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Abstract Face gear drive is one of the main direc-
tions of research for aeronautical transmission for its
advantages, but the vibration induced gear noise and
dynamic load are rarely involved by researchers. The
present work examines the complex, nonlinear dy-
namic behavior of a 6DOF face gear drive system
combining with time varying stiffness, backlash, time
varying arm of meshing force and supporting stiffness.
The mesh pattern of the face gear drive system is ana-
lyzed when the modification strategy is applied and the
effect of modification on the dynamics response, the
time varying arm of meshing force based on the TCA
is deduced. The dynamic responses of the face gear
drive system show rich nonlinear phenomena. Nonlin-
ear jumps, chaotic motions, period doubling bifurca-
tion and multiple coexisting stable solutions are de-
tected but different from the spur and bevel gear dy-
namics, which don’t occur near primary and higher
harmonic resonance.
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1 Introduction

The earliest theories for face gear drives are found in
book [1], and developed in the decade because face
gear drives have many advantages such as [2]: (i) re-
duced sensitivity of bearing contact to gear misalign-
ment, (ii) a reduced level of noise due to the very low
level of transmission errors, (iii) more favorable con-
ditions for the transfer of load from one pair of teeth to
the next pair of teeth. Face gear drives have found an
important application in helicopter transmissions ex-
plored by Litvin [2], in 1994, which is the possibil-
ity of the split of the torque and the reduction of the
weight of the transmission system [2, 3].

Most previous researches are devoted to develop-
ing the analytical geometry of face-gear drives [4–6],
static contact analysis about the localization of bear-
ing contact and the influence of assemble errors on
the shift of bearing contact and static transmission er-
rors [7–12]. Their main targets are to optimize the lo-
calization of contact, avoid edge contact and reduce
transmission errors.

Litvin et al. [8] developed a modified geometry of
face gear drives with reduced stresses and low trans-
mission errors. The application of a double crowned
pinion generated by a grinding disk in mesh with a
face gear is introduced. In this case, the localization of
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bearing contact of the face gear drive was achieved by
crowning the surface of the pinion teeth in longitudi-
nal direction by plunging. And profile crowning of the
pinion was provided by the application of parabolic
rack cutters. It was also indicated that the application
of a double crowned pinion is favorable for the stabi-
lization of bearing contact. But the face gear drive for
an asymmetric gear drive with an involute pinion and
an involute shaper applied for the generation of face
gear is sensitive to the error of shaft angle. A dou-
ble crowned pinion is favorable for the stabilization
of bearing contact but stresses are increased, which is
preferable for low loaded gear drives. Subsequently,
Zanzi and Pedrero [3] developed the crowning method
to achieve a uniform set of contact ellipses, reduce the
sensitivity to misalignment and avoid the edge contact.

As for the dynamic characteristics of the face gear
drive system, especially the nonlinear dynamic behav-
iors should attract more and more attention. Firstly,
the crowning modification can avoid the edge con-
tact and improve the localization of the contact. But
the distance between the meshing point and rotation
axis varies during the meshing process. Moreover, the
meshing stiffness and backlash are considered in the
face gear drive system. Then the control equation of
the face gear drive system is a nonlinear parametric ex-
citation system. Dynamic characteristics based on the
nonlinear theory are unavoidable for the design and
manufacture of the face gear drive system.

Up to now, there have been few papers relative
to the dynamic characteristics of the face gear drive.
Peng et al. [13] investigated the parametric instabil-
ity behavior of the face-gear drives with periodically
time-varying gear tooth mesh stiffness variation by us-
ing Floquet theory. Yang et al. [14] and Jin [15] inves-
tigated the chaotic and periodic responses of a face
gear transmission system numerically. The meshing
stiffness functions of the face gear drive system are
proposed similar to spur gear pair but without any the-
oretical definition [14, 15]. Additionally, researches on
the effects of modification on the dynamic character-
istics of the face gear drive are blank. The main mo-
tivation of the present paper is to study the dynamic
characteristics of the face gear drive system combining
with time varying stiffness, backlash with and without
modification.

