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Abstract This paper is motivated by the lack of stud-
ies in the technical literature concerning to the three-
dimensional vibration analysis of bi-directional FG
rectangular plates resting on two-parameter elastic
foundations. The formulations are based on the three-
dimensional elasticity theory. The proposed rectangu-
lar plates have two opposite edges simply supported,
while all possible combinations of free, simply sup-
ported and clamped boundary conditions are applied
to the other two edges. This paper presents a novel
2-D six-parameter power-law distribution for ceramic
volume fraction of 2-D FGM that gives designers a
powerful tool for flexible designing of structures under
multi-functional requirements. Various material pro-
files along the thickness and in the in-plane directions
are illustrated using the 2-D power-law distribution.
The effective material properties at a point are de-
termined in terms of the local volume fractions and
the material properties by the Mori-Tanaka scheme.
The 2-D differential quadrature method as an efficient

V. Tahouneh (�)
Department of Mechanical Engineering, Shahre-Rey
Branch, Islamic Azad University, Tehran, Iran
e-mail: vahid.th1982@gmail.com

V. Tahouneh
e-mail: v.tahouneh@iausr.ac.ir

M.H. Naei
Department of Mechanical Engineering, Tehran University,
Tehran, Iran
e-mail: mhnaei@ut.ac.ir

and accurate numerical tool is used to discretize the
governing equations and to implement the boundary
conditions. The convergence of the method is demon-
strated and to validate the results, comparisons are
made between the present results and results reported
by well-known references for special cases treated be-
fore, have confirmed accuracy and efficiency of the
present approach. Some new results for natural fre-
quencies of the plates are prepared, which include the
effects of elastic coefficients of foundation, boundary
conditions, material and geometrical parameters. The
interesting results indicate that a graded ceramic vol-
ume fraction in two directions has a higher capability
to reduce the natural frequency than conventional 1-D
FGM.

Keywords Free vibration · 2-D six-parameter
power-law distribution · Multi-directional
functionally graded materials · Rectangular plates ·
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1 Introduction

Functionally graded materials (FGMs) belong to a
new generation of advanced composite materials and
they were first introduced for fabricating thermal bar-
rier systems [1]. The function of thermal barriers
is achieved by tailoring the material properties in a
special manner such that the macroscopic properties,
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i.e. heat conductivity, elastic modulus, mass density,
etc. vary continuously and smoothly in the domain.
More details about FGMs can be referred to refer-
ences [2, 3]. Owing to the superior properties against
the conventional composite laminates, FGMs have
found increasing applications in modern engineering
designs, such as aircraft fuselage, rocking-motor cas-
ing, packaging materials in microelectronic industry,
human implants, and so on. At the same time, me-
chanical models and mathematical methods for pre-
dicting the mechanical and thermal behavior of uni-
directional FGMs have experienced a parallel devel-
opment during the past decades [4–7]. However, as
demonstrated by Steinberg [8], the fuselage of a space-
craft undergoes an extremely high temperature envi-
ronment with extreme temperature gradient along both
its surface and thickness directions when the plane
is cruising at a transonic speed leaving and entering
the atmosphere. In such circumstances, the conven-
tional thickness-wise unidirectional FGMs most prob-
ably fail to resist multi-directional severe variations in
temperature. Hence, the practical demand is undoubt-
edly great to tailor novel FGMs with macro-properties
graded in two directions (2-D FGMs) or even in three
directions (3-D FGMs) to withstand more complex
temperature field.

Plates resting on elastic foundations have found
considerable applications in structural engineering
problems. Reinforced-concrete pavements of high-
ways, airport runways, foundation of storage tanks,
swimming pools, and deep walls together with foun-
dation slabs of buildings are well-known direct appli-
cations of these kinds of plates. The underlying lay-
ers are modeled by a Winkler-type elastic foundation.
The most serious deficiency of the Winkler foundation
model is to have no interaction between the springs. In
other words, the springs in this model are assumed to
be independent and unconnected.

The Winkler foundation model is fairly improved
by adopting the Pasternak foundation model, a two-
parameter model, in which the shear stiffness of the
foundation is considered.

A closed-form solution for the vibration frequen-
cies of simply supported Mindlin plates on Pasternak
foundations and subjected to biaxial initial stresses
was presented by Xiang et al. [9]. The buckling load of
Mindlin plates on Pasternak foundations was obtained
in terms of the thin plate solution. Based on first-order
shear deformation plate theory, the buckling and vibra-

tion analysis of moderately thick laminates on Paster-
nak foundations were presented by Xiang et al. [10].
The effects of foundation parameters, transverse shear
deformation, and rotary inertia and the number of lay-
ers on the buckling and vibration of cross-ply lami-
nates were examined. Wang et al. [11] presented rela-
tionships between the buckling loads of simply sup-
ported plates on a Pasternak foundation determined
by classical Kirchhoff plate theory, Reissner–Mindlin
plate theory, and Reddy plate theory. The vibration of
polar orthotropic circular plates on an elastic founda-
tion has been investigated by Gupta et al. [12]. The
Mindlin shear deformable plate theory was employed
and the Chebyshev collocation method was applied
to obtain the frequency parameters for the circular
plates. Ju et al. [13] developed a finite element model
to study the vibration of Mindlin plates with multi-
ple stepped variations in thickness and resting on non-
homogeneous elastic foundations. Gupta et al. [14, 15]
studied the effect of elastic foundation on axisymmet-
ric vibrations of polar orthotropic circular plates of
variable thickness by taking approximating polynomi-
als in Rayleigh–Ritz method. Laura and Gutierrez [16]
analyzed the free vibration of a solid circular plate of
linearly varying thickness attached to Winkler foun-
dation using the Ritz method. Matsunaga [17] ana-
lyzed the natural frequencies and buckling stresses of
FG plates using a higher order shear deformation the-
ory which are based on the series expansion of the
displacement components. Zhou et al. [18] used Ritz
method to analyze the free-vibration characteristics
of rectangular thick plates resting on elastic founda-
tions. Matsunaga [19] investigated a two-dimensional,
higher-order theory for analyzing the thick simply
supported rectangular plates resting on elastic foun-
dations. Yas and Sobhani [20] studied free vibra-
tion characteristics of rectangular continuous grad-
ing fiber reinforced (CGFR) plates resting on elas-
tic foundations using DQM. Yas and Tahouneh [21]
investigated the free vibration analysis of thick FG
annular plates on elastic foundations via differential
quadrature method based on the three-dimensional
elasticity theory and Tahouneh and Yas [22] investi-
gated the free vibration analysis of thick FG annu-
lar sector plates on Pasternak elastic foundations us-
ing DQM. Recently, Tahouneh et al. [23] studied free
vibration characteristics of annular continuous grad-
ing fiber reinforced (CGFR) plates resting on elastic
foundations using DQM and More recently, Tahouneh
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and Yas [24] used DQM to study 3-D free vibration
of multi-directional functionally graded annular sec-
tor plates under various boundary conditions. Liew
et al. [25] employed the differential quadrature method
for studying the Mindlin’s plate on Winkler founda-
tion. Moreover, Zhou et al. [26] described an excel-
lent investigation of the 3-D free vibration of thick cir-
cular plates resting on Pasternak foundation by using
the Chebyshev–Ritz method. Yang and Shen [27] used
the classical plate theory to study free and forced vi-
bration of functionally graded rectangular thin plates
subjected to initial in plane stresses and rested on
elastic foundations. Cheng and Kitipornchai [28] pro-
posed a membrane analogy to derive an exact explicit
eigenvalues for vibration and buckling of simply sup-
ported FG plates resting on elastic foundations using
the first-order shear deformation theory (FSDT). Ba-
tra and Jin [29] used the FSDT coupled with the finite
element method (FEM) to study free vibrations of a
functionally graded (FG) anisotropic rectangular plate.
Cheng and Batra [30] used Reddy’s third-order plate
theory to study steady state vibrations and buckling
of a simply supported functionally gradient isotropic
polygonal plate resting on a Pasternak elastic foun-
dation and subjected to uniform in-plane hydrostatic
loads. Malekzadeh [31] studied free vibration analy-
ses of functionally graded plates on elastic foundations
based on the three-dimensional elasticity.

