excitation and uniform temper-
ature change. Shariyat [36, 37] investigated dynamic
buckling of imperfect FGM cylindrical shells with
integrated surface-bonded sensor and actuator layers
subjected to some complex combinations of thermo-
electro-mechanical loads. Santos et al. [38] developed
a semi-analytical finite element model for the anal-
ysis of FGM cylindrical shells under thermal shock.
Based on a modified version of Sander’s nonlinear
shell theory, Zhao et al. [39, 40] studied nonlinear
problem of FGM cylindrical shells under mechanical
and thermal loading. Based on the first-order shear
deformation theory, Sheng and Wang [41, 42] gave a
approximate solution for laminated FGM cylindrical
shells under thermal shock and mechanical loads by
utilizing Hamilton’s principle. Based on the nonlin-
ear large deflection theory of cylindrical shells, Huang
and Han [43] dealt with the nonlinear buckling prob-
lem of FGM cylindrical shells under torsion load by
using the energy method and the nonlinear strain-
displacement relations of large deformation. Alibei-
gloo [44] studied infinitesimal axisymmetric defor-
mations of a FGM cylindrical shell with piezoelec-
tric layers perfectly bonded to its inner and outer sur-
faces which subjected to thermo-electro-mechanical
loads. Based on the first order shear deformation the-
ory of shells, Malekzadeh et al. [45–47] presented
the free vibration analysis of rotating functionally
graded cylindrical shells subjected to thermal environ-
ment. However, in our views, analysis for the ther-
moelastic bending of a functionally graded material
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cylindrical shell has not been found in the litera-
ture.

Based on the classical linear shell theory, this paper
has derived out the equations with the radial deflec-
tion and horizontal displacement, and studies on the
deformation of a FGM cylindrical shell subjected to a
uniform transverse mechanical load and non-uniform
thermal loads. According to the FGM cylindrical shell
with fixed and simply supported boundary conditions,
the effects of loads and material parameters on the de-
formation of the FGM cylindrical shell are discussed.
To our knowledge, however, analytical study on the
thermoelastic bending behavior of a FGM cylindrical
shell has not been found in the literatures.

2 Formulation of the problem

Consider a FGM cylindrical shell subjected to a
uniform transverse mechanical load q and thermal
load T (z), and its mean radius of a, the length L and
thickness h as shown in Fig. 1. The Cartesian coordi-
nate system (x, y, z) is set on the mid-plane (z = 0)
of the FGM cylindrical shell, where x and y denotes
the axial and circumferential directions of the middle
surface of the FGM cylindrical shell, respectively.

2.1 Material properties of FGM

The FGM cylindrical shell is composed of metal and
ceramic and the composition varies from the top to the
bottom surfaces, i.e. the top surface (z = h/2) of the
cylindrical shell is metal-rich whereas the bottom sur-
face (z = −h/2) is ceramic-rich. In this way, an arbi-
trary material property P (e.g., Young’s modulus E,
thermal expansion coefficient α and thermal conduc-
tivity K) of the FGM cylindrical shell is assumed to
vary through the thickness of the shell. FGM’s mate-
rial properties P are related not only to the material
properties of the constituents, but also to their volume
fractions V1 and V2, therefore, one has

P(z) = P1V1 + P2V2, V1 + V2 = 1 (1)

where P1 and P2 denote properties of the top and bot-
tom surfaces of the FGM cylindrical shell.

Assuming V1 follows a simple power law distribu-
tion as

V1 =
(

h − 2z

2h

)n

(2)

Fig. 1 (a) The geometry of a FGM cylindrical shell; (b) Fixed
of both ends; (c) Simply supported of both ends

where n (0 < n < ∞) is the volume fraction of ce-
ramic, and n represents the inhomogeneity of FGMs,
and it degenerated into metal at n = 0, when n → ∞,
it becomes ceramic.

Using Eq. (3), the material properties of FGMs are
written as

P(z) = (P1 − P2)(0.5 − z/h)n + P2 (3)

where FGM’s properties vary smoothly from
P1 (z = h/2) to P2 (z = −h/2) through the thickness
according to n.

2.2 Basic equations

According to the symmetric geometry of the FGM
cylindrical shell, one has

εx = ε0
x + zk0

x, εθ = ε0
θ + zk0

θ , εz = 0 (4)



1072 Meccanica (2014) 49:1069–1081

where

ε0
x = ∂u

∂x
, ε0

θ = −w

a
,

k0
x = ∂2w

∂x2
, k0

θ = w

a2

(5)

where u, v, w are the displacements along x, y and
z axes, respectively, ε0

x and ε0
θ are, respectively, strain

components of x and y direction on the middle sur-
face, k0

x and k0
θ are corresponding to curvature change.