The subsequent sections are structured as follows:
in Sect. 2, a 6 degrees of freedom (6DOF) system
combining with time varying stiffness, backlash, time

Fig. 1 Illustration of face gear transmission system combined
with motor and load

varying arm of meshing force and supporting stiff-
ness is modeled. The arm of meshing force is deduced
based on tooth contact analysis (TCA). In Sect. 3,
the dynamic characteristics of the face gear drive sys-
tem are performed by using numerical simulation.
Comparisons for the face gear drive system with and
without modification are illustrated at the same time.
A short remark concludes this paper in the final sec-
tion.

2 Gear system model

2.1 System model

The gear transmission system is illustrated in Fig. 1.
The driving motor and load are indicated by two cy-
cle blocks with moment of inertia Ji (i = 1,2) respec-
tively. And θi is the rotation angle displacement of
the driving motor and load. They are connected with
pinion and gear with shafts, which are indicated by
two shafts torsional stiffness kθi

. Each gear is sup-
ported with two bearings and the combination support-
ing stiffness is kjn (j = p,g,n = x, y) for gear j at n

direction and the corresponding displacements are xj

(i = 1,2) and yj respectively. Jj ,mj and θj are the
moment of inertia, mass and rotation angle displace-
ment of the gear and pinion.
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Beginning to the analysis, one can let q be a vector
of degrees of freedom as,

q = [θp, xp, yp, θg, zg, yg]T (1)

As shown in Fig. 1 the kinetic energy, T , and the po-
tential (strain) energy V of the system can be written
as,

T = 1

2
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here δ is the displacement along the line of action,
which is expressed as,

δ(t) = (xp − yg + Rpθp − rmθg) cosa

+ (yp − zg) sina (4)

and a is the normal pressure angle of gear pairs. And
the expression (4) can again be written as,

δ(t) = Γ q (5)

and
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Using Lagrange’s equation,

∂

∂t

(
∂T

∂q̇i

)
− ∂T

∂qi

+ ∂V

∂qi

= Qi (7)

The equations of motion without proportional damp-
ing matrix C can be written as,

Mq̈ + Kq + NF1(q, q̇) = Fex (8)

Here M represents the mass matrix given by

M = diag(Jp,mp,mp,Jg,mg,mg) (9)

And stiffness matrix is given by,

K = diag(0, kpx, kpy,0, kgz, kgy) (10)

And the nonlinear meshing force component NF1 is
represented as,

NF1(q, q̇) = kmΓ T δ + cmΓ T δ̇ (11)

And the external torque vector Fex is

Fex = [T1,0,0,−T2,0,0]T (12)

According to the meshing theory of gear system, two
other factors must be included in the dynamic analysis,
i.e., time varying contact pattern and gear backlash.

The first one can be described as time varying stiffness
in previous studies [16–20] and will be discussed in
the following section. Here we just show the formative
expression as,

km(t) = k0 +
N∑

i=1

ki sin

(
zpΩi

60
2πt + ϕi

)
(13)

Here k0 is mean stiffness and ki and ϕi are the ampli-
tude and phase of ith component of time varying stiff-
ness respectively. For the gear backlash, a piecewise
linear function is proposed as,

f (δ) =
⎧
⎨

⎩

δ − B δ > B

0 |δ| ≤ B

δ + B δ < −B

(14)

And the contact damping cm between the two mesh-
ing teeth is also introduced. Then the nonlinear contact
force (11) can be rewritten as,

NF1(t, δ, δ̇) = km(t)Γ T f (δ) + cmΓ T δ̇ (15)

The whole equation of the gear transmission system
with motor and load is an six degrees of freedom sys-
tem as,

Mq̈ + Kq + NF1(t, δ, δ̇) = Fex (16)

Now working with expression (5) and twice derivative
to time t , one gets,

d2δ(t)

dt2
= Γ

d2q
dt2

= Γ M−1Fex − Γ M−1Kq

− Γ M−1NF1(t, δ, δ̇) (17)

Formally, the value θj is still included in the right hand
of Eq. (17). But one should bear in mind, that the stiff-
ness matrix is a diagonal K with two zero and the θj

will disappear theoretically. Then with the new varia-
tions,

q = [θp, xp, yp, θg, zg, yg]T → [δ, xp, yp, zg, yg]T
= x (18)

And the equation of motion can be written as,

{M}ẍ + {K}x + NF(t, δ, δ̇) = F (19)

Here,

{M} = diag(mp,mp,mg,mg,1) (20)

{K} =
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(21)
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Fig. 2 Illustration (a) and coordinate (b) of the face gear generation process