In the above-mentioned papers, the material prop-
erties are assumed having a smooth variation usually
in one direction. A conventional FGM may also not be
so effective in some design problems since all outer
surfaces of the body will have the same composition
distribution. So, it is necessary to develop appropri-
ate methods to investigate the mechanical responses
of multi-directional functionally graded structures.

In structural mechanics, one of the most popu-
lar semi-analytical methods is differential quadrature
method (DQM) [32], remarkable success of which has
been demonstrated by many researchers in vibration
analysis of plates, shells, and beams. The differential
quadrature method (DQM) is found to be a simple
and efficient numerical technique for structural anal-
ysis [33, 34]. Better convergence behavior is observed
by DQM compared with its peer numerical competent
techniques viz. the finite element method, the finite
difference method, the boundary element method and
the meshless technique. The mathematical fundamen-
tal and recent developments of differential quadrature

method as well as its major applications in engineering
are discussed in detail in book by Shu [35].

This paper is motivated by the lack of studies
in the technical literature concerning to the three-
dimensional vibration analysis of bi-directional FG
rectangular plates resting on elastic foundations. To
the authors’ best knowledge, research on the vibra-
tion of thick bi-directional FG rectangular plates on
a two-parameter elastic foundation based on the three-
dimensional theory of elasticity has not been seen until
now. In this study, for the first time a graded rectan-
gular plate resting on an elastic foundation with 2-D
power-law distribution of the volume fraction of the
constituents along the thickness and in the in-plane di-
rections is considered. The Mori–Tanaka scheme as an
accurate micromechanics model is used for estimating
the homogenized material properties. In the present
paper, the differential quadrature method is employed
to develop a semi-analytical solution for free vibra-
tion analyses of two-directional functionally graded
rectangular plates. Simultaneous variations of the ma-
terial properties through the thickness and in the in-
plane directions are described by a general function.
A sensitivity analysis is performed, and the natural
frequencies are calculated for different sets of bound-
ary conditions and different combinations of the ge-
ometric, material, and foundation parameters. There-
fore, very complex combinations of the material prop-
erties, boundary conditions, and foundation stiffness
are considered in the present semi-analytical solution
approach.

2 Problem formulation

Consider a 2-D FGM rectangular plate with length a,
width b, and thickness h which is made from a mixture
of ceramics and metals as depicted in Fig. 1. The plate
is supported by an elastic foundation with Winkler’s
(normal) and Pasternak’s (shear) coefficients. The de-
formations defined with reference to a Cartesian coor-
dinate system (x, y, z) are u, v and w in the x, y and z

directions, respectively.

2.1 Two-directional six-parameter power-law
distribution

In this work, it is proposed that the volume fraction of
the ceramic phase follows a 2-D six-parameter power-
law distribution:
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Fig. 1 The sketch of a rectangular plate functionally graded in both thickness-wise and in-plane domains resting on a two-parameter
elastic foundation and setup of the coordinate system

Fig. 2 Variations of the classical volume fraction profile along
the y- and z-axes of the rectangular plate (γy = γz = 4,
αy = αz = 0)
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where γy and γz are the volume fractions index along
y- and z-axes, respectively. The parameters αy , βy and
αz, βz govern the material variation profile along the
y- and z-axes, respectively. The volume fractions Va

and Vb , which have values that range from 0 to 1, de-
note the ceramic volume fractions of the two differ-
ent isotropic materials. For example, with assumption
Vb = 1 and Va = 0.3, some material profiles along the
y − (μy = y/b) and z − (μz = z/h) directions are
illustrated in Figs. 2–4. As can be seen from Fig. 2,
the classical volume fraction profile along the thick-
ness and width of the plate is presented as a special
case of the 2-D power-law distribution (1) by setting
γy = γz = 4, and αy = αz = 0. With another choice of

Fig. 3 Variations of the volume fraction profile along the y- and
z-axes of the rectangular plate (γy = γz = 3, βy = 2, αy = 1,
αz = 0)

the parameters αy , βy , αz and βz, it is possible to ob-
tain volume fraction profiles along the thickness and
width of the plate as shown in Fig. 3. This figure shows
a classical profile versus μz and a symmetric pro-
file versus μy . Figure 4 illustrates symmetric profiles
along the thickness and width of the plate obtained by
setting αy = αz = 1 and βy = βz = 2. The effective
material properties of the isotropic 2-D FGMs are de-
termined in terms of the local volume fractions and
material properties of the two isotropic phases by the
Mori–Tanaka scheme. The Mori–Tanaka scheme [36,
37] for estimating the effective moduli is applicable to
regions of the graded microstructure that have a well-
defined continuous matrix and a discontinuous partic-
ulate phase. It takes into account the interaction of the
elastic fields among neighboring inclusions. It is as-
sumed that the matrix phase, denoted by the subscript
m, is reinforced by spherical particles of a particulate
phase, denoted by the subscript c. In this notation, Km
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Fig. 4 Variations of the symmetric volume fraction profiles
along the y- and z-axes of the rectangular plate (γy = γz = 3,
βy = βz = 2, αy = αz = 1)

and Gm are the bulk modulus and the shear modulus,
respectively, and Vm is the volume fraction of the ma-
trix phase. Kc , Gc , and Vc are the corresponding ma-
terial properties and the volume fraction of the partic-
ulate phase. Note that Vm +Vc = 1, that the Lamé con-
stant λ is related to the bulk and the shear moduli by
λ = K − 2G/3, and that the stress–temperature mod-
ulus is related to the coefficient of thermal expansion
by β = (3λ + 2G)α = 3Kα. The following estimates
for the effective local bulk modulusKand shear modu-
lus G are useful for a random distribution of isotropic
particles in an isotropic matrix:

K − Km

Kc − Km

= Vc

1 + (1 − Vc)(Kc − Km)/(Km + (4/3)Km)
(2)

G − Gm

Gc − Gm

= Vc

1 + (1 − Vc)(Gc − Gm)/(Gm + fm)
(3)

where fm = Gm(9Km +8Gm)/6(Km +2Gm). The ef-
fective values of Young’s modulus, E, and Poisson’s
ratio, υ , are found from:

E = 9KG

3K + G
, υ = 3K − 2G

2(3K + G)
(4)

we choose a metal/ceramic rectangular plate with the
metal (Al) taken as the matrix phase and the ceramic
(SiC) taken as the particulate phase. The material
properties of aluminum and silicon carbide are listed
in Table 1 [38, 39].

Table 1 Material properties of aluminum and silicon carbide

Young’s
modulus,
E (GPa)

Poisson’s
ratio, υ

Mass density,
ρ (kg/m3)

Al 70 0.30 2707

Silicon carbide
(SiC)

410 0.170 3100

2.2 Governing equations

Using the three-dimensional constitutive relations and
the strain-displacement relations, the equations of mo-
tion in terms of displacement components for a linear
elastic 2-D FG plate with infinitesimal deformations
can be written as
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Equations (5) and (6) represent the in-plane equations
of motion along the x- and y-axes, respectively; and
Eq. (7) is the transverse or out-of-plane equation of
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motion. The related boundary conditions at z = −h/2
and h/2 are as follows: at z = −h/2:

σzx = 0,

σzy = 0, σzz = Kww − Kg

(
∂2w

∂x2
+ ∂2w

∂y2

) (8)

at z = h/2:

σzx = 0,

σzy = 0,

σzz = 0

(9)

where σij are the components of stress tensor; Kw

and Kg are Winkler and shearing layer elastic coeffi-
cients of the foundation. The stress components are re-
lated to the displacement components using the three-
dimensional constitutive relations as
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different types of classical boundary conditions at
edges y = −b/2 and b/2 of the plate can be stated
as

– Simply supported (S):

σyy = 0, w = 0, u = 0; (11)

– Clamped (C):

u = 0, v = 0, w = 0; (12)

– Free (F ):

σyy = 0, σxy = 0, σyz = 0 (13)

3 Solution procedure

Here, plates with two opposite edges x = −a/2 and
a/2 simply supported and arbitrary conditions at edges

y = −b/2 and b/2 are considered. For free vibra-
tion analysis, by adopting the following form for the
displacement components the boundary conditions at
edges x = −a/2 and a/2 are satisfied,

u(x, y, z, t) = Um(y, z, t) cos
(
mπ(x + a/2)/a

)
eiωt ,

v(x, y, z, t) = Vm(y, z, t) sin
(
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)
eiωt ,
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(
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)
eiωt

(14)

where m is the wave number along the x-direction, ω

is the natural frequency and i(= √−1) is the imag-
inary number. Substituting for displacement compo-
nents from Eq. (14) into Eqs. (5)–(7), one gets Eq. (5):
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Equation (6):
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The geometrical and natural boundary conditions
stated in Eqs. (8) and (9) can also be simplified, how-
ever, for brevity purpose they are not shown here. It is
necessary to develop appropriate methods to investi-
gate the mechanical responses of 2-D FGM structures.
But, due to the complexity of the problem caused
by the two-directional inhomogeneity, it is difficult to
obtain the exact solution. In this paper, the differen-
tial quadrature method (DQM) approach is used to
solve the governing equations of 2-D FGM rectan-
gular plates. One can compare DQM solution proce-
dure with the other two widely used traditional meth-
ods for plate analysis, i.e., Rayleigh-Ritz method and
FEM. The main difference between the DQM and the
other methods is how the governing equations are dis-
cretized. In DQM the governing equations and bound-
ary conditions are directly discretized, and thus ele-
ments of stiffness and mass matrices are evaluated di-
rectly. But in Rayleigh-Ritz and FEMs, the weak form
of the governing equations should be developed and
the boundary conditions are satisfied in the weak form.
Generally by doing so larger number of integrals with
increasing amount of differentiation should be done to
arrive at the element matrices. Also, the number of de-
grees of freedom will be increased for an acceptable
accuracy. The basic idea of the DQM is the deriva-
tive of a function, with respect to a space variable at
a given sampling point, is approximated as a weighted
linear sum of the sampling points in the domain of that
variable. In order to illustrate the DQ approximation,
consider a functionf (ξ, η)defined on a rectangular do-
main 0 ≤ ξ ≤ a and 0 ≤ η ≤ b. Let in the given do-
main, the function values be known or desired on a
grid of sampling points. According to DQM method,
the r th derivative of the function f (ξ, η) can be ap-
proximated as

∂rf (ξ, η)

∂ξ r

∣∣∣∣(ξ, η) = (ξi, ηj ) =
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where Nξ represents the total number of nodes along
the ξ -direction. From this Equation one can deduce
that the important components of DQM approxima-
tions are the weighting coefficients (Aξ(r)

ij ) and the
choice of sampling points. In order to determine the

weighting coefficients a set of test functions should
be used in Eq. (18). The weighting coefficients for
the first-order derivatives in ξ -direction are thus de-
termined as [33]
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The weighting coefficients of the second-order deriva-
tive can be obtained in the matrix form [33]:[
B

ξ
ij

] = [
A

ξ
ij

][
A

ξ
ij

] = [
A

ξ
ij

]2 (21)

In a similar manner, the weighting coefficients for the
η-direction can be obtained.

The natural and simplest choice of the grid points is
equally spaced points in the direction of the coordinate
axes of computational domain. It was demonstrated
that non-uniform grid points gives a better result with
the same number of equally spaced grid points [33]. It
is shown [40] that one of the best options for obtain-
ing grid points is Chebyshev–Gauss–Lobatto quadra-
ture points:
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where Nξ and Nη are the total number of nodes along
the ξ - and η-directions, respectively.