The linear thermoelastic constitutive relations of
the FGM cylindrical shell are

σx = E(z)

1 − v2
(εx + vεθ ) − E(z)

1 − v
α(z)T (z) (6a)

σθ = E(z)

1 − v2
(εθ + vεx) − E(z)

1 − v
α(z)T (z) (6b)

where σx , σθ are stress components of the x and y

direction respectively, usually the material’s Poisson
ratio ν changes along the thickness direction is small,
for simplicity, assuming ν to be a constant.

Consider the FGM cylindrical shell’s axial-sym-
metry behavior, the balance equations are

a
∂Qx

∂x
− Nθ − aq = 0 (7a)

a
∂Nx

∂x
= 0 (7b)

a
∂Mx

∂x
+ aQx = 0 (7c)

where Qx is transverse shear, q is mechanical load,
membrane force Nθ , Nx and moment Mx are defined
as

Nx =
∫ h/2

−h/2
σx

(
1 + z

a

)
dz (8a)

Nθ =
∫ h/2

−h/2
σθdz (8b)

Mx = −
∫ h/2

−h/2
σxz

(
1 + z

a

)
dz (8c)

Assume that the temperature rise occurs in the
thickness direction only, the temperature field solv-
ing the following one-dimensional steady conduction
equations is

d

dz

(
K(z)

dT (z)

dz

)
= 0 (9)

The corresponding thermal boundary conditions
are

T

(
−h

2

)
= T1, T

(
h

2

)
= T2 (10)

where T1 and T2 are the inner surface temperature
and outer surface temperature of the FGM cylindrical
shell, and the analytic solution is written as

T (z) = T1

[
1 + (Tr − 1)

∫ z

−h/2
1

K(z)
dz∫ h/2

−h/2
1

K(z)
dz

]
(11)

where

Tr = T1

T2
(12)

Substituting Eqs. (4)–(6a), (6b) and (11) into
Eqs. (8a)–(8c), yields

Nx = A10
(
ε0
z + vε0

θ

) + B10
(
k0
z + vk0

θ

) − Γ ∗
1 (13a)

Nθ = A20
(
ε0
θ + vε0

z

) + B20
(
k0
θ + vk0

z

) − Γ1 (13b)

Mx = A30
(
ε0
z + vε0

θ

) + B30
(
k0
z + vk0

θ

) − Γ ∗
2 (13c)

where Ai0, Bi0, Γ ∗
1 , Γ1 and Γ ∗

2 are shown in
Appendix.

3 Solution of the problem

Here, by means of the hybrid method of unknown base
quantity (u and w) to solve this problem, utilizing
Eqs. (7a)–(7c) to eliminate Qx , yields

a
∂2Mx

∂z2
+ Nθ + aq = 0 (14a)

∂Nx

∂x
= 0 (14b)

Substituting Eqs. (5) and (13a)–(13c) into
Eqs. (14a), (14b), yields

aA30
∂3u

∂x3
+ A20v

∂u

∂x
+ aB30

∂4w

∂x4
+

(
B20 − A30

+ B30

a

)
v
∂2w

∂x2
+ B20 − aA20

a2
w = Γ1 − aq (15)

A10
∂2u

∂x2
+ v(B10 − aA10)

a2

∂w

∂x
+ B10

∂3w

∂x3
= 0 (16)

Utilizing Eqs. (15) and (16), one gets

G1
∂4w

∂x4
+ G2

∂2w

∂x2
+ G3w = Q (17)

where

G1 = −A30B10a

A10
+ aB30 (18a)

G2 = −A30(B10 − aA10)v

A10a
− A20B10

A10
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+
(

B20 − A30 + B30

a

)
(18b)

G3 = −A20(B10 − aA10)v

A10
+ B20 − aA20

a2
(18c)

Q = Γ1 − aq − A20k1v

A10
(18d)

A10
∂u

∂z
+ v(B10 − aA10)

a2
w + B10

∂2w

∂x2
= k1 (18e)

where k1 is an integration constant, which is deter-
mined by the boundary conditions.

