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Abstract In this paper the restricted three-body prob-
lem is generalized in the sense that the effects of
oblateness of the three participating bodies as well as
the small perturbations in the Coriolis and centrifu-
gal forces are considered. The existence of equilib-
rium points, their linear stability and the periodic or-
bits around these points are studied under these effects.
It is found that the positions of the collinear points and
y-coordinate of the triangular points are not affected
by the small perturbations in the Coriolis force. While
x-coordinate of the triangular points is neither affected
by the small perturbations in the Coriolis force nor the
oblateness of the third body. Furthermore, the critical
mass value and the elements of periodic orbits around
the equilibrium points such as the semi-major and the
semi-minor axes, the angular frequencies and corre-

This project was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under grant No.
(116/130/1432). The authors, therefore, acknowledge with
thanks DSR technical and financial support.

E.I. Abouelmagd
Mathematics Department, Faculty of Science and Arts,
King Abdulaziz University, Khulais, Saudi Arabia
e-mail: eabouelmagd@kau.edu.sa

E.I. Abouelmagd (�)
e-mail: eabouelmagd@gmail.com

H.M. Asiri · M.A. Sharaf
Astronomy Department, Faculty of Science,
King Abdulaziz University, Jeddah, Saudi Arabia

sponding periods may change by all the parameters
of oblateness as well as the small perturbations in the
Coriolis and centrifugal forces. This model could be
applicable to send satellite or place telescope in stable
regions in space.
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1 Introduction

In the last decades the restricted three-body problem
has been enhanced by a great number of researches.
Many of these researches deal with the effects of the
perturbed forces like the lack of sphericity, photograv-
itational force, Coriolis and centrifugal forces, varia-
tion of masses, the Pointing-Robertson and Yarkovsky
effects, the atmospheric drag and solar wind. The
Kirkwood gaps in the ring of the asteroid’s orbits ly-
ing between the orbits of Mars and Jupiter are exam-
ples of the perturbation produced by Jupiter on an as-
teroid. This motivates many researchers to study re-
stricted three-body problem under the effects of small
perturbations in Coriolis and centrifugal forces when
the three participating objects are oblate, etc.

The significance of the restricted problem in de-
scribing actual physical situations can be judged by
the results obtained when these are compared to ob-
servations. The most important, the utility might be
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prejudged by order of magnitude evaluations regard-
ing the masses and the distances of the participating
bodies. A classical example in space dynamics is the
sun-earth-moon system.

Some important contributions related to the libra-
tion points in the restricted three-body problem with
one or both primaries are oblate spheroids when the
equatorial plane is coincident with the plane of motion
are studied by Subbarao and Sharma [22], Sharma and
Subbarao [17] and Markellos et al. [14]. Abouelmagd
[3] also studied the effects of oblateness J2 and J4

for the more massive primary in the planar restricted
three-body problem on the locations of the triangular
points and their linear stability. He found that these
locations are affected by the coefficients of oblate-
ness. Furthermore he investigated that the triangular
points are stable for 0 < μ < μc and unstable when
μc ≤ μ ≤ 1/2, where μc is the critical mass parame-
ter which depends on the coefficients of oblateness.

The existence of libration points and their linear
stability as well as periodic orbits around these points
when the more massive primary is radiating and the
smaller is an oblate spheroid were studied by Abouel-
magd and Sharaf [5]. Their study also includes the ef-
fects of oblateness of J̄2i (i = 1,2) with respect to the
smaller primary in the restricted three-body problem.

The restricted problem when the three participat-
ing bodies are oblate spheroids was also studied by
Elipe and Ferrer [9] and El-Shaboury and El-Tantawy
[11]. When one or two of the primaries are triaxial
bodies this problem was introduced by El-Shaboury
et al. [12], Khanna and Bhatnagar [13] and Sharma
et al. [18].

Various researchers made studies in the restricted
three-body problem under the effects of small per-
turbations in centrifugal and Coriolis forces as in
Szebehely [23], Bhatnagar and Hallan [6], Devi and
Singh [8], Shu and Lu [19], AbdulRaheem and
Singh [1, 2].

The effect of small perturbations ε, ε′ in Corio-
lis and centrifugal forces with variable mass in the
restricted three-body problem has been studied by
Singh [21]. He found that in the nonlinear sense the
triangular points are stable for all mass ratios in the
range of linear stability except for three mass ratios
which depend on ε, ε′ and the constant β due to the
variation of mass governed by Jeans’ law.