NF(t, δ, δ̇) = [
Γ (2),Γ (3),Γ (5),Γ (6),Γ M−1Γ T

]T

× (
kmf (δ) + cmδ̇

)
(22)

F = [
0,0,0,0,Γ M−1Fex

]T (23)

Ψ (xp, yp, zg, yg) = Γ M−1Kq (24)

Additionally, a proportional damping matrix ex-
pressed by

C = α{M} + β{K} (25)

is proposed based on Eq. (19) in this study.
For convenience of numerical analysis, nondimen-

sion time τ = 
t is introduced and the differential and
time symbol are still the same without losing general-
ity. The second order differential equation (16) can be
written as a state equation

Ẋ = {A}X + {B}(F − NF) (26)

by introducing a new state variable

X = (x, ẋ)T (27)

And here,

{A} =
[

0 I

−{M}−1{K}

 2 −{M}−1{C}




]
,

{B} =
[

0

−{M}−1


 2

] (28)

2.2 Generation of face gear

For the convenience of understanding the detailed
mesh pattern of the face gear drive system, a face gear
transmission system with a spur pinion gear and its co-
ordinate of generation process is shown in Fig. 2. The
pitch cone angle of the face gear drive is γ = 90 deg
in this study (Fig. 2(a)). In Fig. 2(b), the generation
process of the face gear with a spur tool is illustrated.
The main generation method adopted in this study
is based on previous work in Refs. [4, 21] Coordi-
nate systems Sm(xm,ym, zm) and Sp(xp, yp, zp) are
fixed. And movable coordinate systems Ss(xs, ys, zs)

and S2(x2, y2, z2) are connected to the shaper (pinion)
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Fig. 3 (a) Contact points of the face gear drive and (b) distance of contact points and rotation axis. Red and blue lines/points are
denoted for unmodified and modified condition respectively

and the face gear respectively. During the generation
process, the rotation angles of the shaper and the face-
gear along axes za and zm are related as follows,

ϕs/ϕ2 = Ng/Ns (29)

The equation of the shaper at coordinate system
Sm(xm,ym, zm) is represented as,

�rs(us, θs)

=

⎡

⎢⎢⎣

±rbs[sin(θos + θs) − θs cos(θos + θs)]
−rbs[cos(θos + θs) + θs sin(θos + θs)]
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1

⎤

⎥⎥⎦ (30)

and the unit normal of �rs(us, θs) is
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| ∂�rs
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0

⎤
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Here rbs is the radius of the shaper’s base circle, and
θos determines half of the width of the space of the
shaper on the base circle especially for a standard
shaper θos is represented by,

θos = π

2Ns

− invαn (32)

where αn is the pressure angle. The surface of face
gear is determined as the envelope to the family of the
shaper tooth surface and combined with the equation
of meshing, as
{ �r2(us, θs, ϕs) = M2s(ϕs)�rs(us, θs)

�ns · �νs2 = f (us, θs, ϕs) = 0
(33)

Here

M2s(ϕs)

= M2pMpmMms

=
⎡

⎢⎣

cosϕs cosϕ2 − sinϕs cosϕ2 − sinϕ2 0
− cosϕs sinϕ2 sinϕs sinϕ2 − cosϕ2 0

sinϕs cosϕs 0 0
0 0 0 1

⎤

⎥⎦

(34)

2.3 Time varying arm of meshing process

Based on the tooth contact analysis (TCA) program in
Ref. [21], the contact point of a face gear drive without
assemble error can be determined numerically based
on Sect. 2.2. With a standard spur gear shaper, the
contact points of a meshing tooth cycle are illustrated
in Fig. 3(a) by a red line. As seen in this figure, the
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Fig. 4 Sketch of arm of meshing force

meshing point is almost a line perpendicular to x-axis
(tooth width direction). The edge contact may occur at
the top of the face gear tooth. To avoid edge contact,
many researchers adopt the tooth modification strategy
such as profile and longitudinal modification in terms
of linear or parabola type to improve the meshing per-
formance of the gear transmission system. In this pa-
per, firstly, a profile modification with parabola type
is adopted. The contact points are listed in Fig. 3(a)
by a blue line. The TCA result indicates that the pro-
posed method can effectively avoid edge contact. All
these considerations are the levels in the static design
view, and the effect of modification on the dynamic
performances is still an unavoidable problem in prac-
tical engineering. For example, the arm rm of meshing
force

