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Abstract Natural convection heat transfer in a square
cavity induced by heated electronic board (as a thin
plate at constant temperature) is investigated using the
lattice Boltzmann method. Lattice Boltzmann simu-
lation of natural convective heat transfer in a cavity
in the presence of internal straight obstacle has not
been considered completely in the literature and this
challenge is generally considered to be an open re-
search topic that may require more study. The present
work is an extension to our previous paper (see Nazari
and Ramzani in Modares. Mech. Eng. 11(2):119–133,
2011) in which the effects of position and dimen-
sions of obstacle on the flow pattern and heat transfer
rate are completely studied. A suitable forcing term
is represented in the Boltzmann equation. With the
representation, the Navier–Stokes equation can be de-
rived from the lattice Boltzmann equation through the
Chapman-Enskog expansion. Top and bottom of the
cavity are adiabatic; the two vertical walls of the cavity
have constant temperatures lower than the plate’s tem-
perature. The study is performed for different values
of Grashof number ranging from 103 to 105 for dif-
ferent aspect ratios and position of heated plate. The
effect of the position and aspect ratio of heated plate
on heat transfer are discussed and the position of the
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obstacle in which the maximum rate of heat transfer is
investigated in both vertical and horizontal situation.
The obtained results of the lattice Boltzmann method
are validated with those presented in the literature.

Keywords Natural convection heat transfer · Lattice
Boltzmann method · Electronic board · Cavity

Nomenclature
A aspect ratio of the heated obstacle
Ak dimensionless distance of heated obstacle and

wall
ci microscopic velocity
cs speed of sound
Fi external force (buoyancy force)
f

eq
i equilibrium density distribution function

fi density distribution function
g

eq
i equilibrium energy distribution function

gi energy distribution function
Gr Grashof number
H height of the cavity
h length of the obstacle
hk distance between obstacle and wall (k = 1,2)
Ma Mach number
Nu Local Nusselt number
Pr Prandtl number
T temperature
Th obstacle temperature
Tc cavity walls temperature
u macroscopic velocity
wi weights for the particle equilibrium distribution

function
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Greek symbols
α thermal diffusivity
θ dimensionless temperature
υ kinematic viscosity
ρ fluid density
τ relaxation time for density
τh relaxation time for internal energy

Subscripts
c cold
eq equilibrium
h hot
i lattice link number
w wall

1 Introduction

Thermal transfers are very important in many indus-
trial areas. Several numerical and experimental meth-
ods have been developed to investigate enclosures with
and without obstacle because these geometries have
great engineering applications. Some applications are
solar thermal receiver, cooling of electronic packages
and heat exchangers.

Under certain circumstances, electronic compo-
nents are packaged within sealed enclosures, while
one or more of the walls are cooled. The main source
of heat within the enclosures is electronic components
and/or boards situated in various configurations. In
this study, a complete numerical simulation is carried
out to obtain the cooling performance of such elec-
tronic systems.

Over the past few decades, numerous theoretical,
experimental and numerical efforts have been made to
study the natural convection heat transfer. A numer-
ical study was carried out by Refai and Yovanovich
[2] to investigate the influence of discrete heat sources
on natural convection heat transfer in a square enclo-
sure filled with air. Nelson et al. [3] experimentally
investigated the natural convection and thermal strati-
fication in chilled-water storage systems. Oliveski et
al. [4] analyzed numerically and experimentally the
velocity and temperature fields at natural convection
inside a storage tank. Tzong et al. [5] numerically
simulate the laminar, steady, two-dimensional natural
convection flows in a square enclosure with discrete
heat sources on the left and bottom walls by using a

finite-volume method. Nader Ben Cheikh et al. [6] nu-
merically studied Natural convection of air in a two-
dimensional, square enclosure with localized heating
from below and cooled from above for a variety of
thermal boundary conditions at the top and sidewalls.
Localized heating is simulated by located a heat source
on the bottom wall. Comparisons among the different
thermal configurations considered are reported. Bazy-
lak et al. [7] made a computational analysis of the heat
transfer due to an array of heat sources on the bottom
wall of a horizontal enclosure and reported the bifurca-
tions in the Rayleigh–Bénard cell structures following
the transition to convection dominated regime, reflect-
ing the instabilities in the selected physical system.