At this stage, the DQ method can be applied to
discretize the equations of motion (15)–(17) and the
boundary conditions. As a result, at each domain
grid point (yj , zk) with j = 2, . . . ,Ny − 1 and k =
2, . . . ,Nz − 1, the discretized equations take the fol-
lowing forms

Equation (15):

−(c11)jk

(
mπ

a

)2

Umjk + (c12)jk

(
mπ

a

) Ny∑
n=1

A
y
jnVmnk

+ (c13)jk

(
mπ

a

) Nz∑
n=1

Az
knWmjn +

(
∂c66

∂y

)
jk
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×
(

mπ

a
Vmjk +

Ny∑
n=1

A
y
jnUmnk

)

+ (c66)jk

(
mπ

a

Ny∑
n=1

A
y
jnVmnk +

Ny∑
n=1

B
y
jnUmnk

)

+
(

∂c55

∂z

)
jk

(
mπ

a
Wmjk +

Nz∑
n=1

Az
knUmjn

)

+ (c55)jk

(
mπ

a

Nz∑
n=1

Az
knWmjn +

Nz∑
n=1

Bz
knUmjn

)

= −ρjkω
2Umjk (23)

Equation (16):

(c66)jk

(
−

(
mπ

a

)2

Vmjk +
(−mπ

a

) Ny∑
n=1

A
y
jnUmnk

)

+
(

∂c12

∂y

)
jk

(−mπ

a

)
Umjk

+ (c12)jk

((−mπ

a

) Ny∑
n=1

A
y
jnUmnk

)

+
(

∂c22

∂y

)
jk

( Ny∑
n=1

A
y
jnVmnk

)

+ (c22)jk

Ny∑
n=1

B
y
jnVmnk

+
(

∂c23

∂y

)
jk

(
Nz∑
n=1

Az
knWmjn

)

+ (c23)jk

( Ny∑
n=1

Nz∑
r=1

Az
krA

y
jnWmnr

)

+
(

∂c44

∂z

)
jk

(
Nz∑
n=1

Az
knVmjn +

Ny∑
n=1

A
y
jnWmnk

)

+ (c44)jk

(
Nz∑
n=1

Bz
knVmjn

+
Ny∑
n=1

Nz∑
r=1

Az
krA

y
jnWmnr

)

= −ρjkω
2Vmjk (24)

Equation (17):

(c55)jk

(
−

(
mπ

a

)2

Wmjk − mπ

a

Nz∑
n=1

Az
knUmjn

)

+
(

∂c44

∂y

)
jk

(
Nz∑
n=1

Az
knVmjn +

Ny∑
n=1

A
y
jnWmnk

)

+ (c44)jk

( Ny∑
n=1

Nz∑
r=1

Az
krA

y
jnVmnr

+
Ny∑
n=1

B
y
jnWmnk

)
+

(
∂c13

∂z

)
jk

(
−mπ

a
Umjk

)

+ (c13)jk

(
−mπ

a

Nz∑
n=1

Az
knUmjn

)

+
(

∂c23

∂z

)
jk

Ny∑
n=1

A
y
jnVmnk

+ (c23)jk

Ny∑
n=1

Nz∑
r=1

Az
krA

y
jnVmnr

+
(

∂c33

∂z

)
jk

Nz∑
n=1

Az
knWmjn

+ (c33)jk

Nz∑
n=1

Bz
knWmjn

= −ρjkω
2Wmjk (25)

where A
y
ij , Az

ij and B
y
ij , Bz

ij are the first and sec-
ond order DQ weighting coefficients in the y- and
z-directions, respectively. In a similar manner the
boundary conditions can be discretized. For this pur-
pose, using Eq. (14) and the DQ discretization rules
for spatial derivatives, the boundary conditions at
z = −h/2 and h/2 become, at z = −h/2

(
mπ

a

)
Wmjk +

Nz∑
n=1

Az
knUmjn = 0,

Ny∑
n=1

A
y
jnWmnk +

Nz∑
n=1

Az
knVmjn = 0,

(c13)jk

(−mπ

a

)
Umjk + (c23)jk

Ny∑
n=1

A
y
jnVmnk (26)

+ (c33)jk

Nz∑
n=1

Az
knWmjn
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−kwWmjk + kg

(
−Wmjk

(
mπ

a

)2

+
Ny∑
n=1

B
y
jnWmnk

)

= 0

at z = h/2

(
mπ

a

)
Wmjk +

Nz∑
n=1

Az
knUmjn = 0,

Ny∑
n=1

A
y
jnWmnk +

Nz∑
n=1

Az
knVmjn = 0, (27)

(c13)jk

(−mπ

a

)
Umjk + (c23)jk

Ny∑
n=1

A
y
jnVmnk

+ (c33)jk

Nz∑
n=1

Az
knWmjn = 0

where k = 1 at z = −h/2 and k = Nz at z = h/2, and
j = 1,2, . . . ,Ny .

The boundary conditions at y = −b/2 and b/2 be-
come,

– Simply supported (S):

Umjk = 0, Wmjk = 0,

−(c12)jk

(
mπ

a

)
Umjk + (c22)jk

Ny∑
n=1

A
y
jnVmnk

+ (c23)jk

Nz∑
n=1

Az
knWmjn = 0

(28)

– Clamped (C):

Umjk = 0, Vmjk = 0, Wmjk = 0 (29)

– Free (F ):

(c12)jk

(−mπ

a

)
Umjk + (c22)jk

Ny∑
n=1

A
y
jnVmnk

+ (c23)jk

Nz∑
n=1

Az
knWmjn = 0,

(
mπ

a

)
Vmjk +

Ny∑
n=1

A
y
jnUmnk = 0,

Nz∑
n=1

Az
knVmjn +

Ny∑
n=1

A
y
jnWmnk = 0

(30)

In the above equations k = 2, . . . ,Nz − 1; also j = 1
at y = −b/2 and j = Ny at y = b/2.

In order to carry out the eigenvalue analysis, the
domain and boundary nodal displacements should be
separated. In vector forms, they are denoted as {d}
and {b}, respectively. Based on this definition, the dis-
cretized form of the equations of motion and the re-
lated boundary conditions can be represented in the
matrix form as:

Equations of motion (23)–(25):

[[Kdb][Kdd ]]
{ {b}

{d}
}

− ω2[M]{d} = {0} (31)

Boundary conditions (26), (27) and (28)–(30):

[Kbd ]{d} + [Kbb]{b} = {0} (32)

Eliminating the boundary degrees of freedom in
Eq. (31) using Eq. (32), this equation becomes,

[K] − ω2[M]{d} = {0} (33)

where [K] = [Kdd ] − [Kdb][Kbb]−1[Kbd ]. The above
eigenvalue system of equations can be solved to find
the natural frequencies and mode shapes of the plate.