The general solution to Eq. (17) is

w = C1e
D1x + C2e

D2x + C3e
D3x + C4e

D4x

+ Q

G3
(19)

where Ci (i = 1,2,3,4) are unknown constants, and

D1 =

√√√√−G2 −
√

G2
2 − 4G1G3

2G1
,

D2 = −

√√√√−G2 −
√

G2
2 − 4G1G3

2G1
,

D3 =

√√√√G2 +
√

G2
2 − 4G1G3

2G1
,

D4 = −

√√√√G2 +
√

G2
2 − 4G1G3

2G1

(20)

Then, substituting the obtained w into Eq. (18e),
integrate both sides of the equation, yields

u = k1

A10
x + ζ1e

D1x + ζ2e
D2x + ζ3e

Dx

+ ζ4e
D4x + k2 (21)

where k1 and k2 are unknown constants, and

ζ1 = −B10C1D1

A10
− (B10 − aA10)C1

a2D1
,

ζ2 = −B10C2D2

A10
− (B10 − aA10)C2

a2D2

ζ3 = −B10C3D3

A10
− (B10 − aA10)C3

a2D3
,

ζ4 = −B10C4D4

A10
− (B10 − aA10)C4

a2D4

(22)

By means of Eq. (21), the expressions of εx , εθ , σx ,
σθ , Nx , Nθ and Mx are shown as follows:

εx = k1

A10
+ Q

a2G3
z + (

ζ1D1 + C1D
2
1z

)
eD1x

+ (
ζ2D2 + C2D

2
2z

)
eD2x + (

ζ3D3 + C3D
3
3z

)
eD3x

+ (
ζ4D4 + C4D

2
4z

)
eD4x (23)

εθ =
(

1

a2
z − 1

a

)[
Q

G3
+ C1e

D1x + C2e
D2x

+ C3e
D3x + C4e

D4x

]
(24)

σx = A10E2

1 − v2

(
1 + (Er − 1)

(
h − 2z

2h

)n)

×
(

k1

A10
− Q

aG3

)
v +

4∑
i=1

(
ζiDi − Ci

a
v

)
eDix

− E2α1T1

1 − v

[
1 + (Er − 1)

(
h − 2z

2h

)n]

×
[
αr + (1 − αr)

(
h − 2z

2h

)n]

×
[

1 + (Tr − 1)
Ψa

Ψb

]
(25)

σθ = A10E2

1 − v2

(
1 + (Er − 1)

(
h − 2z

2h

)n)

×
(

k1

A10
v − Q

aG3

)
+

4∑
i=1

(
ζiDiv − Ci

a

)
eDix

− E2α1T1

1 − v

[
1 + (Er − 1)

(
h − 2z

2h

)n]

×
[
αr + (1 − αr)

(
h − 2z

2h

)n]

×
[

1 + (Tr − 1)
Ψa

Ψb

]
(26)

Nx = A10

(
k1

A10
− Q

aG3
v +

4∑
i=1

(
ζiDi − Ci

a
v

)
eDix

)

+ B10

(
Q

aG3
v +

4∑
i=1

Ci

(
D2

i + 1

a2
v

)
eDix

)

− Γ ∗
1 (27)

Nθ = A20

(
k1

A10
v − Q

aG3
+

4∑
i=1

(
ζiDiv − Ci

a

)
eDix

)

+ B20

(
Q

aG3
v +

4∑
i=1

Ci

(
D2

i v + 1

a2

)
eDix

)

− Γ1 (28)
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Mx = A30

(
k1

A10
− Q

aG3
v +

4∑
i=1

(
ζiDi − Ci

a
v

)
eDix

)

+ B30

(
Q

aG3
v +

4∑
i=1

Ci

(
D2

i + 1

a2
v

)
eDix

)

− Γ ∗
3 (29)

where C1, C2, C3, C4, k1 and k2 are unknown con-
stants, which are determined by the boundary condi-
tions.

4 Numerical results and discussions

Considering a FGM cylindrical shell under uniform
transverse mechanical load and non-uniform thermal
loads, analytical solution for the thermoelastic-static
deformation response of the FGM cylindrical shell is
given.

Two kinds of boundary conditions can be expressed
as:

(1) The fixed boundary condition (see Fig. 1(b))

w = u = dw

dx
= 0, at x = 0,L (30a)

(2) The simply supported boundary condition (see
Fig. 1(c))

w = u = 0, Mx = 0, at x = 0,L (30b)

Utilizing boundary condition Eq. (30a) or Eq. (30b),
and the unknown constants C1, C2, C3, C4, k1 and k2

can be determined.
In all numerical calculations, the FGM cylindrical

shell is made from a mixture of ceramic and metal,
which are taken as a metallic material Aluminum and
a ceramic material Zirconia, denoted as (ZrO2/Al),
the following material constants for the FGM cylin-
drical shell are adopted (Zhang et al. [35]; Ma and
Wang [48]).