Banerjee et al. [8] conducted simulation of natu-
ral convection in a horizontal, planar square cavity
with two discrete heat sources. Baïri et al. [9] per-
formed a numerical and experimental study to deter-
mine the thermal behavior in a cavity. By means of
the finite volumes method and varying the difference
of temperatures and the inclination angle of the cav-
ity the dynamic and thermal aspects are examined for
several configurations. Levoni et al. [10] investigated
Buoyancy-induced flow regimes numerically for the
basic case of a horizontal cylinder centered into a long
co-axial square-sectioned cavity. In the frame of the
2D assumption; the threshold for the occurrence of
time-dependent behaviour is explored. Wu et al. [11]
experimentally investigated the laminar natural con-
vection in an air-filled square cavity with a partition
on the heated vertical wall. Sankar et al. [12] used an
implicit finite difference method to analyze the heat
transfer characteristics in a vertical annulus filled with
a fluid-saturated porous medium.

Tahavvor et al. [13] used ANN to predict natural
convection heat transfer and fluid flow from a col-
umn of cold horizontal circular cylinders having uni-
form surface temperature. D’Orazio et al. [14] experi-
mentally studied Steady laminar free convection from
a pair of vertical arrays of equally-spaced uniformly
heated horizontal cylinders set in free air. Yousefi et al.
[15] experimentally studied Steady laminar free con-
vection from a pair of vertical arrays of equally-spaced
uniformly heated horizontal cylinders set in free air.
Yousefi et al. [16] experimentally studied the Natu-
ral convection heat transfer from the vertical array of
five horizontal isothermal elliptic cylinders with verti-
cal major axis which confined between two adiabatic
walls. The effect of wall spacing and Rayleigh num-
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ber on the heat transfer from the individual cylinder
and the array were investigated.

For more than a decade, lattice Boltzmann method
(LBM) has been demonstrated to be a very effective
numerical tool, compared with traditional computa-
tional fluid dynamics for a broad variety of complex
fluid flow phenomena. The continuous flow equation
describes the macroscopic behavior of a microscopic
world of particles [17] various authors have demon-
strated the potential of the of the Lattice–Boltzmann
technique considering numerical accuracy, numerical
robustness, flexibility with respect to complex bound-
aries, computational efficiency, suitability for parallel
computation, ease and robust handling of multiphase
and others.

Jami et al. [18] numerically investigated the lam-
inar natural convection heat transfer in an inclined
enclosure. Numerical solutions are obtained by using
the hybrid finite-difference lattice–Boltzmann method.
Effects of partition inclination angle are studied. They
also carried out a numerical investigation of laminar
convective flows in a differentially heated, square en-
closure with a heat-conducting cylinder [19]. Mezrhab
et al. [20] analyzed the natural convection in a cav-
ity by combined Lattice–Boltzmann finite difference
method. The principle of lattice–Boltzmann tech-
niques is recalled by authors and some of the difficul-
ties to simulate convective flows are discussed. Nat-
ural convection in an open ended cavity was numeri-
cally investigated by Mohammad et al. [21]. The pa-
per is intended to address the physics of flow and heat
transfer in open end cavities and close end slots. They
demonstrated that open boundary conditions used at
the opening of the cavity is reliable.

A thermal lattice Boltzmann method based on the
BGK model has been used by D’Orazio et al. [22] and
Dixit and Babu [23] to simulate high natural convec-
tion in a square cavity. In [22] imposed heat flux at the
wall is simulated, in [23] high Rayleigh numbers are
obtained. They use the double populations approach
to simulate hydrodynamic and thermal fields. Karim-
ipour et al. [24] investigated the influence of natural
convection in a micro channel. The traditional lattice
Boltzmann method on a uniform grid has unreason-
ably high grid requirements at higher Rayleigh num-
bers which renders the method impractical. There-
fore, the interpolation supplemented lattice Boltzmann
method has been utilized. Kuznik et al. [25] used
Boltzmann method with non-uniform mesh for the
simulation of natural convection in a square cavity.