4 Numerical results and discussion

Due to lack of appropriate results for free vibration of
2-D FG rectangular plates for direct comparison, val-
idation of the presented formulation is conducted in
two ways. Firstly, the results are compared with those
of 1-D conventional functionally graded rectangular
plates, and then, the results of the presented formula-
tions are given in the form of convergence studies with
respect to Nz and Ny , the number of discrete points
distributed along the thickness and width of the plate,
respectively. The boundary conditions of the plate are
specified by the letter symbols, for example, S-C-S-F
denotes a plate with edges x = −a/2 and a/2 simply
supported (S), edge y = −b/2 clamped (C) and edge
y = b/2 free (F ).

As a first example, the properties of the plate are
assumed to vary through the thickness of the plate with
a desired variation of the volume fractions of the two
materials in between the two surfaces. The modulus of
elasticity E and mass density ρ are assumed to be in
terms of a simple power law distribution and Poisson’s
ratio υ is assumed to be constant as follows:
E(z) = EM + ECMVf , υ(z) = υ0,

ρ(z) = ρM + ρCMVf ,

ECM = EC − EM, ρCM = ρC − ρM,

Vf = (0.5 + z/h)p

(34)
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Table 2 Convergence behavior and accuracy of the first seven non-dimensional natural frequencies (� = ωh
√

ρC/EC ) of a simply
supported FG plate against the number of DQ grid points (b/h = 2)

P Nz Ny �1 �2 �3 �4 �5 �6 �7

0 7 7 0.5569 0.9395 0.9735 1.3764 1.5072 1.6064 1.7384

9 0.5570 0.9396 0.9741 1.3771 1.5083 1.6071 1.7401

13 0.5570 0.9396 0.9740 1.3774 1.5088 1.6076 1.7407
9 7 0.5573 0.9398 0.9735 1.3771 1.5087 1.6074 1.7403

9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6079 1.7406

13 0.5572 0.9400 0.9741 1.3778 1.5096 1.6086 1.7405
13 7 0.5571 0.9401 0.9735 1.3779 1.5094 1.6083 1.7411

9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7405

13 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406

Ref. [17] 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406

Ref. [20] 0.557243 0.940041 – – 1.508987 – 1.740602

0.5 7 7 0.4829 0.8222 0.8700 1.2250 1.3332 1.4364 1.5401

9 0.4828 0.8229 0.8707 1.2258 1.3337 1.4367 1.5429

13 0.4830 0.8224 0.8706 1.2254 1.3338 1.4370 1.5424
9 7 0.4833 0.8225 0.8701 1.2251 1.3335 1.4365 1.5402

9 0.4835 0.8240 0.8708 1.2257 1.3340 1.4370 1.5431

13 0.4836 0.8233 0.8707 1.2258 1.3340 1.4369 1.5426
13 7 0.4836 0.8227 0.8701 1.2251 1.3334 1.4366 1.5402

9 0.4835 0.8231 0.8708 1.2259 1.3338 1.4370 1.5431

13 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425

Ref. [17] 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425

Ref. [20] 0.482849 0.822358 – – 1.332605 – 1.541085

1 7 7 0.4367 0.7476 0.7997 1.1158 1.2154 1.3085 1.4059

9 0.4374 0.7477 0.8001 1.1165 1.2159 1.3090 1.4075

13 0.4373 0.7478 0.8005 1.1163 1.2162 1.3088 1.4077
9 7 0.4368 0.7477 0.7998 1.1159 1.2157 1.3088 1.4068

9 0.4374 0.7477 0.8003 1.1165 1.2161 1.3090 1.4076

13 0.4374 0.7478 0.8006 1.1165 1.2162 1.3090 1.4078
13 7 0.4368 0.7477 0.7999 1.1159 1.2158 1.3088 1.4070

9 0.4375 0.7478 0.8003 1.1165 1.2162 1.3091 1.4076

13 0.4375 0.7478 0.8005 1.1165 1.2163 1.3091 1.4077

Ref. [17] 0.4375 0.7477 0.8005 1.1166 1.2163 1.3091 1.4078

Ref. [20] 0.437396 0.747514 – – 1.216035 – 1.407459

where −h/2 ≤ z ≤ h/2 and p is the power law index
which takes values greater than or equal to zero. Sub-
scripts M and C refer to the metal and ceramic con-
stituents which denote the material properties of the
bottom and top surface of the plate, respectively. The
mechanical properties are as follows:

– Metal (Aluminum, Al):

EM = 70 ∗ 109 N/m2, υ = 0.3,

ρM = 2702 kg/m3.

– Ceramic (Alumina, Al2O3):

EC = 380 ∗ 109 N/m2, υ = 0.3,

ρC = 3800 kg/m3.

In Table 2, the first seven non-dimensional natural fre-
quency parameters of simply supported thick FG plate
are compared with those of Matsunaga [17] and Yas
and Sobhani [20].

As the second example, in order to validate the re-
sults for plates on an elastic foundation, the results for
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Table 2 (Continued)

P Nz Ny �1 �2 �3 �4 �5 �6 �7

4 7 7 0.3565 0.5988 0.6249 0.8724 0.9589 1.0000 1.1029

9 0.3577 0.5995 0.6355 0.8729 0.9589 1.0007 1.1038

13 0.3577 0.5996 0.6349 0.8728 0.9589 1.0003 1.1030

9 7 0.3569 0.5989 0.6250 0.8726 0.9589 1.0001 1.1032

9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040

13 0.3578 0.5997 0.6351 0.8730 0.9589 1.0005 1.1032

13 7 0.3571 0.5991 0.6252 0.8727 0.9589 1.0001 1.1033

9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040

13 0.3579 0.5997 0.6352 0.8731 0.9589 1.0008 1.1040

Ref. [17] 0.3579 0.5997 0.6352 0.8731 0.9591 1.0008 1.1040

Ref. [20] 0.357758 0.599494 – – 0.958764 – 1.103674

10 7 7 0.3306 0.5454 0.5657 0.7866 0.8588 0.9043 0.9838

9 0.3311 0.5460 0.5662 0.7890 0.8588 0.9047 0.9841

13 0.3310 0.5459 0.5661 0.7881 0.8588 0.9050 0.9846

9 7 0.3308 0.5455 0.5659 0.7870 0.8588 0.9044 0.9840

9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9048 0.9842

13 0.3312 0.5460 0.5663 0.7883 0.8588 0.9051 0.9846

13 7 0.3309 0.5455 0.5660 0.7871 0.8588 0.9045 0.9840

9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9049 0.9844

13 0.3313 0.5461 0.5664 0.7884 0.8588 0.9051 0.9847

Ref. [17] 0.3313 0.5460 0.5664 0.7885 0.8588 0.9050 0.9847

Ref. [20] 0.331146 0.545833 – – 0.858445 – 0.984365

the first three natural frequency parameters of isotropic
thick plate with two different values of thickness-to-
length ratios and different values of Winkler elastic co-
efficient are presented in Table 3. They are compared
with those of Zhou et al. [18], Matsunaga [19] and Yas
and Sobhani [20]. In this example the non-dimensional
natural frequency, Winkler and shearing layer elastic
coefficients are as follows:

λ = ω
b2

π2

√
ρCh/DC, DC = ECh3/12

(
1 − υ2

C

)
,

kg = Kgb
2/DC, kw = Kwb4/DC (35)

According to the data presented in the above-mentioned
tables, excellent solution agreements can be observed
between the present method and those of the other
methods.