rm =
√

x2
s + y2

s (35)

relative to face gear is almost constant. In Eq. (35)
(xs, ys ) are the meshing points obtained from TCA
as shown in Fig. 4. The value of rm is varying from
rLMP ≈ 488 mm to rLMP ≈ 560 mm when modifica-
tion is applied to the gear pair as shown in Fig. 3(b).
Then the arm of force rm can be represented with N

terms Taylor series as,

rm(t) = r̄m +
N∑

i=1

r̄mvi sin

(
NpΩi

60
2πt

)
(36)

Here Ω is input shaft speed at rpm, r̄m is the mean
part of the arm of force and r̄mvi is the amplitude of
ith component.

2.4 Time varying meshing stiffness

To construct the time varying meshing stiffness, the
contact ratio of the face gear drive must be determined.
Firstly, a so-called Tregold’s approximation for con-
tact ratio, as mentioned in Ref. [13], is proposed. The
pitch cone angles of pinion and face-gear are,

γp = arc cot

(
m12 + cosγ

sinγ

)
,

γg = arc cot

(
1 + m12 cosγ

m12 sinγ

) (37)

Here, m12 = Ng/Np and γ is the pitch cone angle of
face-gear drive, then the numbers of teeth for the for-
mative spur pinion and the formative spur gear are,

Nvp = Np/ cosγp, Nvg = Ng/ cosγg (38)

Then the analytical formula for the contact ratio of
gears is

ICR = Nvp(tanαap − tanα) + Nvg(tanαag − tanα)

2π
,

cosαai = rbi

rai

, (i = p,g)
(39)

here, α is pressure angle, rbi is base circle radius and
rai is addendum circle radius.

The time varying meshing stiffness of the face
gear is assumed to be rectangular. Recalling the def-
inition of gear tooth meshing stiffness km in litera-
ture [22, 23], one can simplify it as

km = k0 + k(t) = k0 +
N∑

r=1

kr cos(2πrfmt − ϕr)

k0

ktp

= ICR,

kr

ktp

=
√

2 − 2 cos(2πr(ICR − 1))

πr
,

ϕr = 1 − cos(2πr(ICR − 1))

sin(2πr(ICR − 1))

(40)

for the contact ratio less than 2.

2.5 Supporting stiffness

A single gear supported by two bearings is illustrated
in Fig. 5. Here the bearings are denoted by two stiff-
nesses and the bending stiffnesses of shafts are deter-
mined by,

kbx = kby = 3EI
Ll + Lr

(LlLr)3

[
(Ll − Lr)

2 + LlLr

]
(41)
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Fig. 5 Illustration of supporting stiffness

here I = πr4
l /4 and E is the Young’s modulus. Gener-

ally the shaft of a gear transmission system is a stepped
shaft. And the radius rl in I can be substituted by the
equivalent radius re

(re)
4 = l

/ n∑

i=1

li

D4
i

(42)

where l = Ll + Lr, li and Di are length and diameter
at i step.

And the stiffnesses of the bearing at parallel direc-
tion (x, y) are assumed to be the same as

kBx = kBy = 2 × 1010 (N/m) (43)

Then the combined supporting stiffness can be ob-
tained

kx = ky = kbxkBx

kbx + kBx

(44)

2.6 Torsional stiffness of shaft

As for the bending stiffness of the shaft, the equivalent
idea is still adopted to calculate the length as

kθ1 = kθ1 =
n∑

i=1

πGD4
i

32li
(45)

Here G is shear modulus of shaft materials.

Table 1 Design data of face gear

Face gear Pinion

Number of teeth 73 19

Module (mm) 4.5 4.5

Pressure angle (deg) 20 20

Moment of inertia (kg m2) 134.10E-3 1.27E-3

Inner radius (mm) 157 –

External radius (mm) 205 –

Tooth width (mm) 88 98

Angle of pitch cone (deg) 90

ICR 1.7421

Mass (kg) 4.43 0.991

Table 2 System parameters

Parameters Symbol Value

Mass damping coefficient α 100

Stiffness damping coefficient β 0.00005

Young’s modulus (GPa) E 206

Shear modulus (GPa) G 81

Supporting stiffness (N/m) kpn (n = x, y) 6.5541E+007

kgn (n = x, y) 8.7303E+008

2.7 Unloaded transmission error excitation

The excitations of the gear transmission system have
two parts: internal displacement excitation and exter-
nal torque fluctuation excitation, generally. The inter-
nal displacement excitation is presented as effect of
the unloaded transmission error, which is the major
source of the spur/helical and bevel gears’ vibration.
In this paper, the external torque fluctuation excitation
is neglected and the internal displacement excitation is
modeled as,

