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Abstract This article aims to provide a new formula-
tion for the analysis of the extrusion process for non-
axisymmetric sections. The upper bound theorem has
been used to obtain a generalized kinematically ad-
missible velocity field. The geometry of the deform-
ing region has been formulated considering variation
of the dead zone size at different angular positions
and three-dimensional curved surfaces have been em-
ployed to define the entry and exit surfaces of the de-
formation zone. Using this analytical method, extru-
sion of square, rectangular and L-shaped sections were
analyzed and the effect of shape complexity on mate-
rial flow and dead material zone (DMZ) formation un-
der different conditions has been investigated. Physi-
cal modelling experiments and finite element analysis
were carried out to reveal the capability of the pro-
posed theoretical method.

Keywords Extrusion · DMZ · Complexity ·
Experiment · FEM

1 Introduction

The analysis of cold extrusion for shaped sections has
been performed in the previous works utilizing analyt-
ical, numerical and physical techniques. Investigation
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of the material flow is one of the main purposes con-
sidered by the researchers.

Chitkara and Abrinia [1] established a generalized
method using upper bound to analyze extrusion and
derived an admissible velocity field for shaped sec-
tions. Gordon et al. [2] presented six flexible veloc-
ity fields for axisymmetric extrusion through dies.
Three base velocity fields were derived, assuming pro-
portional angles, areas or distances from the center-
line within the deformation region. Kar et al. [3] uti-
lized the modified Spatial Elementary Rigid Region
(SERR) technique for the upper bound analysis of ex-
trusion of T-section bars from square billets through
square dies. The SERR technique was applied by Sa-
hoo et al. [4] to obtain minimal forming stress for the
round-to-angle section extrusion. Abrinia and Ghor-
bani [5] presented a new generalized formulation for
the nonsymmetric sections based on the new divi-
sion of deforming region. By developing a theoret-
ical solution, Ponalagusamy et al. [6] observed that
the streamlined die designed based on Bezier curve
was superior to the polynomial equation based die.
Ketabchi and Seyedrezai [7] investigated extrusion of
L-section and showed that the process efficiency im-
proved in streamlined die with intermediate section.
In another work, Kloppenborg et al. [8] published their
work on topology optimizations in extrusion dies. The
method improved dead zones for streamlined die ge-
ometries in the application of a flat and a porthole die
on two-dimensional models. Haghighat and Morad-
mand [9] investigated extrusion process of thick wall
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tubes through rotating curved dies by the method of
upper bound. In another work, upper bound method
and finite element method were used to study the
backward extrusion process through arbitrarily curved
punches [10]. Ajiboye and Adeyemi [11] evaluated the
effects of die land on the extrusion pressures by the
upper bound method for square, rectangular, I, and
T-shaped sections. Khalili Meybodi et al. [12] devel-
oped a general methodology to design the proper bear-
ing in order to eliminate the curvature of the final ex-
truded product and validated the design using physical
modeling. The appropriate applicability of Plasticine
for the physical modeling of extrusion was shown by
Sofuoglu and Gedikli [13]. The development of two
new definitions of shape complexity incorporating all
significant geometrical features of an extrusion die
profile was proposed by Qamar et al. [14]. Flitta and
Sheppard [15] utilized a finite element model analy-
sis to comprehend the material flow and the DMZ for-
mation. Qamar [16] explored the effect of shape com-
plexity on metal flow for cold extrusion. He concluded
that factors such as die profile symmetry and extru-
sion ratio may have significant roles in the formation
of DMZ. Eivani and Karimi Taheri [17] investigated
the effects of die angle and friction on the geometry of
DMZ using an upper bound model during equal chan-
nel angular extrusion.

As mentioned above, the problem of extrusion pro-
cess has been tackled by various methods. However,
these studies ignored the variation of DMZ at differ-
ent sector angles. The previous analytical works were
mostly performed using unrealistic simplified assump-
tions which limit the definition of deforming region
as well as the DMZ. This deficiency is intensified for
the extrusion of profiled sections with no axis of sym-
metry in which the geometry of deforming region is
more complicated. On the other hand, employing nu-
merical tools for the metal forming analysis in the ex-
trusion process requires considerable time and exper-
tise. In this article, a newly developed formulation for
the forward extrusion is presented accommodating the
variation of the dead zone geometry at different sec-
tor angles and the extrusion of square, rectangular and
L-shaped sections has been dealt with as the examples.
In the proposed method the velocity field incorporates
curved surfaces of entry to and exit from the deform-
ing region. In order to verify the analysis, physical
modelling experiments and finite element simulation
have also been used.