Based on the above studies, a numerical value of
Nz = Ny = 13 is used for the next studies.

After demonstrating the convergence and accuracy
of the method, parametric studies for 3-D vibration
analysis of bi-directional FG rectangular plates for

different types of ceramic volume fraction profiles
and various length to width ratio (a/b) and different
combinations of free, simply supported and clamped
boundary conditions at the edges, are computed. It
should be noted that, the 2-D FG rectangular plates
considered in this work are assumed to be composed
of aluminum and silicon carbide as shown in Table 1.
In the following, we have compared several different
ceramic volume fraction profiles of conventional 1-D
and 2-D FGMs with appropriate choice of the thick-
ness and width of the plate parameters of the 2-D
six-parameter power-law distribution, as shown in Ta-
ble 4. It should be noted that, for example, the nota-
tion Classical–Symmetric indicates that the 2-D FG
rectangular plate has classical and symmetric volume
fraction profiles through the thickness and width of the
plate directions, respectively. Similarly, the other nota-
tions Classical–Classical, Symmetric–Symmetric, etc.
have been used. Remember also Figs. 2, 3 and 4 ob-
tained by Eq. (1).
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Table 3 Comparison of the first three non-dimensional natural frequency parameters of a simply supported square isotropic plate on
the elastic foundation (kg = 10)

Kw Nz Ny b/h = 2 b/h = 5

λ11 λ12 λ13 λ11 λ12 λ13

0 7 7 1.6453 2.6906 3.8259 2.2325 4.4045 7.2429

9 1.6461 2.6855 3.8264 2.2332 4.4058 7.2434

13 1.6460 2.6848 3.8264 2.2330 4.4052 7.2433

9 7 1.6455 2.6905 3.8261 2.2329 4.4046 7.2431

9 1.6462 2.6857 3.8267 2.2334 4.4060 7.2436

13 1.6461 2.6850 3.8266 2.2333 4.4055 7.2435

13 7 1.6455 2.6907 3.8262 2.2330 4.4049 7.2432

9 1.6462 2.6857 3.8267 2.2334 4.4060 7.2436

13 1.6462 2.6851 3.8267 2.2334 4.4057 7.2436

Ref. [18] 1.6462 2.6851 3.8268 2.2334 4.4056 7.2436

Ref. [19] 1.6462 2.6851 3.8268 2.2334 4.4056 7.2436

Ref. [20] 1.646182 2.685124 3.826819 2.233409 4.405606 7.243589

10 7 7 1.6569 2.6870 3.8261 2.2532 4.415 7.2474

9 1.6575 2.6875 3.8280 2.2537 4.415 7.2484

13 1.6574 2.6875 3.8271 2.2536 4.415 7.2483

9 7 1.6572 2.6872 3.8262 2.2534 4.415 7.2481

9 1.6577 2.6878 3.8282 2.2539 4.415 7.2487

13 1.6576 2.6876 3.8273 2.2538 4.415 7.2485

13 7 1.6573 2.6873 3.8264 2.2535 4.415 7.2482

9 1.6577 2.6878 3.8282 2.2539 4.415 7.2487

13 1.6577 2.6878 3.8275 2.2539 4.415 7.2487

Ref. [18] 1.6577 2.6879 3.8274 2.2539 4.415 7.2487

Ref. [19] 1.6577 2.6879 3.8274 2.2539 4.415 7.2488

Ref. [20] 1.657742 2.687861 3.827391 2.253924 4.415035 7.248745

Table 4 Various ceramic volume fraction profiles, different parameters, and volume fraction indices of 2-D power-law distributions

Volume fraction profile The thickness volume
fraction index and parameters

The volume fraction index and
parameters along y-direction

Classical-Classical αz = 0 αy = 0

Symmetric-Symmetric αz = 1, βz = 2 αy = 1, βy = 2

Classical- Symmetric αz = 0 αy = 1, βy = 2

Classical through the thickness αz = 0 γy = 0

Symmetric through the thickness αz = 1, βz = 2 γy = 0

The non-dimensional natural frequency, Winkler
and shearing layer elastic coefficients are as follows:

� = ω
b2

π2

√
ρAlh/DAl, DAl = EAlh

3/12
(
1 − υ2

Al

)
,

kg = Kgb
2/DAL, kw = Kwb4/DAL (36)

where ρAl , EAl and υAl are mechanical properties of

aluminum.

The effect of the Winkler elastic coefficient on

the fundamental frequency parameters for different

boundary conditions is shown in Figs. 5, 6 and 7 and



Meccanica (2014) 49:91–109 103

Fig. 5 Variations of fundamental frequency parameters of
a S-C-S-C bi-directional FG rectangular plate resting on a
two-parameter elastic foundation with Winkler elastic co-
efficient for different volume fraction profiles (kg = 100,
h/b = 0.5, a/b = 1, γz = 2)

Fig. 6 Variations of fundamental frequency parameters of
a S-C-S-S bi-directional FG rectangular plate resting on a
two-parameter elastic foundation with Winkler elastic co-
efficient for different volume fraction profiles (kg = 100,
h/b = 0.5, a/b = 1, γz = 2)

Tables 5, 6 and 7. It is observed that the fundamental
frequency parameters converge with increasing Win-
kler elastic coefficient of the foundation. According
to this figures, the lowest frequency parameter is ob-
tained by using Classical-Classical volume fraction
profile. On the contrary, the 1-D FG rectangular plate
with symmetric volume fraction profile has the maxi-
mum value of the frequency parameter.

Fig. 7 Variations of fundamental frequency parameters of
a S-F-S-F bi-directional FG rectangular plate resting on a
two-parameter elastic foundation with Winkler elastic co-
efficient for different volume fraction profiles (kg = 100,
h/b = 0.5, a/b = 1, γz = 2)

The variations of fundamental frequency parame-
ters of 2-D FG rectangular plates resting on an elas-
tic foundation with length to width ratio (a/b) for dif-
ferent types of volume fraction profiles are depicted
in Figs. 8, 9 and 10 and Tables 8, 9 and 10. It can
also be inferred from these figures that the frequency
is greatly influenced in that fundamental frequency
parameter decreases steadily as length to width ratio
(a/b) becomes larger and remains almost unaltered for
the large values of length to width ratio. As can be seen
from Figs. 8, 9 and 10, for the all length to width ra-
tio, Classical-Classical volume fraction profile has the
lowest frequencies followed by Classical-Symmetric,
Classical, Symmetric-Symmetric and Symmetric pro-
files.