ZrO2: E2 = 151 GPa, α2 = 10 × 10−6/ ◦C,

K2 = 2.09 W/(m ◦C), v = 0.30

Al: E1 = 70 GPa, α1 = 23 × 10−6/◦C,

K2 = 2.04 W/(m ◦C), v = 0.30

Example 1 In this example, geometry of a FGM cylin-
drical shell is taken as: a = 1 m, L = 4 m and h =
2 cm. Investigation on variations of the radial deflec-
tion of the fixed and simply supported FGM cylindri-
cal shell subjected to a uniform transverse mechanical
load and non-uniform thermal loads.

Fig. 2 Radial deflections of the fixed FGM cylindrical shell
subjected to mechanical load q = 1 MPa, when T1 = 0 ◦C and
Tr = 0, (a) Fixed of both ends; (b) Simply supported of both
ends

Case 1 The fixed and simply supported FGM cylin-
drical shell subjected to mechanical and thermal loads
are expressed as

q = 1 MPa, T1 = 0 ◦C and Tr = 0 (31)

Figures 2(a) and 2(b) show radial deflection of the
FGM cylindrical shell subjected only to a mechanic
load, with different volume fraction index n, at the
fixed and simply supported boundary conditions, re-
spectively. From the curves of Fig. 2(a), it is seen eas-
ily that the maximum point of radial deflection of the
fixed FGM cylindrical shell is not at the center of the
FGM cylindrical shell, but near to the end about 0.4 m.
It is also seen from the curves that the radial deflection
of the fixed FGM cylindrical shell decreases as the vol-
ume fraction index n increases when subjected only to
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Fig. 3 Radial deflections of the simply supported FGM cylin-
drical shell subjected to mechanical load q = 1 MPa and thermal
loads T1 = 40 ◦C, Tr = 10, (a) Fixed of both ends; (b) Simply
supported of both ends

mechanical load. Comparing Fig. 2(a) with Fig. 2(b),
the change trend of radial deflection is similar at the
fixed and simply supported boundary conditions, then
the maximum point of radial deflection of the sim-
ply supported FGM cylindrical shell is near to the end
about 0.3 m.

Case 2 The fixed and simply supported FGM cylin-
drical shell subjected to uniform transverse mechani-
cal load and non-uniform thermal loads are expressed
as

q = 1 MPa, T1 = 40 ◦C and Tr = 10 (32)

Figures 3(a) and 3(b) show various curves of radial
deflection w of the FGM cylindrical shell subjected to
mechanical and thermal loads with different volume

Fig. 4 Variation of the maximal radial deflections for the FGM
cylindrical shell with the increasing of n, (a) Subjected to me-
chanical load q , when T1 = 0 ◦C and Tr = 0; (b) Subjected to
thermal load Tr , when q = 1 MPa and T1 = 20 ◦C

fraction index n, at the fixed and simply supported
boundary conditions, respectively. From the Figs. 3(a)
and 3(b), it is easily seen that the radial deflection of
the FGM cylindrical shell is similar to the fixed shell
in Fig. 2.

Case 3 Investigation on the maximum value of ra-
dial deflection of the fixed and simply supported FGM
cylindrical shell subjected to different mechanical
loads and thermal loads.

Figure 4(a) shows comparison of maximum radial
deflection (Wmax) of the FGM cylindrical shell versus
different volume fraction index n, subjected to differ-
ent mechanic loads, at the fixed and simply supported
boundary conditions. From Fig. 4(a), under the same
conditions, it can be seen that the Wmax of the sim-
ply supported FGM cylinder shell is greater than that
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Fig. 5 Variation of the maximal radial deflections for the
fixed FGM cylindrical shell with the increasing of T1, where
q = 0,2,4,6 MPa, Tr = 10 and n = 2

of the fixed FGM cylindrical shell. It can also be seen
from the Fig. 4(a) that the Wmax is decreases as the n

increases.
Figure 4(b) shows comparison of the Wmax of the

FGM cylindrical shell versus different volume fraction
indexes n, subjected to different temperature loads, at
the fixed and simply supported boundary conditions.
It is easily seen from Fig. 4(b) that the Wmax of the
simply supported shell is greater than that of the fixed
FGM cylindrical shell at the same conditions. It is also
seen from the Fig. 4(b) that the change of Wmax is non-
monotonically as n increases, Wmax decreases rapidly
as n increases at 0 ≤ n ≤ 2.2, and Wmax increases as
n increases at n > 2.2, the change trend is more and
more slowly. From Figs. 4(a) and 4(b), it is seen easily
that the Wmax of the fixed and simply supported FGM
cylindrical shell increases as the load increases.