2 Theory

The flat entry and exit velocity discontinuity surfaces
are the common assumptions used in a large number
of the published literature in order to define the de-
forming region of the extrusion process. In the present
work a more realistic definition of the DMZ, as com-
pared to previous works, was considered in the theo-
retical solution. In addition, the proposed method em-
braces other modifications such as the homogeneous
internal flow pattern to eliminate internal discontinu-
ities and the Hermite streamlines to eliminate the ve-
locity discontinuities at the entry and exit surfaces.
The DMZ length varies at different sector angles of
the deforming region for non-axisymmetric sections.
Consider Fig. 1(a) which demonstrates a simple circle-
to-square extrusion. As it is clear from the figure, the
nest area of the material differs at different angles and
consequently influences the shape of flow lines. The
amount of the nest at different angles from the geo-
metrical center of the exit section has been utilized
to propose a new definition of DMZ. The deform-
ing region for producing a square profile as a non-
axisymmetric case is shown in Fig. 1(b). For the sake
of clarity, a quarter of the deforming region is shown
in detail.

A general particle of material enters the deforming
region at point D touching the velocity discontinuity
surface and it leaves the deforming region at point D′.
The particle flows on a general streamline DD′ where
the velocity variations occur. The entry and exit sur-
faces of the deforming zone are:

Z1 = Z1(OE,ϕ)

Z2 = Z2
(
O ′E′, ϕ′) (1)

where Z1 is the entry surface (t = 0) and Z2 is the exit
surface (t = 1) of the deforming region. The position
vector of the material particle on a general streamline
is:

�r(u, q, t) = f (u, q, t)�i + g(u, q, t) �j + h(u, q, t)�k (2)

where parameters u, q and t are dimensionless vari-
ables changing between 0 and 1 and functions f , g

and h define the X, Y and Z coordinates of any point
in the deforming region. The parameters u and q are:
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Fig. 1 (a) Variation of l at different angles and (b) The geometry of deforming region

u = OE

R
and q = ϕ

2π
(3)

where R is the billet radius. By changing these param-
eters from 0 to 1 the radial and angular positions of
any point in the deforming region could be defined.

3 Defining the entry surface of deforming
region (Z1)

In this study the entry surface of deformation zone has
been defined based on considering the DMZ length
at different sector angles. To apply this, a new func-
tion for the DMZ length has been introduced which
modifies the geometry of deforming region at the en-
try:

LDZ

(
ϕ′) = Lc

(
1 + l(ϕ′)

R

)
(4)

where LDZ is the dead zone length, l is the mate-
rial land at angle ϕ′ and Lc is the optimization pa-
rameter for the upper bound. This function employs
the material land at different sector angles to pro-
vide a realistic definition of the DMZ length. To ob-
tain the DMZ length, the minimum upper bound value
was also considered. Utilizing the dimensionless term
l(ϕ′)/R in the function deals with the dimensional
variations and demonstrates the generality of the for-
mulation.

Using this function, the entry surface position at
u = 1 could be determined. For example in Fig. 1,
the corresponding DMZ length in point A is smaller
than C, because point A has smaller l-value than
point C. This is in accordance with the physical model-
ing observations. In the present study a fourth-degree
polynomial equation has been used to define the entry
surface as follows:

Z1 = p00 + p10X0 + p01Y0 + p20X
2
0 + p11X0Y0

+ p02Y
2
0 + p22X

2
0Y

2
0 + p30X

3
0 + p03Y

3
0 (5)

where:

X0 = uRsin(2πq)

Y0 = uRcos(2πq)
(6)

where X0 and Y0 are the X and Y coordinates of any
point on the entry surface of deforming region and
p00, p10, p01, p20, p11, p02, p22, p30 and p03 are the
coefficients in the equation. To obtain Z1, surface fit-
ting technique has been employed using a number of
points around the entry surface of deforming region,
with their Z-components being equal to their corre-
sponding DMZ length, including point M as the cen-
ter point. In fact, surface Z1 is fitted to the follow-
ings:
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Point 1:
P1 = [

Rcos(2π/n) Rsin(2π/n) LDZ(2π/n)
]

. . .