The effect of different types of ceramic volume
fraction profiles on the frequency parameters of S-
C-S-C bi-directional rectangular plates for different
values of circumferential wave number (m) is shown
in Fig. 11 and Table 11, According to this figure
and table, the lowest frequency parameter is obtained
by using Classical-Classical volume fractions profile.
On the contrary, the 1-D FG rectangular plate with
symmetric volume fraction profiles has the maximum
value of the frequency parameter. Therefore, a graded
ceramic volume fraction in two directions has high ca-
pabilities to reduce the frequency parameter than con-
ventional 1-D FGM. Moreover, in Fig. 11, the inter-
esting results show that, with increasing values of the



104 Meccanica (2014) 49:91–109

Table 5 The first non-dimensional natural frequency parameter of S-C-S-C square bi-directional FG rectangular plates resting on
elastic foundations (kg = 100, h/b = 0.5, γz = 2)

Kw Volume fraction profile

Symmetric Symmetric-Symmetric Classical Classical-Symmetric Classical-Classical

100 1.8428 1.6228 1.4828 1.2628 1.0228

101 1.8433 1.6244 1.4851 1.2631 1.0239

102 1.8691 1.6493 1.5096 1.2894 1.0496

103 2.0884 1.8684 1.7284 1.5084 1.2684

104 3.5540 3.3341 3.1942 2.9743 2.7341

105 3.6808 3.4608 3.3208 3.1008 2.8608

Table 6 The first non-dimensional natural frequency parameter of S-C-S-S square bi-directional FG rectangular plates resting on
elastic foundations (kg = 100, h/b = 0.5, γz = 2)

Kw Volume fraction profile

Symmetric Symmetric-Symmetric Classical Classical-Symmetric Classical-Classical

100 1.4924 1.3324 1.2444 1.0604 0.8004

101 1.4936 1.3336 1.2456 1.0616 0.8016

102 1.5232 1.3632 1.2752 1.0912 0.8312

103 1.7656 1.6056 1.5176 1.3336 1.0736

104 3.2983 3.1385 3.0544 2.8669 2.6063

105 3.5136 3.3536 3.1856 3.0016 2.7416

Table 7 The first non-dimensional natural frequency parameter of S-F-S-F square bi-directional FG rectangular plates resting on
elastic foundations (kg = 100, h/b = 0.5, γz = 2)

Kw Volume fraction profile

Symmetric Symmetric-Symmetric Classical Classical-Symmetric Classical-Classical

100 1.1881 1.0283 0.9401 0.7564 0.4963

101 1.1894 1.0287 0.9409 0.7568 0.4965

102 1.2125 1.0525 0.9641 0.7811 0.5233

103 1.4320 1.2727 1.1844 1.0022 0.7498

104 2.9922 2.8323 2.7447 2.5634 2.3830

105 3.2362 3.0769 2.9883 2.8046 2.5448

circumferential wave number (m), frequency parame-
ter of the Classical FG rectangular plate is close to that
of a Symmetric-Symmetric. Therefore, it can be con-
cluded that using 2-D six-parameter power-law distri-
bution leads to a more flexible design so that maxi-
mum or minimum value of natural frequency can be
obtained to a required manner.

The variations of fundamental frequency parame-
ters of 2-D FG rectangular plates with length to width
ratio (a/b), and the volume fraction index through the

thickness of the plates for S-C-S-C boundary condi-
tions are shown in Fig. 12 and Table 12, by consider-
ing (kw = kg = 100, h/b = 0.5, a/b = 1, αy = αz = 0,
γy = 2) for Classical-Classical 2-D FG plates. Con-
firming the effect of length to width ratio (a/b) on the
natural frequency already shown in the Figs. 8–10, it
is found that the frequency parameter decreases by in-
creasing the thickness volume fraction index. This be-
havior is also observed for other boundary conditions,
not shown here for brevity.
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Fig. 8 The effect of length to width ratio (a/b) of a S-C-S-C
bi-directional FG rectangular plate on the non-dimensional nat-
ural frequency (kw = kg = 100, h/b = 0.5, γz = 2)

Fig. 9 The effect of length to width ratio (a/b) of a S-C-S-S
bi-directional FG rectangular plate on the non-dimensional nat-
ural frequency (kw = kg = 100, h/b = 0.5, γz = 2)

Now we study the influence of various types of
the ceramic volume fraction profile on fundamental
natural frequency at various volume fraction indices
through the thickness direction (γz) of the rectangu-
lar plates (Fig. 13 and Table 13). The results show
that, for the all boundary conditions the frequency pa-
rameter decreases by increasing the thickness volume
fraction index, due to the fact that the silicon carbide
fraction decreases, and as we know silicon carbide
has a much higher Young’s modulus than aluminum.
It is also seen, that the thickness volume fraction in-
dex has less effect on the frequency parameter for the
Classical–Classical volume fraction profile.

Fig. 10 The effect of length to width ratio (a/b) of a S-F-S-F
bi-directional FG rectangular plate on the non-dimensional nat-
ural frequency (kw = kg = 100, h/b = 0.5, γz = 2)

5 Conclusion

In this research work, differential quadrature method
was employed to obtain a highly accurate semi-
analytical solution for free vibration of bi-directional
rectangular plates resting on a two-parameter elastic
foundation under various boundary conditions. The
study was carried out based on the three-dimensional,
linear and small strain elasticity theory. Material prop-
erties were assumed to vary not only through the thick-
ness but also in the in-plane directions following a
novel 2-D six-parameter power-law distribution. The
effective material properties at a point were deter-
mined in terms of the local volume fractions and mate-
rial properties by the Mori-Tanaka scheme. The effects
of different boundary conditions, various geometrical
parameters, different ceramic volume fraction profiles
along the thickness and in-plane directions and elastic
coefficients of foundation of bi-directional rectangu-
lar plates resting on a two-parameter elastic founda-
tion were investigated. Moreover, vibration behavior
of 2-D FG plates was compared with one-dimensional
conventional FG plates. From this study, some conclu-
sions can be made:

• The non-dimensional natural frequency parameters
converge with increasing Winkler elastic coefficient
of the foundation.