Most of the mentioned works investigated natural
convection in cavities without a straight heated obsta-
cle. The effect of systematic analysis of aspect ratio
on the physics of flow and heat transfer is missing
from the literature, which is worth being investigated.
The LBM can be viewed as a minimal model for the
Navier–Stokes equations instead of a full molecular
dynamics approach. Indeed, fluid flow is mainly deter-
mined by the collective behavior of many molecules
and not really by the detailed molecular interactions.
Since the Boltzmann equation is kinetic-based, the
physics associated with the molecular level interaction
can be incorporated more easily in the LBE model.
Hence, the LBE model can be fruitfully applied to
micro-scale fluid flow problems. The kinetic nature of
LBM introduces a number of advantages, such as lin-
earity of the convection operator and the recovery of
the NS equations in the nearly incompressible limit,
thus avoiding solving difficult Poisson equations for
the pressure. In other word, in the LBE method data
communication is always local and the pressure is ob-
tained through an equation of state. In addition, since
LBM seeks the minimum set of velocities in phase
space, only one or two speeds and a few moving di-
rections are used in LBM, and the numerical solution
of the kinetic equation is very simple. The another
advantages of the LBM are including the parallel of
algorithm, the simplicity of programming and imple-
mentation of boundary conditions, and the ability to
incorporate microscopic interactions. Also, it is easy
to search (by different CFD searching methods) in the
computational domain in LBM.

This paper is organized as follows: In Sect. 2,
a brief overview of the Lattice–Boltzmann model used
in the present simulations is given, the density dis-
tribution function, f = f (x, c, t), is used to simulate
the density and velocity fields and the internal energy
density distribution function, g = g(x, c, t), is used to
simulate the macroscopic temperature field. In Sect. 3,
the obtained results are presented and validation of the
LBM-code is done by comparing results against the
published data. The results are depicted as streamlines
and isotherm contours. The effect of the position and
aspect ratio of heated plate (with constant tempera-
ture) on heat transfer and flow are addressed. Most
of the mentioned works investigated the natural con-
vection in cavities but investigation of natural convec-
tion in the presence of heated plate, considering the
effects of the position by lattice–Boltzmann method,
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has not been studied before which will be addressed
completely in the present work.

2 Lattice Boltzmann method

The lattice Boltzmann method provides a way to
solve the partial differential equations by evolving
variables on a set of lattices. LBM is a relatively
new numerical scheme, the method was developed
by Frisch et al. [26, 27], then in 1988 McNamara et
al. [28], in 1989 Higuera [29] and in 1992 Chen et
al. [30] extended the method. Higuera et al. [31] dis-
played that the lattice Boltzmann equation deriving
from the Frisch–Hasslacher–Pomeau cellular automa-
tion, being free from microscopic fluctuations, pro-
vides a new appealing tool to simulate realistic in-
compressible hydrodynamics. Succi et al. [32] used
the lattice Boltzmann equation (LBE) for the study of
three-dimensional flows in complex geometries, Nu-
merical results for low Reynolds number flows in a
three-dimensional random medium are reported. In
the Lattice–Boltzmann method, every node in the net-
work is connected with its neighbor through a num-
ber of lattice velocities to be determined through the
model chosen. More details can be found in [33].
Generally, there are three types of lattice Boltzmann
models; multi-speed model [34] that uses the density
distribution functions to simulate the density, veloc-
ity and temperature field, passive scalar approach [35]
and double distribution function [36] that uses the in-
ternal energy density distribution function to simulate
the macroscopic temperature field and for which the
viscous heat dissipation and compression work done
by the pressure can be incorporated.

Kinetic theory states that the evolution of the
single-particle density distribution in a fluid system
obeys the Boltzmann equation and the equation is dis-
crete as [37]:

fi(
−→
x + −→

c i�t, t + �t) − fi(
−→
x , t) = Ωi(f ). (1)

Equation (1) consists of two parts; propagation
(left-hand side), During the propagation step parti-
cles move to the nearest neighbors in the direction of
its probable velocity, and collision (right hand side)
which represent the collision of the particle distribu-
tion function.