Fin = ρ
(
Γ M−1Fex

)
sin(2πfmt) (46)

Here ρ is the load ratio and combining with Eq. (23),
the excitation of the gear transmission system is,

F = [
0,0,0,0,Γ M−1Fex

(
1 + ρ sin(2πfmt)

)]T (47)

3 Numerical analysis

The main design data of the face gear drive and sys-
tem parameters are listed in Table 1 and Table 2 re-
spectively. Before the numerical analysis is made, the
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Fig. 6 Bifurcation map of unmodified face gear drive system with 10 Nm load applied on the pinion

Fig. 7 Bifurcation map of unmodified face gear drive system with 600 Nm load applied on the pinion

Table 3 Natural frequency of 5DOF face gear drive system

i 1 2 3 4 5

ωi (Hz) 967 1294 6515 7065 10430

natural frequencies of corresponding 5DOF face gear
drive system without damping are listed in Table 3.
Substituting system parameters into Eq. (26), one can
solve the nonlinear dynamic system by the Runge-
Kutta method. The initial states of the numerical cal-
culation are set to zeros and the transient response is
neglected.

3.1 Dynamic characteristics without modification

When the standard face gear drive system is per-
formed, the arm of meshing force is constant. The
bifurcation map under two different load conditions,
lightly load 10 Nm and highly load 600 Nm, are shown

in Figs. 6 and 7 respectively. When lightly load is
applied, the face gear drive system undergoes peri-
odic motion when the rotation speed of the pinion
is less than 2500 rpm. When the rotation speed is
around 3000 rpm, approximate 3000zp/60 = 950 Hz,
the system resonates with the first natural frequency
(as shown in Table 3) and the periodic and chaotic
motion are detected. The spectrum of the response is
dominated by the first five harmonic components of
mesh frequency as shown in Fig. 8. When the rotation
speed overruns 6000 rpm, the system still undergoes
chaotic motion but the frequencies of the responses are
below the first mesh frequency.

When load 600 Nm is applied on the pinion, the
responses frequency spectrum of the face gear drive
system is shown in Fig. 9. The responses frequency
spectrum in the resonance region is almost the same
as that in Fig. 8 but the amplitude increases obviously.
When the pinion runs above 6000 rpm, for light load
condition, the system undergoes chaotic motion. How-
ever, for high load condition, the system undergoes pe-
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Fig. 8 Frequency spectrum of the face gear drive system with 10 Nm load applied on the pinion

Fig. 9 Frequency spectrum of the face gear drive system with 600 Nm load applied on the pinion

riodic motion. The results indicate that the increased

load may restrict the chaotic motion and the peak val-

ues of frequency spectrum are occurring at the mesh

frequencies.

3.2 Dynamic characteristics with modification

In this subsection, we consider the case when the mod-
ification is applied in the face gear drive system as
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Fig. 10 Maximum (a) and minimum (b) contact force comparison relative to unmodified and modified face gear drive with 600 Nm
load applied on the pinion

mentioned in Sect. 2.3. Mathematically, the time vary-
ing arm of meshing force is represented as paramet-
ric excitation e.g. Eqs. (15) and (17). Therefore Γ (t)

is a function of meshing position or a time varying
function. Equation (17) shows that although the ap-
plied torque load is constant, the meshing force will
be time varying. The transmission force for the face
gear drive system is fluctuation, see the first term
of right hands of Eq. (17), Γ M−1Fex . And the time
varying coefficient is included in the linear stiffness
force term Γ M−1Kq and nonlinear stiffness force
term Γ M−1NF1 even if the stiffness is constant dur-
ing the meshing process.