Mittal et al. [15] have studied periodic orbits gener-
ated by Lagrangian solutions of the restricted three-
body problem when the bigger body is a source of

radiation and the smaller is an oblate spheroid. They
used the definition of Karimov and Sokolsky for mo-
bile coordinates to determine these orbits, they also
used the predictor method to draw them.

Singh and Begha [20] have studied the existence of
periodic orbits around the triangular points in the re-
stricted three-body problem when the bigger primary
is a triaxial and the smaller primary is considered as
an oblate spheroid in the range of linear stability with
the perturbed Coriolis and centrifugal forces. They de-
duced that long and short periodic orbits exist around
these points and their periods, orientation and eccen-
tricities are affected by the non sphericity and the per-
turbation in Coriolis and centrifugal forces.

The existence of libration points and their linear
stability when the three participating bodies are oblate
spheroids and the primaries are radiation source as
well were studied by Abouelmagd and El-Shaboury [4].
They found that the collinear points are still unstable
while the triangular points are stable for 0 < μ < μc,
and unstable for μc ≤ μ ≤ 1/2, where μc ∈ (0,1/2).
They also deduced that for these points the range
of stability will decrease. In addition they studied
the periodic orbits around these points in the range
0 < μ < μc.

From physical point of view, it is unreasonable to
consider all objects as being point masses with no
physical dimensions. This is conflict with the real
cases for the celestial bodies. On the other hand the
effect of rotation causes deformation in the shape of
the objects at the poles as might be expected. For this
reason most objects may be treated to a good approxi-
mation as oblate spheroids.

Therefore in this paper we will generalize the re-
stricted three-body, in which the three participating
bodies are oblate spheroids as well as the existence
of small perturbations in the Coriolis and centrifugal
forces. The existence of libration points and their lin-
ear stability and the periodic orbits around these points
will be studied. This model could be applicable in as-
trodynamics or astrophysics.

Now we assume that the three participating bod-
ies are oblate spheroids. Therefore we refer to oblate-
ness parameters of the bigger, smaller primaries and
infinitesimal body by A1, A2 and A respectively, We
also denote the small perturbations in Coriolis and
centrifugal forces by εi (i = 1,2) where 0 < A1 � 1,
0 < A2 � 1, 0 < A � 1 and εi � 1.
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2 The equations of motion

It is well known that, there are five exact solutions in
three-body problem which the three masses maintain
a constant configuration which revolves with constant
angular velocity. An important specialization of the
three-body problem is the restricted three-body prob-
lem in which m is infinitesimal body, m1 and m2 are
the bigger and smaller primaries respectively. They
move in circular orbits around their barycenter. The
smallness of m means that it does not influence the
motion of m1 and m2. For many purposes it is conve-
nient to describe the motion of m in a coordinate sys-
tem which is attached to m1 and m2. In this rotating
coordinate system the five Lagrangian solutions show
up as five fixed points at which m would be station-
ary if placed there with zero velocity. Now we sup-
pose that r1 and r2 are the distance of m from m1

and m2 respectively, R is the separation distance be-
tween the primaries. Furthermore we also suppose that
mis moving under their gravitational field in the same
plane. In addition we adopt the notation and termi-
nology of Szebehely [24]. As a consequence, the dis-
tance between the primaries equals one, the sum of
masses of the primaries is also taken as one, the unit
time is chosen as to make the unperturbed mean mo-
tion and the gravitational constant unity, then it fol-
lows that m1 = 1 − μ, whose coordinate is (μ,0),
m2 = μ ≤ 1/2 and located at (μ − 1,0). Therefore the
equations of motion in a synodic coordinate system for
infinitesimal body are controlled by (Abouelmagd and
El-Shaboury, [4])

ẍ − 2nẏ = Ux (1.1)

ÿ + 2nẋ = Uy (1.2)

where

U = 1

2
n2[(1 − μ)r2

1 + μr2
2

]

+ (1 − μ)

[
1

r1
+ (A1 + A)

2r3
1

]

+ μ

[
1

r2
+ (A2 + A)