There are a few versions of collision operator
Ωi(f ), the most well accepted version due to its sim-
plicity and efficiency was the Bhatnagar–Gross–Crook

Fig. 1 Discrete velocity vectors for the D2Q9 model for 2D
LBM

(BGK) collision model [37]. The equation that repre-
sents this model is given by:

Ωi(f ) = −fi − f
eq
i

τ
. (2)

In the above equation, f
eq
i is the equilibrium distri-

bution function that has an appropriately prescribed
functional dependence on the local hydrodynamic
properties and τ is the time to reach equilibrium con-
dition during collision process and is called relaxation
time. By using the BGK approximation, the above
equation become

fi(
−→
x + −→

c i�t, t + �t)

= fi(
−→
x , t) − 1

τ

[
fi − f

eq
i

] + �tFi. (3)

In which �tFi is the external force. Luo [38] sug-
gested that the force term can be introduced into the
collision term as −3ρwici .F/c2 which is similar to
that adopted for lattice gas model [39]. The general
form of the lattice velocity model is expressed as
DnQm where D represents spatial dimension and Q is
the number of connections (lattice velocity) at every
node. In this model, the velocity space is discretized
in 9 distribution functions, which is the most popular
model for the 2D case. Figure 1 shows the 9-velocities
of the D2Q9 model.

The equilibrium distribution function of the nine-
bit model is defined as:

f
eq
i (

−→
x , t) = wiρ

[
1 + 1

c2
s

(
−→
c i .

−→
u )

+ 1

2c4
s

(
−→
c i .

−→
u )2 − 1

2c2
s

u2
]
. (4)
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The weighting factors, for D2Q9 are given as:

ωα =

⎧
⎪⎪⎨

⎪⎪⎩

4
9 α = 1,

1
9 α = 2 ∼ 5,

1
36 α = 6 ∼ 9.

(5)

The streaming speed, c, is defined as:

cx = [0,1,0,−1,0,1,−1,−1,1];
cy = [0,0,1,0,−1,1,1,−1,−1]. (6)

The macroscopic quantities can be calculated from

ρ =
9∑

i=1

fi, (7)

ρ
−→
u =

9∑

i=1

−→
ci fi . (8)

Through the Chapman-Enskog procedure, the in-
compressible Navier–Stokes equations are derived
from the incompressible LBM [40], and the relation
between the relaxation time and viscosity is obtained
as follows:

τ = 3υ + 0.5. (9)

Equation (9) indicates that the value of τ must be
kept higher than 0.5 in order to avoid negative value of
viscosity. It has been discussed in [36] that modified
populations are used in order to eliminate the incon-
sistency for the definition of kinematic viscosity. Par-
ticularly, numerical instability may occur for the LBE
if the viscosity is too small (or if τ is too close to 0.5).

The double population thermal LBM is presented
and mathematically demonstrated in He et al. [36].
The main hypotheses of this model are:

• The Bhatnagar, Gross and Krook approximation re-
sults that the collision operator is expressed as a sin-
gle relaxation time to the local equilibrium.

• The Knudsen number is assumed to be a small pa-
rameter.

• The flow is incompressible.

The lattice Boltzmann equation of temperature field
can be given by:

gi(
−→
x + −→

c i�t, t + �t)

= gi(
−→
x , t) − 1

τh

[
gi − g

eq
i

]
. (10)

g
eq
i is the equilibrium distribution function and can be

expressed as:

g
eq
i (

−→
x , t) = wiT

[
1 + 1

c2
s

(
−→
c i .

−→
u )

]
. (11)

cs is the dimensionless speed of sound. As the uniform
grid (�x = �y = �t) is used in the computational do-
main, it is equal to 1/

√
3.