Figures 5 and 6 show the Wmax of the fixed FGM
cylindrical shell subjected to different mechanical
loads and thermal loads, respectively. From the Figs. 5
and 6, it is seen easily that the increasing of the Wmax

is proportional with both the mechanical and thermal
loads increase.

Example 2 In this example, investigation on varia-
tions of axial and circumferential stresses of the fixed
and simply supported FGM cylindrical subjected to a
uniform transverse mechanical load and non-uniform
thermal loads.

Figures 7 and 8 show, respectively, axial and cir-
cumferential stresses of the fixed FGM cylindrical
shell subjected to mechanical load with the change of

Fig. 6 Variation of the maximal radial deflections for the
fixed FGM cylindrical shell with the increasing of q , where
T1 = 0,5,10,15(◦C), Tr = 10 and n = 2

thickness h at x = 0,0.2,0.6. From Figs. 7(a–c), it is
seen easily that the axial stress has a similar change
in trend as the variation of x except at x = 0. From
the Figs. 7 and 8, when n = 0, that is, the FGM de-
graded into metallic material, it is seen easily from the
curves that the axial and circumferential stresses are
linear with the change of thickness of the fixed FGM
cylindrical shell.

Example 3 In this example, introduce aspect ratio k =
a/h, where a = 1 m and n = 1. According to different
aspect ratio, investigation on variations of the radial
deflection, axial and circumferential stresses along the
x direction of the fixed FGM cylindrical subjected to a
uniform transverse mechanical load and non-uniform
thermal loads.

Figures 9, 10, and 11 show, respectively, radial de-
flection, axial stress and circumferential stress of the
fixed FGM cylindrical shell, subjected only to me-
chanical load (q = 1 MPa, T1 = 0 ◦C and Tr = 0),
along the x direction with different aspect ratio k.
From Fig. 9, one knows, the value of radial deflection
of the fixed FGM cylindrical shell subjected only to
mechanical load is positive, and it is creases as the in-
creasing of aspect ratio k. It is seen easily from Fig. 10
that the change of axial stress along the x direction
is creases with the increasing of aspect ratio k. From
Fig. 11, one knows, the change trend of circumferen-
tial stress is similar as the change trend of axial stress.

Figure 12 shows radial deflection of the fixed FGM
cylindrical shell subjected only to thermal load (T1 =
15 ◦C, Tr = 10 and q = 0) along the x direction with
different aspect ratio k. It is seen easily from Fig. 12
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Fig. 7 Axial stresses of the FGM cylindrical shell subjected
to mechanical load q = 1 MPa with the change of thickness h,
where (a) x = 0; (b) x = 0.2; (c) x = 0.6

that the value of radial deflection of the fixed FGM
cylindrical shell is negative, the peak value of radial
deflection is almost the same, and the location of the

Fig. 8 Circumferential stresses of the FGM cylindrical shell
subjected to mechanical load q = 1 MPa with the change of
thickness h, where (a) x = 0; (b) x = 0.2; (c) x = 0.6

peak radial deflection is affected by aspect ratio k.
Figures 13 and 14 show axial stress and circumferen-
tial stress of the fixed FGM cylindrical shell subjected
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Fig. 9 Radial deflections of the fixed FGM cylindrical shell
along the x direction with different aspect ratios, where n = 1,
q = 1 MPa, T1 = 0 ◦C and Tr = 0

Fig. 10 Axial stresses of the fixed FGM cylindrical shell
along the x direction with different aspect ratios, where n = 1,
q = 1 MPa, T1 = 0 ◦C and Tr = 0

Fig. 11 Circumferential stresses of the fixed FGM cylindrical
shell along the x direction with different aspect ratios, where
n = 1, q = 1 MPa, T1 = 0 ◦C and Tr = 0

Fig. 12 Radial deflections of the fixed FGM cylindrical shell
along the x direction with different aspect ratios, where n = 1,
q = 0, T1 = 15 ◦C and Tr = 10

Fig. 13 Axial stresses of the fixed FGM cylindrical shell along
the x direction with different aspect ratios, where n = 1, q = 0,
T1 = 15 ◦C and Tr = 10

Fig. 14 Circumferential stresses of the fixed FGM cylindrical
shell along the x direction with different aspect ratios, where
n = 1, q = 0, T1 = 15 ◦C and Tr = 10
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only to thermal load along the x direction with differ-
ent aspect ratio k, respectively. It is seen easily from
Figs. 13 and 14 that the peak values of stresses are al-
most the same, and the location of the peak stresses
are affected by aspect ratio k.