2r3
2

]
(2)

n2 = 1 + 3

2
(A1 + A2) (3)

r2
1 = (x − μ)2 + y2, r2

2 = (x − μ + 1)2 + y2 (4)

The equations of motion of the infinitesimal body
in a synodic coordinate system are governed by (1.1),

(1.2) and (2) when the three participating bodies are
oblate spheroids. After that, we denote the Coriolis
and centrifugal forces by ϕ, ψ and the small perturba-
tions in these forces by ε1 and ε2 respectively, where

ϕ = 1 + ε1, ε1 � 1 (5.1)

ψ = 1 + ε2, ε2 � 1 (5.2)

Therefore (1.1), (1.2) and (2) could be written as

ẍ − 2ϕnẏ = Ωx (6.1)

ÿ + 2ϕnẋ = Ωy (6.2)

Ω = 1

2
n2ψ

[
(1 − μ)r2

1 + μr2
2

]

+ (1 − μ)

[
1

r1
+ (A1 + A)

2r3
1

]

+ μ

[
1

r2
+ (A2 + A)

2r3
2

]
(7)

where the subscripts on the right hand side denote the
partial derivation respect to the x and y respectively.

3 The locations of the libration points

The libration points are singular points of the differ-
ential equations of motions in the restricted problem
of three bodies. They are also equilibrium points since
the gravitational force on a mass placed in such a point
are balanced by the centrifugal force. The three libra-
tion points are called the collinear points which are
found on the line connecting with the primaries. The
other two are called the triangular points which are
symmetrical with respect to this line and form trian-
gles, see Fig. 1.

From (6.1), (6.2) we can obtain Jacobi integral as

ẋ2 + ẏ2 − 2Ω + c = 0 (8)

in which c is a constant of integration.
The locations of these points will be determined by

solving the following equations

Ωx = Ωẋ = Ωy = Ωẏ = 0 (9)

where the first partial derivatives of Ω will be gov-
erned by

Ωx = (x − μ)f1(r1) + (x − μ + 1)f2(r2) (10.1)

Ωy = y
[
f1(r1) + f2(r2)

]
(10.2)
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Fig. 1 The positions of the equilibrium points Li (i = 1,

2, . . . ,5)

f1(r1) = (1 − μ)

[
ψn2 −

(
1

r3
1

+ 3(A1 + A)

2r5
1

)]
(11.1)

f2(r2) = μ

[
ψn2 −

(
1

r3
2

+ 3(A2 + A)

2r5
2

)]
(11.2)

From (10.1), (10.2), we will have two cases. These
cases will be investigated in the following subsection.

3.1 The collinear points

The collinear points Li (i = 1,2,3) are the solutions
of (9) and (10.1), (10.2) when y = 0, therefore

ν = (−1)i
r4

2 (r5
1 − pr2

1 − a)

r4
1 (r5

2 − pr2
2 − b)

, i = 1,2,3 (12)

where i indicates the value of ν at Li (i = 1,2,3),

ν = μ

1 − μ
, p = 1

q
, q = ψn2 (13.1)

a = 3(A1 + A)

2q
, b = 3(A2 + A)

2q
(13.2)

Lagrange developed a useful method for inverting se-
ries expansions. This method could be applicable in
the present work. He investigated that if a variable X
can be expressed as a function of Y as in the below
relation (Murray and Dermott [16])

Y = X + ϑφ(Y ), ϑ < 1 (14)

therefore Y can also be expressed as a function of X
as in the following form

Y = X +
∞∑

k=1

ϑk

k!
dk−1

dX k−1

[
φ(X )

]k (15)

3.1.1 Location of L1

The solution of L1 lies beyond the smaller mass as in
Fig. 1. Therefore r1 − r2 = 1, hence r2 = μ − x − 1,
r1 = μ − x, this implies that: ∂r1

∂x
= ∂r2

∂x
= −1. If we

take r2 = r , r1 = 1 + r and substitute them into (12).
After some simple calculations the value of ν will be
written as

ν = a4r
4 + a5r

5 + a6r
6 + a7r

7 + O
[
r8] (16)

where the values a4, a5, a6 and a7 are to be given as
in Appendix A.1.