τh is single particle relaxation times for internal en-
ergy and related to the thermal diffusivity as Eq. (9):

τh = 3α + 0.5. (12)

Here, T is the macroscopic temperature and can be
calculated by,

T =
9∑

i=1

gi. (13)

3 Boundary conditions in LBM

The distribution functions out of the domain are
known from the streaming process. The unknown dis-
tribution functions are those toward the domain. The
implementation of boundary conditions is very impor-
tant for this simulation. As the fluid velocity at solid
(non-moving) walls is set to zero, the simplest way
to implement such boundary conditions in a LBM is
“On-Node” bounceback [33]. In Fig. 2, the unknown
distribution function, which needs to be determined, is
shown as dotted lines for example for flow fields in the
north boundary the following conditions is used:

f4,n = f2,n, f7,n = f5,n, f8,n = f6,n, (14)

where n is the lattice on the boundary.
For constant wall temperature, the unknown func-

tions are obtained by using the following equation:

gi = θw(wi + w−i ) − g−i . (15)

In the above equation, “i” is the unknown direction
and “−i” is the opposite direction in D2Q9 model. To
impose constant temperature boundary conditions, the
dimensionless temperature θ = 0 refers to right and
left walls. The unknown thermal distribution functions
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Fig. 2 Domain boundaries and known (solid lines) and un-
known (dotted lines) distribution functions

at the left wall, i.e. g2, g6, g9, and at the right wall,
i.e. g4, g7, g8, should be determined. From the above
equation at the left wall, the following conditions are
used,

g2 = −g4, g5 = −g7, g6 = −g8. (16)

Similarly, for the right wall we have,

g4 = −g2, g7 = −g5, g8 = −g6. (17)

To implement adiabatic boundary condition on the
upper and lower cavity walls, we assume that the ther-
mal distribution function gradient in the vertical di-
rection to the wall is set to zero and this is somehow
similar to the bounce back boundary condition [21].
Applying this treatment for adiabatic walls yields (for
bottom adiabatic boundary):

g3,n = g3,n−1,

g6,n = g6,n−1,

g7,n = g7,n−1.

(18)

n is the lattice on the boundary and n − 1 denotes the
lattice inside the cavity adjacent to the boundary.

4 Numerical method

In this paper, natural convection heat transfer in a
square cavity induced by heated obstacle at constant

Fig. 3 Horizontal and vertical positions of the obstacle inside
a cavity

temperature is studied numerically. Upper and lower
walls of cavity are adiabatic; the two vertical walls of
the cavity have constant temperature lower than obsta-
cle temperature. The study is performed for different
values of Grashof number from 103 to 105 for differ-
ent aspect ratios and position of heated plate. Air is
chosen as a working fluid (Pr = 0.71) and the average
Nusselt number is calculated as a measure of the heat
transfer.

Geometry and boundary conditions are shown in
Fig. 3. The non-dimensional parameters are:

Pr = υ

α
, Gr = gβ�T

H 3

υ2
;

θ = T − Tc

Th − Tc

; (19)

A = h

H
, A1 = h1

H
, A2 = h2

H
,

where Gr is the Grashof number, Pr is Prandtl number
and θ is the non-dimensional temperature. In this pa-
per, for Gr = 105, the values of τ and τh are selected as
0.5195 and 0.5257, respectively. The non-dimensional
parameter A is the aspect ratio of heated plate. A1 is
the distance of the plate to the parallel left wall for the
vertical situation and the distance of the plate to the
parallel upper wall for horizontal situation. A2 is the
distance of center of plate to the perpendicular upper
wall for vertical situation and to the perpendicular left
wall for second situation. The local and average Nus-
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Table 1 Comparison of the numerical results of the present study with the benchmark solution of Lee et al. [24] (A = 0.5, A1 = 0.5)

Gr Position of obstacle Grid size
(Lee et al. [24])

Grid size
(present study)

Average Nusselt number
(Lee et al. [24])

Average Nusselt number
(present results)

103 Horizontal 50 ∗ 50 120 ∗ 120 1.866 1.955

104 Horizontal 50 ∗ 50 60 ∗ 60 2.202 2.184

105 Horizontal 50 ∗ 50 60 ∗ 60 4.129 3.959

103 Vertical 50 ∗ 50 100 ∗ 100 1.711 1.738

104 Vertical 50 ∗ 50 50 ∗ 50 2.501 2.558

105 Vertical 50 ∗ 50 50 ∗ 50 5.051 5.134

selt number on the left wall of cavity is defined as,

Nu = ∂θ

∂Y
(Y = 0). (20)