Point i:
Pi = [

Rcos(2πi/n) Rsin(2πi/n) LDZ(2πi/n)
]

. . .

Point n:
Pn = [

Rcos(2π) Rsin(2π) LDZ(2π)
]

and

Point M = [
0 0 O ′M

]

(7)

where n is the number of points around the entry sur-
face with the same angular distances. In this paper, n

is equal to 16 and 24 for the rectangular and L-shaped
sections respectively. Matlab Surface Fitting Tool was
used for fitting the surface through the extracted points
from Eq. (7).

Consequently, the position vector of the entry sur-
face of deformation zone could be expressed by:

�r1 = uRsin(2πq)�i + uRcos(2πq) �j + Z1(u, q)�k (8)

3.1 Defining the exit surface of deforming
region (Z2)

The exit surface of deforming region is defined by
choosing a cubic parametric Bezier function in terms
of parameter u. Unlike the entry surface which has
different Z-values at different angular positions for
u = 1, the exit surface has equal Z-values. Therefore,
the Bezier function provides a more accurate defini-
tion of the exit surface than a polynomial function. It
is defined by four control points two of which are the
starting and the ending points on the curve and the re-
maining two points control the curvature and tangents
to the curve as follows:

Z2(u) = (1 − u)3P0z + 3u(1 − u)2P1z

+ 3u2(1 − u)P2z + u3P3z (9)

where P0 and P3 are the first and final points on the
curve respectively. The slope of the curve at the first
control point is along the line towards the second con-
trol point, so P0 and P1 must have equal z components
to obtain a logical tangent vector:

P0z = d

P1z = d

P2z = 3d/4

P3z = 0

(10)

where d is the parameter equal to O ′M ′. Hence, for
the exit surface:

Z2(u) =
(

1 − 3u2

4
− u3

4

)
d (11)

In this research d is equal to 0.4Lc. Rotating the base
function around Z-axis will cover all points on the exit
surface. To determine the position of a general point
like E′ on line O ′E′ at exit surface the following ex-
pression is proposed:

O ′E′ = ukO ′C′ (12)

where k is the parameter which takes special values
in different positions on the exit section. This func-
tion increases the homogeneity of the cross sectional
flow pattern by minimization of internal discontinu-
ities. Hence the position vector of the exit surface of
deformation zone is:

�r2 = uk
(
O ′C′sinϕ′�i + O ′C′cosϕ′ �j) + Z2(u, q)�k (13)

3.2 Streamlines

A cubic parametric Hermite function is assumed to de-
fine the material flow path in the deforming region.
Geometry of the streamlines has been proposed in a
way that eliminates the velocity discontinuities at the
entry and exit of deforming region by equating to zero
the X- and Y -components of the starting and ending
tangent vectors �r ′

1 and �r ′
2. Therefore, the position vec-

tor of any general point is:

�r = �r1
(
1 − 3t2 + 2t3) + �r2

(
3t2 − 2t3)

+ �r ′
1

(
t − 2t2 + t3) + �r ′

2

(−t2 + t3)

= [
1 − 3t2 + 2t3 3t2 − 2t3 t − 2t2 + t3 −t2 + t3

]

×
⎡

⎢
⎣

uRsin(2πq) uRcos(2πq) Z1
ukO ′C′sinϕ′ ukO ′C′cosϕ′ Z2
0 0 C1Lc + uLc

0 0 −C1Lc − uLc

⎤

⎥
⎦

×
⎡

⎣
�i�j
�k

⎤

⎦ (14)



Meccanica (2014) 49:295–304 299

All the points in the deforming region are defined by
assigning values between 0 and 1 to parameters u, q ,
and t .