Now, we use Lagrange’s inversion method to invert
the above series and express r as function of ν which
is written as

r =
(

1

a4

)1/4

ν1/4 − 1

4

((
1

a4

)3/2

a5

)√
ν

+ 1

32

(
1

a4

)11/4(
7a2

5 − 8a4a6
)
ν3/4

+ (−a3
5 + 2a4a5a6 − a2

4a7)

4a4
4

ν + O
[
ν5/4] (17)

Consequently the location of L1 will be given by

x1 = −1 + ν

1 + ν
−

(
1

a4

)1/4

ν1/4

+ 1

4

((
1

a4

)3/2

a5

)√
ν

− 1

32

(
1

a4

)11/4(
7a2

5 − 8a4a6
)
ν3/4

− (−a3
5 + 2a4a5a6 − a2

4a7)

4a4
4

ν (18)

3.1.2 Location of L2

The solution of L2 lies between the two finite bodies
as in Fig. 1, here r1 + r2 = 1, hence r2 = x − μ + 1,
r1 = μ − x, this implies that ∂r1

∂x
= − ∂r2

∂x
= −1. If we

take r2 = ρ, r1 = 1 − ρ and substitute them into (12).
The value of ν will be given by

ν = b4ρ
4 + b5ρ

5 + b6ρ
6 + b7ρ

7 + O
[
ρ8] (19)

where the values b4, b5, b6 and b7 are governed as in
Appendix A.1.

As mentioned before, we use Lagrange’s inversion
method to invert the above series and express ρ as
function of ν which is written as
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ρ =
(

1

b4

)1/4

ν1/4 − 1

4

((
1

b4

)3/2

b5

)√
ν

+ 1

32

(
1

b4

)11/4(
7b2

5 − 8b4b6
)
ν3/4

+ (−b3
5 + 2b4b5b6 − b2

4b7)

4b4
4

ν + O
[
ν5/4] (20)

Therefore the location of L2 could be written as

x2 = −1 + ν

1 + ν
+

(
1

b4

)1/4

ν1/4

− 1

4

((
1

b4

)3/2

b5

)√
ν

+ 1

32

(
1

b4

)11/4(
7b2

5 − 8b4b6
)
ν3/4

+ (−b3
5 + 2b4b5b6 − b2

4b7)

4b4
4

ν (21)

3.1.3 Location of L3

The solution of L3 lies beyond the large mass as
in Fig. 1, here r2 − r1 = 1, hence r2 = 1 − μ + x,
r1 = x − μ, this implies that ∂r1

∂x
= ∂r2

∂x
= 1. If we take

r1 = 1 + δ, r2 = 2 + δ and substitute them into (12).
We will obtain

ν = c0 + c1δ + c2δ
2 + O

[
δ3] (22)

where the values c0, c1, and c2 are to be given as in
Appendix A.1.

We also use Lagrange’s inversion method to invert
the above series and express δ as function of ν as in
the following form

δ = ν − c0

c1
− c2(ν − c0)

2

c3
1

+ O
[
(ν − c0)

3] (23)

Hence the location of L3 will be controlled by

x3 = 1 + ν

1 + ν
+ ν − c0

c1
− c2(ν − c0)

2

c3
1

(24)

Equations (18), (21) and (24) represent semi-closed
forms for the positions of collinear points. Further-
more, the small perturbation in the Coriolis force has
no effect on these positions.

3.2 The triangular points

The solutions of (9) and (10.1), (10.2) when y �= 0 will
be given the triangular points L4 and L5. These solu-
tions will establish

f1(r1) = 0 = f2(r2) (25)

Therefore, we get

ψn2 = 1

r3
1

+ 3(A1 + A)

2r5
1

(26.1)

ψn2 = 1

r3
2

+ 3(A2 + A)

2r5
2

(26.2)

To study the effect of oblateness in the perturbed
problem on the locations of the triangular points, we
will assume that the three participating bodies are not
oblate spheroids (A1 = A2 = A = 0). Hence (26.1),
(26.2) will admit ri = 1/ 3

√
ψ . Consequently if the

three bodies are oblate, the solution of (26.1), (26.2)
will be controlled by

ri = 1
3
√

ψ
+ εi, εi � 1 (i = 1,2) (27)

where εi gives the additive of displacement in ri
as a result for oblateness effects. Substituting (27)
into (26.1), (26.2) and restricting ourselves to only lin-
ear terms in ε1, ε2, A1, A2 and A. The appropriate ap-
proximation of εi could be written as