The numerical simulation is performed as previous
subsection. To illustrate the difference of modification
on the face gear drive system, the maximum and min-
imum contact force relative to unmodified and modi-
fied case with 600 Nm load applied on the pinion is
shown in Fig. 10. The figure shows that the modifi-
cation strategy can improve the static mesh pattern,
but it influences the nonlinear characteristic of the face
gear drive system in some sort. This may be caused by
the time varying meshing stiffness, for the modifica-
tion can also induce the time varying coefficient and
couple with time varying meshing stiffness.

Theoretically, in what follows, the effects of the
time varying mesh characteristic on the dynamic re-
sponses are compared. Before that, the constant arm
(unmodified face gear drive) and constant meshing
stiffness are indicated by Case 1, the time varying arm
(modified face gear drive) and constant meshing stiff-
ness by Case 2, and the time varying arm and time
varying meshing stiffness by Case 3. The equivalent
root-mean-square (rms) values [24] and mean values
of the dynamic responses x5 (which means yg and it is
fifth variation of dimensionless Eq. (26)) with respect
to the rotation speed of the pinion from 100 rpm to
10000 rpm are illustrated in Fig. 11. The figure shows
that the predicted responses of the time varying system
are slightly smaller than the time-invariant system at a
lower rotation speed of the pinion (<6000 rpm), to-
tally. Moreover, the results are different from the case
of the hypoid gear drive system, which is similar to
the face gear drive system, but the time varying mesh
characteristics enlarge the response amplitude [25].

On the other hand, the 3rd–8th harmonic compo-
nents of the dynamic responses for the three cases are
illustrated in Fig. 12 serially. The figure shows that
the first harmonic is found to dominate the vibration
spectra more than other higher harmonics and the time
varying mesh characteristics influence the first har-



Meccanica (2014) 49:1023–1037 1033

Fig. 11 Comparisons of the effects of time varying characteristics within face gear drive system

Fig. 12 Comparisons of the effects of time varying characteristics within face gear drive system. Ampl. is shorten of Amplitude,
which indicates the amplitude of each harmonic components

monic slightly. But the higher harmonics are affected
by the time varying mesh characteristic obviously as
shown in Fig. 12. Especially, the 4th, 6th and 8th har-
monics of case 3 and case 2 are much higher than those
of case 1 at a lower rotation speed (<6000 rpm) except
the main resonant region (around 3000 rpm).

3.3 Discussion

The presence of gear backlash and time varying mesh-
ing stiffness leads to the strong nonlinear interaction in

the system dynamic equation. And the nonlinear char-
acteristics such as bifurcations, different kinds of peri-
odic solutions, limit cycles behaviour, super- and sub-
resonances, multiple coexisting stable solutions and
chaotic motions in the gear dynamics (especially the
spur gear, helical gear, hypoid gear) have been stud-
ied [16, 18, 25–32]. Although there is a general agree-
ment about the nature of the phenomenon in gear dy-
namics, the current research rarely involves the face
gear drive system. Therefore in the following subsec-
tion, the period doubling bifurcation, multiple coex-
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Fig. 13 Steady-state rms value xrms
5 and mean xmean

5 of the face gear drive system in speed region (5500, 7500) rpm. Note: red ‘- - -’
line for increasing speed, blue ‘–’ line for decreasing speed, ‘→’ denoting the sweep direction. (©)—no impact motion, (	)—single
side impact, (�)—double side impact

isting stable motion and the jump phenomena of the
steady-state response in the face gear drive system are
analyzed for Case 2. Here noted that the final steady-
state response at a particular input speed is used as the
initial condition for the next speed in the numerical
calculation.

3.3.1 Jump phenomena and coexisting stable
solutions

The rms values and mean are calculated in the speed
region (5500, 7500) rpm and shown in Fig. 13 respec-
tively. A nonlinear jump phenomenon is detected in
region (5631, 5701) rpm. The rms response jumps up
as the input speed is increased and jumps down at a
lower speed when the input speed is decreased. More-
over, when the input speed is lower than 5631 rpm,
namely before the jump occurring, the system under-
goes period-1 solution without lossing contact. With
the increase of the input speed, the mesh teeth sepa-
rate and the single side impact motion and jump phe-
nomenon occur. In view of the non-smooth dynam-
ics [33], the grazing bifurcation may be one of the rea-
sons for the jump phenomenon in the gear dynamic
with backlash. When the input speed is larger than
6000 rpm the jump phenomenon still occurs, but the
jump region is small and the grazing bifurcation does
not occur.