Average Nusselt number is calculated by integrat-
ing Eq. (20) along the height of the cavity and divid-
ing by number of lattices along the height. For each
value of Grashof number, as well as the aspect ratio
of obstacle, different grid sizes are employed to exam-
ine their effects on the results. We have also conducted
a grid dependency study for each position case (Hor-
izontal/Vertical position of obstacle). The results are
assumed to be converged, when the average value of
Nusselt number (on the left wall of the cavity) asymp-
totically approached a constant value. The relative er-
ror for calculation of the Nusselt number is less than
10−3 as a criterion of convergence. For all the sim-
ulations, the Mach number is set to be equal to 0.1
to make sure that the flow is fully in the incompress-
ible regime. The Mach number is given as Ma = u/cs ,
where u is the characteristic velocity of the flow with
order of magnitude of (gβ�T M)0.5 where M is the
grid size in the vertical direction and cs is the speed
of sound. This condition for Mach number gives right
values for the kinematic viscosity and thermal diffu-
sivity as presented in Sect. 2 of this paper. It is interest-
ing to note that the accuracy of the present numerical
method is 2nd order.

5 Results and discussion

5.1 Code validation

In order to ensure that the acquired results are cor-
rect, the present numerical results are compared with
the available published results (see Kandaswamy et

al. [41]). The results are shown for horizontal obsta-
cle and also for vertical position of obstacle (in Ta-
ble 1). The results were found to be similar to the pub-
lished results of [41]. The grid size in the computa-
tional domain is also presented in Table 1. According
to Eq. (19), the Prandtl number is 0.71 and study is
performed for different Grashof numbers (from 103

to 105).

5.2 Obstacle located horizontally

When the heated obstacle is located horizontally, the
results are obtained by changing the aspect ratio and
position of the obstacle. Figure 4 shows the isotherm
contours for A = 0.5. The obstacle is located at the
center of the cavity, i.e. A1 = 0.5. The fluid motion
inside the cavity is completely symmetric and the con-
duction heat transfer mechanism is dominant for the
case of Gr = 103.

When Gr. increases, the convection heat transfer
mechanism becomes stronger and the fluid rotation
over the obstacle is considerable (comparing to the
one below the plate). When convection is the domi-
nant mechanism of heat transport, the dimensionless
temperature is shown on the isotherm counters.

Figure 5 shows isotherm contours for A = 0.5
when obstacle is located in two different positions
for Gr = 105. When the position of obstacle is in
A1 = 0.8, the convection heat transfer mechanism is
stronger than the case of A1 = 0.2. If the hot obstacle
is near the upper wall of the cavity, convection heat
transfer is decreased and in reality there is no strong
motion under the cavity. The straight isotherm con-
tours under the obstacle introduce a weak convection
heat transfer mechanism.

Figure 6 shows isotherm contours by changing the
aspect ratio of the obstacle in the case of Gr = 105.
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Fig. 4 Isotherm contours for A = 0.5 and A1 = 0.5, for
Gr = 103, 104, 105 (from up to down)

Fig. 5 Isotherm contours for A = 0.5, Gr = 105; A1 = 0.2 (up)
and A1 = 0.8 (down)

When the aspect ratio of heated obstacle is increased,
the flow pattern around the obstacle is changed; there-
fore the heat transfer is increased. It was observed that
when A = 0.2 the average Nusselt number on the left
wall of the cavity is equal to 2.968. By increasing the
aspect ratio to A = 0.5, the average Nusselt number is
about 1.3 times stronger than the previous case. Sim-
ilarly, for A = 0.8, the average Nusselt number is 1.9
times greater than the predicted value of Nusselt num-
ber for A = 0.2.