ε1 = −1

2
(A1 + A2)ψ

− 1
3 + 1

2
(A1 + A)ψ

1
3 (28.1)

ε2 = −1

2
(A1 + A2)ψ

− 1
3 + 1

2
(A2 + A)ψ

1
3 (28.2)

From (4) the exact solutions of the triangular points
could be written as

x = −1

2

[
1 − 2μ + r2

1 − r2
2

]
(29.1)

y = ±
[(

r2
1 + r2

2

2

)
−

(
r2

1 − r2
2

2

)2

− 1

4

] 1
2

(29.2)

Substituting (28.1), (28.2) and (27) into (29.1), (29.2)
with limiting ourselves to previous assumptions we
get

x = μ − 1

2
− 1

2
(A1 − A2) (30.1)

y = ±
√

3

2

[
1 − 1

3
(A1 + A2 − 2A)

− 4

9
(1 + A1 + A2 + A)ε2

]
(30.2)

Equations (30.1), (30.2) show that the presence of
parameters that represent oblateness of the infinitesi-
mal body, the small perturbations in Coriolis and cen-
trifugal forces have no effect on x-coordinate of the
triangular points. While y-coordinate of the triangular
points may be affected by all the parameters of the per-
turbed forces except for the small perturbations in the
Coriolis force.
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4 The stability of the libration points

The stability of libration points is a well problem stud-
ied in the classical literature. Therefore, in this sec-
tion and the next sections we follow the analysis that
is based on Szebehely’s computations [24].

4.1 Characteristic equation

Let x0 and y0 are the coordinates of one of the five
libration points as well as ξ and η are very small dis-
placements from these coordinates where

ξ = x − x0 (31.1)

η = y − y0 (31.2)

Therefore the linear variational equations could be
written as

ξ̈ − 2nϕη̇ = ξΩ0
xx + ηΩ0

xy (32.1)

η̈ + 2nϕξ̇ = ξΩ0
xy + ηΩ0

yy (32.2)

where the subscripts x and y denoted the second par-
tial derivatives of Ω and superscript 0 indicates that
these derivatives are to be evaluated at one of the five
equilibrium points (x0, y0). Furthermore these deriva-
tives will be governed by

Ωxx = f1(r1) + f2(r2) + 1

r1

∂f1

∂r1
(x − μ)2

+ 1

r2

∂f2

∂r2
(x − μ + 1)2 (33.1)

Ωxy =
[

1

r1

∂f1

∂r1
(x − μ) + 1

r2

∂f2

∂r2
(x − μ + 1)

]
y

(33.2)

Ωyy = f1(r1) + f2(r2) +
[

1

r1

∂f1

∂r1
+ 1

r2

∂f2

∂r2

]
y2 (33.3)

where

∂f1

∂r1
= (1 − μ)

[
3

r4
1

+ 15(A1 + A)

2r6
1

]
(34.1)

∂f2

∂r2
= μ

[
3

r4
2

+ 15(A2 + A)

2r6
2

]
(34.2)

The characteristic equation corresponding to (32.1),
(32.2) is

λ4 + (
4n2ϕ2 − Ω0

xx − Ω0
yy

)
λ2 + Ω0

xxΩ
0
yy − (

Ω0
xy

)2

= 0 (35)

The most fundamental questions about motion near
libration points are those about the stability of these
points. The next subsections will survey the results ob-
tained in the investigations of the stability.

4.2 Stability of collinear points

In order to investigate the stability of collinear points,
we have to study the motion in the vicinity of these
points. For this purpose (33.1)–(33.3) could be written
at the collinear points as

Ω0
xx = ψn2 + (1 − μ)

(
2

r3
1

+ 6(A1 + A)

r5
1

)

+ μ

(
2

r3
2

+ 6(A2 + A)

r5
2

)
(36.1)

Ω0
xy = 0 (36.2)

Ω0
yy = ψn2 − (1 − μ)

(
1

r3
1

+ 3(A1 + A)

2r5
1

)

− μ

(
1

r3
2

+ 3(A2 + A)

2r5
2

)
(36.3)