5 Conclusions

Based on classical linear shell theory, an analytic so-
lution for deformation of a FGM cylindrical shell sub-
jected to a uniform transverse mechanical load and
non-uniform thermal loads is presented. A few con-
clusions can be drawn as follows:

(1) Numerical results show that the radial deflection
does not occur in the middle but near to both ends
of the fixed or simply supported FGM cylindrical
shell when the shell subjected to a uniform trans-
verse mechanical load and non-uniform thermal
loads.

(2) The power law exponent, mechanical load, ther-
mal load and aspect ratios have a great effect on
axial stress, circumferential stress and the radial
deflection of the fixed or simply supported FGM
cylindrical shell.

(3) By selecting a proper value of the power law ex-
ponent, aspect ratios, suitable load and boundary
condition, it is possible for engineering to design
the FGM cylindrical shell that can meet some spe-
cial requirements.
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Appendix

A10 = Θ10 + Θ12, B10 = Θ11 + Θ13,

Γ ∗
1 = Γ1 + 1

a
Γ2, A20 = Θ10,

B20 = Θ11, A30 = −aΘ12 − Θ13,

B30 = −aΘ13 − Θ14, Γ ∗
2 = −Γ2 − 1

a
Γ3

(A.1)
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(A.2)

Γ1 =
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Δ21 =
∫ h/2

−h/2

E2α1T1

1 − v
(1 − 2αr

+ αrEr)

(
h − 2z

2h

)n

zdz

Δ22 =
∫ h/2

−h/2

E2α1T1

1 − v
(1 − αr)

× (Er − 1)

(
h − 2x

2h

)2n

xdx

Δ23 =
∫ h/2

−h/2

E2α1T1

1 − v
(Tr − 1)αr

Ψa

Ψb

zdz (A.4)

Δ24 =
∫ h/2

−h/2

E2α1T1

1 − v
(Tr − 1)(1 − 2αr + αrEr)

×
(

h − 2z

2h

)n
Ψa

Ψb

zdz

Δ25 =
∫ h/2

−h/2

E2α1T1

1 − v
(Tr − 1)(1 − αr)(Er − 1)

×
(

h − 2z

2h

)2n
Ψa

Ψb

zdz

Δ31 =
∫ h/2

−h/2

E2α1T1

1 − v
(1 − 2αr

+ αrEr)

(
h − 2x

2h

)n

z2dz

Δ32 =
∫ h/2

−h/2

E2α1T1

1 − v
(1 − αr)

× (Er − 1)

(
h − 2x

2h

)2n

z2dz

Δ33 =
∫ h/2

−h/2

E2α1T1

1 − v
(Tr − 1)αr

Ψa

Ψb

z2dz

Δ34 =
∫ h/2

−h/2

E2α1T1

1 − v
(Tr − 1)(1 − 2αr + αrEr)

×
(

h − 2z

2h

)n
Ψa

Ψb

z2dz

Δ35 =
∫ h/2

−h/2

E2α1T1

1 − v
(Tr − 1)(1 − αr)(Er − 1)

×
(

h − 2x

2h

)2n
Ψa

Ψb

z2dz

αr = α2

α1
, Er = E1

E2
, Kr = K1

K2
(A.5)

Ψa =
∫ z

−h/2

1

1 + (Kr − 1)(h−2z
2h

)n
dz,

Ψb = ∫ h/2
−h/2

1
1+(Kr−1)( h−2z

2h
)n

dz

(A.6)

References

1. Ng TY, Lam KY, Liew KM, Reddy JN (2001) Dynamic
stability analysis of functionally graded cylindrical shells
under periodic axial loading. Int J Solids Struct 38:1295–
1309

2. Sofiyev AH, Aksogan O (2004) Bucking of a conical thin
shell with variable thickness under a dynamic loading. J
Sound Vib 270:903–915

3. Sofiyev AH (2010) Dynamic response of an FGM cylindri-
cal shell under moving loads. Compos Struct 93:58–66

4. Zhu JQ, Chen CQ, Shen YP, Wang SL (2005) Dynamic sta-
bility of functionally graded piezoelectric circular cylindri-
cal shells. Mater Lett 59:477–485