Natural convection is caused by density differences
in the fluid occurring due to temperature gradients.
Typically, for free convection, the average Nusselt
number is used to examine the rate of heat transfer.
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Fig. 6 Isotherm contours for A1 = 0.5 and A2 = 0.5

Table 2 Nusselt number for horizontal position of obstacle for
different values of Gr, A2 = 0.5

Gr A A1 = 0.2 A1 = 0.5 A1 = 0.8

Average Nusselt number

103 0.2 1.079635 1.243465 1.079836

0.5 1.673323 1.955538 1.673697

0.8 2.892670 3.267211 2.893156

104 0.2 1.237266 1.472951 1.354633

0.5 1.842530 2.184958 1.998832

0.8 3.221530 3.646474 3.412851

105 0.2 2.340756 2.968672 2.772021

0.5 2.962397 3.959179 3.649926

0.8 4.145127 5.643691 5.465717

Nusselt number is the ratio of convective to conduc-
tive heat transfer and this is a dimensionless tempera-
ture gradient. Table 2 shows the average Nusselt num-
ber for horizontal position of obstacle at different val-
ues of Gr. The effects of position and dimension of
the horizontal obstacle on the averaged Nusselt num-
ber is also presented in this table. It can be seen that
heat transfer rate is increased by increasing the Gr. In
other word, the convection mechanism of heat transfer
becomes stronger by increasing the Gr. The average
Nusselt number is also increased by increasing the as-
pect ratio (A) of obstacle. This increase in the Nusselt
number can be related to the increasing of the surface
of the obstacle. It is interesting to notice that there is
an optimum vertical position (A1) of obstacle in which
the Nusselt number is maximized.

5.3 Obstacle located vertically

Figure 7 shows the isotherm contours and for A = 0.5
when the heated obstacle is located at the center of
cavity, for different Grashof numbers from 103 to 105.
For Gr = 103, the conduction heat transfer mechanism
is dominant and fluid motion is symmetric in the cav-
ity. The isotherm contours show weak convection heat
transfer inside the cavity. As Gr. Increases, convection
heat transfer becomes stronger. For Gr = 103 the av-
erage Nusselt number is equal to 1.738. By increasing
the Grashof number, i.e. Gr = 104, the calculated Nus-
selt number is about 1.46 times greater than the previ-
ous case. Increasing the average Nusselt number for
Gr = 105 is about 3 times of the case of Gr = 103.

When the heated obstacle is located vertically, the
results can be obtained by changing the position of
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Fig. 7 Isotherm contours for A1 = 0.5, A2 = 0.5 and A = 0.5,
for Gr = 103, 104, 105 (from up to down)

the obstacle. Figure 8 shows the isotherm contours for
A = 0.5 and Gr = 105. Because of the symmetric ther-
mal boundary conditions, two position A1 = 0.2 and
A1 = 0.8 are similar and we calculate the average Nus-
selt number only for the left wall.

Fig. 8 Isotherm contours for A1 = 0.2, A2 = 0.5, Gr = 105

For A1 = 0.8, the average Nusselt number on the
left wall of cavity is equal to 4.452. When the space
between left wall and obstacle is decreased, i.e. A1 =
0.5, the average Nusselt number is about 1.15 times
greater than the previous location (A1 = 0.8). For
A1 = 0.2, the average Nusselt number is about 1.27
times more than the case of A1 = 0.8.

Figure 9 shows the isotherms for different values
of aspect ratio of heated plate. When heated obstacle
aspect ratio increases, it means that the area of hot sur-
face and also the temperature gradient increase; then
convection mechanism is more effective than conduc-
tion and therefore heat transfer increases. For A = 0.2
the average Nusselt number for the left wall is equal
to 3.685. When the aspect ratio increases, for A = 0.5,
the average Nusselt number is about 1.38 times, and
for A = 0.8, 1.57 times greater than the case of A =
0.2. For A = 0.8, we can assume that there is two sep-
arate cavity with cold and hot walls.

The Nusselt number is calculated for different as-
pect ratios of obstacle in the case of vertical posi-
tion (see Table 3). When the aspect ratio increases,
the density gradient increases and the buoyancy force
becomes stronger, and therefore it causes to increase
the rate of heat transfer. By increasing the parameter
A1, the space between the left wall and the obstacle
is increased and therefore, the heat transfer rate to the
left wall is increased. For comparison of the different
position of obstacle (horizontally and vertically), we
have calculated the average Nusselt number for both
positions. The important term in the natural convec-
tion heat transfer is buoyancy force. When obstacle is
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Fig. 9 Isotherm contours for A1 = 0.5 and Gr = 105; A = 0.2
(up), A = 0.8 (down)

located vertically, hot obstacle is in the direction of the
gravity vector; and an upward near-wall motion will
be induced. When hot obstacle located horizontally,
the buoyancy force decreases and the rotation of fluid
downward is prevented; thus we expected reduction in
the rate of heat transfer. Comparison of the horizon-
tal and vertical position of obstacle inside the cavity
shows that heat transfer rate is higher for vertical situ-
ation than horizontal case.