Equations (36.1)–(36.3) show that Ω0
xx > 0,

Ω0
xy = 0 and Ω0

yy < 0 at Li (i = 1,2,3), as a result

for this Ω0
xxΩ

0
yy − (Ω0

xy)
2 < 0. Let λ2 = Λ, therefore

(35) could be written as

Λ2 + λ1cΛ + λ2c = 0 (37)

where

λ1c = (
4n2ϕ2 − Ω0

xx − Ω0
yy

)
(38.1)

λ2c = Ω0
xxΩ

0
yy (38.2)

where

Λ1,2 = −1

2

[
λ̄1c ∓

√
λ

2
1c − 4λ2c

]
(39)

Equations (38.1), (38.2) and (39) show that the
roots of characteristic equation (35) could be written
as λ1,2 = ±σ , λ3,4 = ±iτ where σ and τ are real num-
bers, where

σ 2 = 1

2

[√
λ

2
1c − 4λ2c − λ̄1c

]
(40.1)

τ 2 = 1

2

[√
λ

2
1c − 4λ2c + λ̄1c

]
(40.2)

The general solution of (32.1), (32.2) can be written as

ξ(t) =
4∑

i=1

δie
λi t , η(t) =

4∑

i=1

ρie
λi t (41)

therefore

ξ̇ (t) =
4∑

i=1

λiδie
λi t , η̇(t) =

4∑

i=1

λiρie
λi t (42)
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Now we establish that the motion around the
collinear points is unbounded. However λ3,4 are pure
imaginary, λ1,2 are real. Therefore the solutions of
these points are unstable.

4.2.1 Stability of triangular points

In this case (33.1)–(33.3) could be written as

Ω0
xx = 3

4

[
1 + 5

2
(A1 + A2) + 2(1 − 2μ)(A1 − A2)

]

+ 5

4

[
1 + 5

2
(A1 + A2)

+ 2(1 − 2μ)(A1 − A2)

]
ε2 (43.1)

Ω0
xy = ∓3

√
3

4

[
1 − 2μ + 19

6

(
1 − 26

19
μ

)
A1

+ 7

6

(
1 − 26

7
μ

)
A2 + 2

3
(1 − 2μ)A

+ 11

9

[
1 − 2μ + 80

297
(1 − 14μ)(A1 + A2)

+ 560

297

(
1 + 4

7
μ

)
A

]
ε2

]
(43.2)

Ω0
yy = 9

4

[
1 + 11

6
(A1 + A2) + 4

3
A

]

+ 7

4

[
1 + 27

14
(A1 + A2) + 36

7
A

]
ε2 (43.3)

Substituting λ2 = ω into (35) we get

ω2 + λ̄1tω + λ̄2t = 0 (44)

where

λ̄1t = (
4n2ϕ2 − Ω0

xx − Ω0
yy

)
(45.1)

λ̄2t = Ω0
xxΩ

0
yy − (

Ω0
xy

)2 (45.2)

Here superscript 0 indicates to the second partial
derivatives are to be evaluated at the triangular points,
hence

ω1,2 = −1

2

[
λ̄1t ∓ √

D
]

(46)

where D = λ̄2
1t − 4λ̄2t is the discriminant of the

quadratic in (44). Now we can write the discriminant
as

D = αμ2 + βμ + γ (47)

where α, β and γ are to be evaluated as in Ap-
pendix A.2.

The variations ξ and η will represent stable solu-
tions in the proximity of L4 and L5, if the four roots
of the characteristic equation (35) are purely imagi-
nary numbers. On the other hand, if any of these roots
are real or complex, these solutions will increase with
time, therefore the solutions are unstable. From (47),
it is easily to prove that

Dμ=0 > 0, Dμ=1/2 < 0,
dD

dμ
≤ 0 ∀μ ∈ (0,1/2)

(48)

Equation (48) investigates that D is a decreasing
function in the interval (0,1/2). Consequently there is
only one value of μ say μc in this interval for which
D equals zero and D is positive when 0 < μ < μc in
which the solutions are stable.