On the other hand, multiple coexisting stable solu-
tions are possible in the speed region between the jump
down and jump up speed. For example, the three kinds
of multiple coexisting stable solutions are detected at
5651 rpm, 5781 rpm and 6585 rpm respectively as

shown in Fig. 14. In Fig. 14-(1), the phase portrait
and their corresponding spectra of the two coexisting
period-1 solutions (denotes by one Poincare point at
phase portrait) are illustrated, (a) and (b) are corre-
sponding with the upper and lower branch in Fig. 13
around 5651 rpm. The phase portrait twists with differ-
ent patterns and the first mesh harmonic dominates the
gear response, their main differences occur at higher
mesh harmonics. Moreover, the period-1 solution in
the lower branch is close to the grazing bifurcation and
the portrait is tangent with the discontinuous boundary
induced by backlash, approximately. In Fig. 14-(2),
coexisting of period-2 (a) and period-1 (b) solutions
are illustrated, both solutions indicate that the system
undergoes single side impact motion. In Fig. 14-(3),
the system undergoes double side impact motion and
the coexisting of period-1 (a) and period-3 (b) solu-
tions are shown. The one third mesh frequency appears
at higher mesh frequency and the amplitude at mesh
order is almost identical.

3.3.2 Period doubling bifurcation

Period doubling bifurcation is a main route to chaos in
a nonlinear system. The type of nonlinear behaviour
appears to occur in the face gear drive system as shown
in Fig. 7. In this subsection, the enlarged bifurcation
of Fig. 7 in speed region (5500, 7500) rpm is shown
in Fig. 15. In this region, the first period doubling bi-
furcation (PD) is detected around ΩPD

1 = 5762 rpm,
then the period-1 solution transfers to period-2 solu-
tion and finally to chaos with the increase of the in-
put speed. Around ΩPD

1 , the system undergoes single
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(1) Two coexisting period-1 solutions at 5651 rpm

(2) Coexisting of period-2 (a) and period-1 (b) solutions at 5781 rpm

(3) Coexisting of period-1 (a) and period-3 (b) solutions at 6585 rpm

Fig. 14 Three kinds of multiple coexisting periodic stable solutions in the face gear drive system. Note: in each column the upper
one subplot (a, b) is phase portrait and another one is corresponding spectra (c, d). The cycles denote the Poincare point at each phase
portrait map

side impact motion. When the speed is around ΩPD
2 =

6545 rpm with the decrease of the input speed, the

period-1 solution transfers to period-3 solution, then

transfers from the period-3 solution to chaos directly

and the system undergoes double side impact motion.

Around ΩPD
3 = 6947 rpm and ΩPD

4 = 7068 rpm,

the PD bifurcation is observed but it does not lead

to chaos. On the other hand, intermittency or sudden

change to chaotic behaviour is reached in the vicinity

of ΩC
1 = 6033 rpm and ΩC

2 = 6143 rpm.
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Fig. 15 Enlarged bifurcation map of Fig. 7 in speed region (5500, 7500) rpm

4 Conclusions

A 6DOF face gear drive system combining with time
varying stiffness, backlash, time varying arm of mesh-
ing force and supporting stiffness is used to analyze
the nonlinear dynamics of the face gear drive system
with and without modification. The main works of the
present paper are concluded as follows:

(1) The mesh pattern of the face gear drive system
is analyzed when the modification strategy is ap-
plied. To analyze the effect of modification on the
dynamics response, the time varying arm of mesh-
ing force based on the TCA is deduced for the case
with and without modification simply.

(2) The modification influences the system vibration
response such as resonance, rms and meshing
force slightly. Jump phenomena are detected in
the steady-state response, but they do not occur
near primary and higher harmonic resonance. But
the multiple coexisting stable solutions are ob-
served in the jump region. Three kinds of coex-
isting solutions, two period-1 solutions, period-1
and period-2 solution, period-1 and period-3 solu-
tion are detected in the steady-state response.

(3) Other nonlinear phenomena common in systems
have backlash type nonlinearity and time varying
coefficient such as chaos and period doubling bi-
furcation are analyzed.

(4) From an engineering point of view, the modifica-
tion can improve the mesh characteristic in previ-
ous static analysis. Moreover, from our analysis,
the system response do not sensitize to the time
varying mesh arm deduced by the modification.
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