5.4 Maximum rate of heat transfer

In order to obtain the optimum position of obstacle, for
maximum rate of heat transfer, different position of the
obstacle is checked and the average Nusselt number is
plotted against A1.

Table 3 Nusselt number for vertical position of obstacle for
different values of Gr, A2 = 0.5

Gr A A1 = 0.2 A1 = 0.5 A1 = 0.8

Average Nusselt number

103 0.2 2.643042 1.249665 0.6635553

0.5 4.092664 1.738 1.025612

0.8 5.116405 2.023154 1.270408

104 0.2 3.161423 1.918403 1.434214

0.5 4.994463 2.558054 2.163878

0.8 6.599044 2.903262 2.617751

105 0.2 3.734926 3.684865 3.055834

0.5 5.631939 5.134515 4.452865

0.8 7.286542 5.803757 5.226461

Fig. 10 Variation of the average Nusselt number by changing
the position of the obstacle for A = 0.5 and A2 = 0.5; horizontal
case (up), vertical case (down)

Figure 10 shows variation of the average Nus-
selt number by changing the position of the obstacle
for both vertical and horizontal position for different
Grashof Numbers. As indicated before, for horizontal
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Fig. 11 Variation of the average Nusselt number by chang-
ing the position of the obstacle for the horizontal position and
A2 = 0.5; A = 0.2 (up), A = 0.8 (down)

position of obstacle, there is an optimum position for
the obstacle which is in the interval of A1 = [0.5,0.7].
In this condition, both horizontal and vertical cases
are studied for different values of parameter “A” (i.e.
A = 0.2 and A = 0.8). As shown in Fig. 11, the same
result is obtained. Figure 12 also shows the variation
of the average Nusselt number for the case of verti-
cal position for different values of parameter “A” (i.e.
A = 0.2 and A = 0.8).

By increasing the fluid velocity inside the channel,
the convective heat transfer is augmented. In order to
show the “increasing motion”, Fig. 13 shows the fluid
LB-velocity on the vertical line passing through the
centerline of the cavity for a horizontal obstacle and
A = 0.5. We can see that the fluid velocity (convec-
tive terms) increases by increasing the Grashof num-

Fig. 12 Variation of the average Nusselt number by chang-
ing the position of the obstacle for the vertical position and
A2 = 0.5; A = 0.2 (up), A = 0.8 (down)

ber. It can obviously augment the heat transfer rate in
the cavity.

6 Conclusions

In this paper Natural convection heat transfer inside a
square cavity in the presence of heated obstacle at con-
stant temperature is investigated numerically for two
different positions (vertically and horizontally). An
existing two-dimensional Lattice Boltzmann method
(LBM) was applied for the study. Following conclu-
sions can be drawn:

• Flow motion and rate of heat transfer in the cavity
depend on the position of obstacle. For horizontal
position of obstacle, there is an optimum position
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Fig. 13 Fluid LB-velocity on the vertical line passing through
the centerline of the cavity for a horizontal obstacle and A = 0.5

for the obstacle. When the obstacle located horizon-
tally, the maximum rate of heat transfer occurs for a
value of A1 in the interval of [A1 = 0.5,0.7].

• As the aspect ratio of heated obstacle is increased,
the heat transfer rate is increased. Increasing the pa-
rameter A has more effects on heat transfer than in-
creasing A1, for both horizontal and vertical cases.
By increasing Gr number, heat transfer increases for
both vertical and horizontal situations. By compar-
ing the horizontal and vertical position of obstacle,
it can be seen that heat transfer becomes more en-
hanced in the case of vertical situation than horizon-
tal situation.

In future work intends to analyze cavities filled with
obstacles of different geometries, curve and inclined
obstacles, with Lattice Boltzmann model.
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