4.3 Critical mass

Under the previous discussion, from (47) the value of
μ when D equals zero is called the critical mass value.
This value will be governed by

μc = − 1

2α

[
β +

√
β2 − 4αγ

]
(49)

Now substituting (48) into (49) and restricting our-
selves to the linear terms of Ai , A, εi as well as cou-
pling terms in Aiεi and Aεi (i = 1,2) the critical mass
value could be written as

μc = μ00 + p (50)

in which μ00 = (9 − √
69)/18 is the critical value

given by Szebehely [24] when the three participating
bodies are considered as points masses as well as neg-
ligence the effects of small perturbations of Coriolis
and centrifugal forces. While p represents these ef-
fects when the three participating bodies are oblate
spheroids. Therefore

p = μ10 − μ01A1 + μ02A2 − μ03A

− (μ11ε1 − μ21ε2)A1 + (μ12ε1 − μ22ε2)A2

− (μ13ε1 − μ23ε2)A (51)

where μ00, μ10, μi1, μi2, μi3 as in Appendix A.3.
Equation (51) consists of three main parts, the first

part gives the effects of small perturbations ε1 and
ε2 in Coriolis and centrifugal forces respectively. The
second part represents oblateness influences of the
three participating bodies (A1, A2 and A). While the
third part represents mixed effects for only one of
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these parameters A1, A2, A together with ε1 and ε2,
this part will disappear when one of the parameters is
ignored.

5 Periodic orbits

5.1 Periodic orbits around collinear points

It is easy to find periodic orbits about the collinear
points L1,2,3. However these points are unstable, i.e.
if a body in any of these points is disturbed, it will
move away. This is quite reasonable physically, for
these points are saddle points of the potential function.
Now substituting (41) into (32.1), (32.2) with some
simple computations, the relations between the coef-
ficients ρi and δi will be governed by

ρi = niδi (52)

where

ni = ±
√√√√λ2

i − Ω0
xx

Ω0
yy − λ2

i

(53)

This relations show that the coefficients δi and ρi

(i = 1,2,3,4) are dependent. Therefore the four ini-
tial conditions ξ0, η0, ξ̇0 and η̇0 associated with (32.1),
(32.2) will determine the two sets of coefficients. Ev-
ery set includes eight constants δi and ρi where the
subscript 0 indicates to these quantities are to be eval-
uated at the initial time (t = t0). Substituting (52)
into (41) and (42), these equations could be written
as

ξ0 =
4∑

i=1

δie
λi t , η0 =

4∑

i=1

niδie
λi t (54.1)

ξ̇0 =
4∑

i=1

λiδie
λi t , η̇0 =

4∑

i=1

niλiδie
λi t (54.2)

since the determinant (�) of system (54.1), (54.2) is
not zero:

� = −
√

Ω0
xx

Ω0
yy

(
σ 2 + τ 2)2 �= 0 (55)

The coefficients of this system can be written as func-
tions of the initial conditions. If the initial conditions
ξ0 and η0 are chosen properly where δ1 = δ2 = 0,
therefore (41) could be written in the form

ξ = ξ0 cos τ(t − t0) + η0

m3
sin τ(t − t0) (56.1)

η = η0 cos τ(t − t0) − ξ0m3 sin τ(t − t0) (56.2)

n3 = im3 (56.3)

From (56.1)–(56.3) we can obtain that

ξ̇0 = η0τ

m3
, η̇0 = −ξ0m3τ (57)

which means that once the components of initial con-
ditions ξ0 and η0 are chosen, we cannot select the as-
sociation initial velocities ξ̇0 and η̇0 as wished. After
solving (56.1)–(56.3) together to eliminate the time,
the periodic orbits could be written in the form

ξ2

(η2
0 + ξ2

0 m2
3)/m2

3

+ η2

(η2
0 + ξ2

0 m2
3)

= 1 (58)

Equation (58) investigates that the trajectory of the
infinitesimal body around the collinear points is an el-
lipse and its center is at these points. The semi-major
(ac), the semi-minor bc axes are parallel to the y-axis
and x-axis, respectively. These axes, the eccentricity
(ec) and the period (Tc) can, therefore, be written in
the form

a2
c = (

η2
0 + ξ2

0 m2
3

)
(59.1)

b2
c = (

η2
0 + ξ2

0 m2
3

)/
m2

3 (59.2)

e2
c =

(
1 − 1

m2
3

)
(60)

Tc = 2π/τ (61)

Since η̇0 = −ξ0m3τ , ξ̇0 = 0 at ξ0 �= 0 and η0 = 0
the motion along the orbits is retrograde.