• The interesting results show that the lowest mag-
nitude frequency parameter is obtained by using a
Classical–Classical volume fraction profile. It can
be concluded that a graded ceramic volume fraction
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Table 8 The effect of length to width ratio (a/b) of a S-C-S-C bi-directional FG rectangular plate on the first non-dimensional natural
frequency (kw = kg = 100, h/b = 0.5, γz = 2)

a/b Volume fraction profile

Symmetric Symmetric-Symmetric Classical Classical-Symmetric Classical-Classical

1 1.8691 1.6493 1.5096 1.2894 1.0496

1.5 1.5813 1.4304 1.3498 1.1289 0.9360

2 1.3953 1.2502 1.1926 1.0060 0.8605

2.5 1.2674 1.1451 1.1052 0.9360 0.8081

3 1.1982 1.0701 1.0351 0.8837 0.7733

3.5 1.1638 1.0239 0.9884 0.8588 0.7484

4 1.1353 0.9928 0.9617 0.8372 0.7267

4.5 1.1301 0.9867 0.9551 0.8256 0.7193

5 1.1240 0.9812 0.9493 0.8140 0.7077

Table 9 The effect of length to width ratio (a/b) of a S-C-S-S bi-directional FG rectangular plate on the first non-dimensional natural
frequency (kw = kg = 100, h/b = 0.5, γz = 2)

a/b Volume fraction profile

Symmetric Symmetric-Symmetric Classical Classical-Symmetric Classical-Classical

1 1.5232 1.3632 1.2752 1.0912 0.8312

1.5 1.3893 1.2184 1.1502 0.9487 0.7479

2 1.2696 1.1205 1.0514 0.8675 0.6923

2.5 1.1626 1.0264 0.9786 0.8162 0.6581

3 1.0943 0.9658 0.9231 0.7692 0.6368

3.5 1.0609 0.9359 0.9017 0.7436 0.6154

4 1.0307 0.9231 0.8889 0.7179 0.6026

4.5 1.0213 0.9145 0.8803 0.7009 0.5940

5 1.0097 0.9003 0.8675 0.6838 0.5855

Table 10 The effect of length to width ratio (a/b) of a S-F-S-F bi-directional FG rectangular plate on the first non-dimensional natural
frequency (kw = kg = 100, h/b = 0.5, γz = 2)

a/b Volume fraction profile

Symmetric Symmetric-Symmetric Classical Classical-Symmetric Classical-Classical

1 1.2125 1.0525 0.9641 0.7811 0.5233

1.5 1.0092 0.9016 0.8027 0.6215 0.4539

2 0.8929 0.7624 0.7117 0.5304 0.3927

2.5 0.8236 0.6931 0.6460 0.4829 0.3524

3 0.7724 0.6528 0.6056 0.4462 0.3193

3.5 0.7466 0.6161 0.5762 0.4240 0.3043

4 0.7280 0.6011 0.5649 0.4163 0.2894

4.5 0.7058 0.5862 0.5535 0.4049 0.2781

5 0.6836 0.5712 0.5386 0.4009 0.2704
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Table 11 The variations of the frequency parameters (Ωm1) versus circumferential wave numbers (m) with different volume fraction
profiles for a S-C-S-C bi-directional FG rectangular plate resting on a two-parameter elastic foundation (kw = kg = 100, h/b = 0.5,
a/b = 1, γz = 2)

Volume fraction profile m (circumferential wave number)

1 2 3 4

Symmetric 1.8691 2.8811 4.6923 7.1821

Symmetric-Symmetric 1.6493 2.6373 4.0123 5.9638

Classical 1.5096 2.5156 3.8387 5.7540

Classical-Symmetric 1.2894 2.1678 3.3684 4.9889

Classical- Classical 1.0496 1.8181 2.6723 3.8563

Fig. 11 Variation of the frequency parameters versus circum-
ferential wave numbers (m) with different volume fraction pro-
files for a S-C-S-C bi-directional FG rectangular plates rest-
ing on a two-parameter elastic foundation (kw = kg = 100,
h/b = 0.5, a/b = 1, γz = 2)

in two directions has higher capabilities to reduce
the natural frequency than a conventional 1-D FGM.

• The results show that with increasing values of the
circumferential wave number (m), frequency pa-
rameter of the Classical FG rectangular plate is
close to that of a Symmetric-Symmetric.

• The results show that the fundamental natural fre-
quency decreases by increasing a/b ratio and then
approaches a constant value.

• It is also seen, that the thickness volume fraction
index exerts an insignificant influence on the fre-
quency parameter for the Classical–Classical vol-
ume fraction profile.

Based on the achieved results, using 2-D six-
parameter power-law distribution leads to a more flex-
ible design so that maximum or minimum value of

Fig. 12 Variation of fundamental frequency parameters of
a S-C-S-C bi-directional FG rectangular plate resting on a
two-parameter elastic foundation with a/b ratio and the volume
fraction index through thickness of the plates (kw = kg = 100,
h/b = 0.5, αy = αz = 0, γy = 2)

Fig. 13 Frequency variation against volume fraction index (γz)
for a bi-directional FG rectangular plate resting on a two-param-
eter elastic foundation. (kw = kg = 100, h/b = 0.5, a/b = 1,
αy = αz = 0, γy = 2)
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Table 12 The frequency parameters (Ω11) of a S-C-S-C bi-directional FG rectangular plate resting on a two-parameter elastic foun-
dation with a/b ratio and the volume fraction index through thickness of the plates (kw = kg = 100, h/b = 0.5, αy = αz = 0, γy = 2)

Volume
fraction
index (γz)

a/b

1 1.5 2 2.5 3 3.5 4 4.5 5

0 1.2837 1.1174 1.0039 0.9245 0.8676 0.8282 0.8063 0.7845 0.7713

2 1.0496 0.9360 0.8605 0.8081 0.7733 0.7484 0.7267 0.7193 0.7077

5 0.9551 0.8764 0.8107 0.7626 0.7276 0.7101 0.6969 0.6882 0.6751

Table 13 The frequency parameters (Ω11) of bi-directional FG
rectangular plates resting on a two-parameter elastic foundation
for different boundary conditions (kw = kg = 100, h/b = 0.5,
a/b = 1, αy = αz = 0, γy = 2)

Volume
fraction
index (γz)

Boundary conditions

S-C-S-C S-C-S-S S-F-S-F

0 1.2837 0.9793 0.6846

0.5 1.2027 0.9430 0.6522

1 1.1291 0.9034 0.6001

1.5 1.0739 0.8605 0.5448

2 1.0496 0.8312 0.5233

2.5 1.0140 0.8107 0.5094

3 0.9938 0.7940 0.5032

3.5 0.9836 0.7806 0.4970

4 0.9702 0.7704 0.4908

4.5 0.9600 0.7603 0.4878

5 0.9551 0.7534 0.4816

natural frequency can be obtained to a required man-
ner.
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