5. Cao ZY, Wang HN (2007) Free vibration of FGM cylindri-
cal shells with holes under various boundary conditions. J
Sound Vib 306:227–237

6. Hasheminejad SM, Rajabi M (2008) Effect of FGM core on
dynamic response of a buried sandwich cylindrical shell in
poroelastic soil to harmonic body waves. Int J Press Vessels
Piping 85:762–771

7. Matsunaga H (2009) Free vibration and stability of func-
tionally graded circular cylindrical shells according to a 2D
higher-order deformation theory. Compos Struct 88:519–
531

8. Sheng GG, Wang X (2009) Studies on dynamic behavior
of functionally graded cylindrical shells with PZT layers
under moving loads. J Sound Vib 323:772–789

9. Pradhan SC, Loy CJ, Lam KY, Reddy JN (2010) Vibration
characteristics of functionally graded cylindrical shells un-
der various boundary conditions. Appl Acoust 61:111–129

10. Vel SS (2010) Exact elasticity solution for the vibration of
functionally graded anisotropic cylindrical shells. Compos
Struct 92:2712–2727

11. Huang HW, Han Q, Wei DM (2011) Buckling of FGM
cylindrical shells subjected to pure bending load. Compos
Struct 93:2945–2952

12. Dai HL, Dai T, Zheng HY (2012) Stresses distributions in a
rotating functionally graded piezoelectric hollow cylinder.
Meccanica 47:423–436

13. Asemi K, Akhlaghi M, Salehi M (2012) Dynamic analysis
of thick short length FGM cylinders. Meccanica 47:1441–
1453

14. Najafov AM, Sofiyev AH, Kuruoglu N (2013) Tor-
sional vibration and stability of functionally graded or-
thotropic cylindrical shells on elastic foundations. Mecca-
nica 48:829–840

15. Tornabene F, Viola E (2013) Static analysis of functionally
graded doubly-curved shells and panels of revolution. Mec-
canica 48:901–930

16. Jabbari M, Sohrabpour S, Eslami MR (2002) Mechanical
and thermal stresses in a functionally graded hollow cylin-
der due to radially symmetric loads. Int J Press Vessels Pip-
ing 79:493–497

17. Jabbari M, Mohazzab AH, Bahtui A, Eslami MR (2007)
Analytical solution for three-dimensional stresses in a short
length FGM hollow cylinder. Z Angew Math Mech 87:413–
429

18. Jabbari M, Bahtui A, Eslami MR (2009) Axisymmetric me-
chanical and thermal stresses in thick short length FGM
cylinders. Int J Press Vessels Piping 86:296–306



Meccanica (2014) 49:1069–1081 1081

19. Haddadpour H, Mahmoudkhani S, Navazi HM (2007) Free
vibration analysis of functionally graded cylindrical shells
including thermal effects. Thin-Walled Struct 45:591–599

20. Azadi M, Shariyat M (2010) Nonlinear transient transfi-
nite element thermal analysis of thick-walled FGM cylin-
ders with temperature-dependent material properties. Mec-
canica 45:305–318

21. Dai HL, Zheng HY (2011) Buckling and post-buckling
analyses for an axially compressed laminated cylindrical
shell of FGM with PFRC in thermal environments. Eur J
Mech A, Solids 30:913–923

22. Sladek J, Sladek V, Solek P, Wen PH, Atluri SN (2008)
Thermal analysis of Reissner-Mindlin shallow shells with
FGM properties by the MLPG. Comput Model Eng Sci
30:77–97

23. Hosseini SM, Sladek J, Sladek V (2011) Meshless Petrov-
Galerkin method for coupled thermoelasticity analysis of a
functionally graded thick hollow cylinder. Eng Anal Bound
Elem 35:827–835

24. Hosseini SM, Shahabian F, Sladek J, Sladek V (2011)
Stochastic meshless local Petrov-Galerkin method for
thermo-elastic wave propagation analysis in functionally
graded thick hollow cylinders. Comput Model Eng Sci
71:39–66

25. Shen HS (2004) Thermal postbuckling behavior of
functionally graded cylindrical shells with temperature-
dependent properties. Int J Solids Struct 41:1961–1974

26. Shen HS (2007) Thermal postbuckling of shear deformable
FGM cylindrical shells with temperature-dependent prop-
erties. Mech Adv Mat Struct 14:439–452

27. Shen HS, Noda N (2007) Postbuckling of pressure-loaded
FGM hybrid cylindrical shells in thermal environments.
Compos Struct 77:546–560