3.3 Velocity field

The velocity vector of any particle in the deformation
zone is:

�V = Vx
�i + Vy

�j + Vz
�k (15)

where Vx , Vy and Vz are the velocity components in
the X, Y and Z directions and given by:

Vy = gt

ht

Vz, Vx = ft

ht

Vz, Vz = M(u,q, t) (16)

where ft , gt and ht are the derivatives of f , g and h

with respect to t and M is a general function in terms
of u, q and t which is obtained from the incompress-
ibility conditions:

∂Vx

∂X
+ ∂Vy

∂Y
+ ∂Vz

∂Z
= 0 (17)

Substituting from Eq. (16) into Eq. (17): (See [5])

M = C(u,q)/
(
(fugq − fqgu)

+ hq/ht (ftgu − fugt ) + hu/ht (fqgt − ftgq)
)

(18)

C is determined from the specific boundary condi-
tions:

C(u,q) = [
(fugq − fqgu) + hq/ht (ftgu − fugt )

+ hu/ht (fqgt − ftgq)
]
t=0

(19)

3.4 The upper bound solution

The total power consumption for the extrusion process
is:

J ∗ = Ẇi + Ẇe + Ẇx + Ẇf (20)

Ẇi , the power due to internal deformation, is given by:

Ẇi = σm

∫

V

ε̇ dV

= 2σm√
3

∫ 1

0

∫ 1

0

∫ 1

0

((
ε̇2
xx + ε̇2

yy + ε̇2
zz

2

)

+ ε̇2
xy + ε̇2

yz + ε̇2
zx

) 1
2

detJ∂u∂q∂t (21)

and Ẇf , the power due to friction between workpiece
and die surface, is:

Ẇf = m
σm√

3

∫∫

s

�Vf dSf

= m
σm√

3

∫∫ √
v2
x + v2

y + v2
z

∣∣∣
u=1

dSf (22)

where m is the friction factor, �Vf and Sf are the ve-
locity discontinuity and the surface of velocity discon-
tinuity due to material-tool interface respectively. The
power due to velocity discontinuities at the entry, Ẇe,
and the exit, Ẇx , can be calculated by the following
relationship:

Ẇe = σm√
3

∫∫

Se

�VedSe

= σm√
3

∫ 1

0

∫ 1

0

[
V 2

x + V 2
y + (Vz − V0)

2] 1
2
t=0

× ∂(x, y)

∂(u, q)t=0
(23)

Ẇx = σm√
3

∫∫

Sx

�VedSe

= σm√
3

∫ 1

0

∫ 1

0

[
V 2

x + V 2
y + (

Vz − V0(Se/Sx)
)2] 1

2
t=1

× ∂(x, y)

∂(u, q)t=1
(24)

The present formulation for streamlines produces no
velocity discontinuities at the velocity boundaries.
Therefore, the components Ẇe and Ẇx are 0. The av-
erage extrusion pressure is:

Pave = J ∗

πR2v0
(25)

where v0 is the initial velocity of the billet material.

4 Physical modelling

The present study employs physical modeling exper-
iments with Plasticine so as to verify the analytical
results based on the new DMZ definition. The experi-
ments were performed for extrusion of a square, rect-
angular and L-shaped section from a round billet us-
ing flat-face dies. The billets were prepared with two
contrasting colors of Plasticine to generate the DMZ
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Fig. 2 (a) The tooling, (b) a deformed sample and (c) dimensions of the sections used for the tests

distinguishable from flowing material after deforma-
tion. The diameter and height of the billets were 40
and 45 millimeters respectively. In all cases, 60 %
reduction of area has been applied to the billet. The
Physical Modelling tooling, which was manufactured
from Plexiglas, and a deformed sample (as an exam-
ple) after the test are illustrated in Figs. 2(a) and (b) re-
spectively (the sample is an extruded rectangular pro-
file which has been cut from two directions). The di-
mensions of the sections for which the tests were per-
formed are shown in Fig. 2(c). Many tests were car-
ried out and the lengths of the DMZ at different angles
were measured.

5 Finite element simulation

In addition to Physical Modelling experiments, finite
element simulation was also carried out. The finite el-
ement program DEFORMTM 3D was used to simulate
the process of cold extrusion using the same condi-
tions as in the analytical method. The parts were mod-
eled using SOLIDWORKS and then they were im-
ported into DEFORMTM 3D software (Fig. 3). Model-
ing of the parts was carried out for the dies, punch and
the billets. The die and the punch were taken as rigid
bodies and the billet as a deformable solid. Tetrahe-
dral elements were used for the workpiece. The fric-
tional conditions used in the simulation were the same

Fig. 3 The deformed finite element model

as in the analytical study for the sake of comparison
(m = 1).