28. Shen HS (2009) Torsional buckling and postbuckling of
FGM cylindrical shells in thermal environments. Int J Non-
Linear Mech 44:644–657

29. Shen HS (2011) Postbuckling of nanotube-reinforced com-
posite cylindrical shells in thermal environments, part I:
axially-loaded shells. Compos Struct 93:2096–2108

30. Shen HS (2011) Postbuckling of nanotube-reinforced com-
posite cylindrical shells in thermal environments, part II:
pressure-loaded shells. Compos Struct 93:2496–2503

31. Shen HS (2012) Nonlinear vibration of shear deformable
FGM cylindrical shells surrounded by an elastic medium.
Compos Struct 94:1144–1154

32. Shen HS, Xiang Y (2012) Nonlinear vibration of nanotube-
reinforced composite cylindrical shells in thermal environ-
ments. Comput Methods Appl Mech Eng 213–216:196–
205

33. Wu LH, Jiang ZQ, Liu J (2005) Thermoelastic stability
of functionally graded cylindrical shells. Compos Struct
70:60–68

34. Pelletier JL, Vel SS (2006) An exact solution for the
steady-state thermoelastic response of functionally graded

orthotropic cylindrical shells. Int J Solids Struct 43:1131–
1158

35. Zhang JH, Li SR, Ma LS (2008) Exact solution of ther-
moelastic bending for functionally graded truncated coni-
cal shells. Chin J Theor Appl Mech 40(2):185–193 (In Chi-
nese)

36. Shariyat M (2008) Dynamic buckling of suddenly
loaded imperfect hybrid FGM cylindrical shells with
temperature-dependent material properties under thermo-
electro-mechanical loads. Int J Mech Sci 50:1561–1571

37. Shariyat M (2008) Dynamic thermal buckling of suddenly
heated temperature-dependent FGM cylindrical shells, un-
der combined axial compression and external pressure. Int
J Solids Struct 45:2598–2612

38. Santos H, Mota Soares CM, Mota Soares CA, Reddy JN
(2008) A semi-analytical finite element model for the anal-
ysis of cylindrical shells made of functionally graded mate-
rials under thermal shock. Compos Struct 86:10–21

39. Zhao X, Liew KM (2009) Geometrically nonlinear analysis
of functionally graded shells. Int J Mech Sci 51:131–144

40. Liew KM, Zhao X, Lee YY (2012) Postbuckling re-
sponses of functionally graded cylindrical shells under ax-
ial compression and thermal loads. Composites, Part B, Eng
43:1621–1630

41. Sheng GG, Wang X (2010) Dynamic characteristics of
fluid-conveying functionally graded cylindrical shells un-
der mechanical and thermal loads. Compos Struct 93:162–
170

42. Sheng GG, Wang X (2013) An analytical study of the
non-linear vibrations of functionally graded cylindrical
shells subjected to thermal and axial loads. Compos Struct
97:261–268

43. Huang HW, Han Q (2010) Nonlinear buckling of torsion-
loaded functionally graded cylindrical shells in thermal en-
vironment. Eur J Mech A, Solids 29:42–48

44. Alibeigloo A (2011) Thermoelastic solution for static de-
formations of functionally graded cylindrical shell bonded
to thin piezoelectric layers. Compos Struct 93:961–972

45. Malekzadeh P, Heydarpour Y (2012) Free vibration analy-
sis of rotating functionally graded cylindrical shells in ther-
mal environment. Compos Struct 94:2971–2981

46. Malekzadeh P, Heydarpour Y (2012) Response of func-
tionally graded cylindrical shells under moving thermo-
mechanical loads. Thin-Walled Struct 58:51–66

47. Malekzadeh P, Heydarpour Y, Golbahar Haghighi MR,
Vaghefi M (2012) Transient response of rotating laminated
functionally graded cylindrical shells in thermal environ-
ment. Int J Press Vessels Piping 98:43–56

48. Ma LS, Wang TJ (2003) Nonlinear bending and postbuck-
ling of a functionally graded circular plate under mechan-
ical thermal loadings. Int J Solids Struct 40(13–14):3311–
3330


	Analysis for the thermoelastic bending of a functionally graded material cylindrical shell
	Abstract
	Introduction
	Formulation of the problem
	Material properties of FGM
	Basic equations

	Solution of the problem
	Numerical results and discussions
	Case 1
	Case 2
	Case 3

	Conclusions
	Acknowledgements
	Appendix
	References