6 Results and discussion

A deeper understanding of the DMZ formation which
is under influence of inhomogeneity of material flow is
presented here. As mentioned earlier, the present ana-
lytical solution takes account of the variation of DMZ
length at different angular positions. The geometry of
DMZ for the three introduced sections, analyzed by
the present method, is observed in Fig. 4. For the sake
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Fig. 4 Geometry of DMZ: (a) square section (b) rectangular section (c) L-shaped section

Fig. 5 (a) Effect of Lc/R on the relative extrusion pressure and (b) Effect of reduction of area on optimum Lc/R, with changing
shape complexity

of clarity, the DMZ for just a half of each section is
plotted. All process conditions such as percentage of
reduction and friction factor are the same for these
cases. It is seen from the figure that higher shape com-
plexity has given rise to larger DMZ. This has been
discussed in more details below.

Variation of relative extrusion pressure for different
values of Lc/R for the extrusion of square, rectangu-
lar and L-shaped section is demonstrated in Fig. 5(a).
Also, the effect of the reduction of area on the opti-
mum value of Lc/R is shown in Fig. 5(b). For each
case the optimum value of Lc which predicts the ge-
ometry of the deforming region along the Z-axis in-
creases at higher reductions. It can also be observed
that the optimum value of Lc/R is highly affected
by shape complexity. More complex sections have
higher optimum Lc , contributing to more inhomoge-
neous metal flow.

For a better comprehension of the variation of dead
zone size, the data from the theory and physical mod-
elling experiments have been compared in Table 1.
The dead zone length at different angular directions
has been obtained for all sections. The analytical re-
sults are in good agreement with those given by the
physical modelling experiments in terms of magnitude
and the trend.

Apart from giving a more realistic deforming re-
gion and DMZ size and reducing upper bound value,
the proposed formulation embraces some other im-
provements as well. To get a clearer picture of the ca-
pability of the method, the effect of profile complex-
ity and the reduction of area on the relative extrusion
pressure have been investigated in Figs. 6 and 7. The
frictional conditions used in the simulation were the
same as in the analytical study for the sake of compar-
ison. As depicted in Figs. 6(a) and (b), the extrusion
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Table 1 Variation of Dead Zone length at different angular directions

Section type Direction # Analytical
DMZ length

Physical modelling
DMZ length

Difference (%)

1 11.08 10.5 5.5

2 9.29 8.5 9.3

3 13.47 12.5 7.8

4 9.35 9 3.9

5 10.14 9.5 6.7

6 10.41 9 15.7

7 11.45 10 14.5

8 9.69 8.5 14

9 12.22 11.5 6.3

10 12.45 12.0 3.7

11 15.53 12.5 24.2

12 10.60 9.5 11.6

13 10.67 9.5 12.3

14 9.79 9 8.8

15 13.95 13.5 3.3

pressure increases at higher levels of complexity; and

for each level, the authors’ method gives lower upper

bounds and also closer agreements with FEM results.

However, for more complex sections the capability of

the method is more apparent. This is because variation

of l-value intensifies for the complicated profiles and

this strongly affects the geometry of DMZ and the de-

forming region. Hence, the solution based on flat en-

try surface of deforming region predicts upper bound

values for the complex sections which are more inac-

curate. It can be observed from Figs. 7(a) and (b) that

similar results have been obtained varying the area re-

duction. In fact, the current method has an advantage

at lower reductions at which the variation of l-value

noticeably increases.

7 Conclusions

A new upper bound solution has been developed for

three-dimensional extrusion of shaped sections from a

circular billet. It was shown that the DMZ size is under

the influence of the shape complexity. A more realistic

definition of the deforming region was proposed based

on the variation of DMZ length. The effect of profile

complexity and the reduction of area on the relative ex-

trusion pressure were investigated and the capability of

the method was shown for the cases with considerable

variation of DMZ. It is concluded that the current an-

alytical method can predict the process behavior with

various levels of complexity.
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Fig. 6 Effect of complexity level on the relative extrusion pressure (m = 1) for: (a) rectangular section and (b) symmetrical L-shaped
section

Fig. 7 Effect of area reduction on the relative extrusion pressure (m = 1) for: (a) rectangular section and (b) symmetrical L-shaped
section
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