5.2 Periodic orbits around triangular points

5.2.1 The mean motion of the periodic orbits

Since the triangular points are linearly stable when
0 < μ < μc and the characteristic equation has four
purely imaginary roots. Therefore we have bounded
motion around the triangular points which are com-
posed of two harmonic motions. Consequently this
motion will be governed by

ξ = C1 cos s1t + D1 sin s1t + C2 cos s2t

+ D2 sin s2t (62.1)

η = C̄1 cos s1t + D̄1 sin s1t + C̄2 cos s2t

+ D̄2 sin s2t (62.2)
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where s1 and s2 are the angular frequencies with re-
spect to long and short periodic orbits respectively,
the terms with the coefficients C1, D1, C̄1 and D̄1 are
the long periodic terms while the coefficients C2, D2,
C̄2 and D̄2 are the short periodic terms. In addition,
s2

1,2 = −ω1,2 hence after substituting (47) into (46)
and simplifying it, the angular frequencies s1 and s2

will be given by

s1 = 3
√

3

2
√

μ

(
1 − 1

2
μ

)
1 − 4

3
ε1 + 53

18
ε2

+ 1

6

(
33 − 52

3
ε1 + 653

18
ε2

)
(A1 + A2)

+ 1

3

(
11 − 4

3
ε1 + 65

18
ε2

)
A (63.1)

s2 = 1 + 8ε1 − 3ε2 − 27

8

(
1 − 8

3
ε1 + 49

9
ε2

)
μ(1 − μ)

+ 3

4
(1 + 8ε1 − 3ε2)(A1 + A2)

− 3

2

(
1 + 5

3
ε2

)[
(A1 + A) − μ(A1 − A2)

]

− 9

8
μ(1 − μ)

(
13 − 104ε1 + 215

3
ε2

)
(A1 + A2)

+ 4

(
1 − 8ε1 + 19

3
ε2

)
A (63.2)

Equations (63.1), (63.2) give the frequencies for the
orbits of the long and short periodic motion when the
influence of oblateness, small perturbations of Coriolis
(ε1) and centrifugal (ε2) forces are considered. But we
would like to indicate that these equations are valid in
the range 0 < μ < μc, where μc is the critical mass
value.

Substituting (62.1), (62.2) into (32.1), (32.2) and
equating the coefficients of sine and cosine terms re-
spectively. The relation between the coefficients of the
long and short periodic terms will be controlled by

C̄i = Γi

[
2ϕnsiDi − Ω0

xyCi

]
, i = 1,2 (64.1)

D̄i = −Γi

[
2ϕnsiCi + Ω0

xyDi

]
, i = 1,2 (64.2)

where

Γi = s2
i + Ω0

xx

4ϕ2n2s2
i + (Ω0

xy)
2

= 1

s2
i + Ω0

yy

, i = 1,2 (65)

and Ω0
xx , Ω0

xy and Ω0
yy are given in (43.1)–(43.3).

We can eliminate the short periodic or the long
periodic terms from the solution, if the initial condi-
tions are selected properly. Hence we can suppose that

(C2 = D2 = C̄2 = D̄2 = 0) and (ξ0, η0, ξ̇0 and η̇0) are
the initial conditions at (t = 0), i.e. we eliminate the
short periodic terms. Now substituting these quantities
into (62.1), (62.2) and (64.1), (64.2), therefore, we can
obtain

C1 = ξ0 (66.1)

C̄1 = η0 (66.2)

D1 = Ω0
xyξ0 + η0(s

2
1 + Ω0

yy)

2ϕns1
(66.3)

D̄1 = −ξ0(s
2
1 + Ω0

xx) + η0Ω
0
xy

2ϕns1
(66.4)

ξ̇0 = Ω0
xyξ0 + η0(s

2
1 + Ω0

yy)

2ϕn
(67.1)

η̇0 = −ξ0(s
2
1 + Ω0

xx) + η0Ω
0
xy

2ϕn
(67.2)

If the triangular points represent the origin of the
coordinates system, and we assume that the infinitesi-
mal body starts its motion at the origin. Consequently
from (30.1), (30.2) and (31.1), (31.2) the initial con-
ditions will be controlled by (ξ0, η0) = (−x0,−y0)

where

ξ0 = −μ + 1

2
+ 1

2
(A1 − A2) (68.1)

η0 = ∓
√

3

2

[
1 − 1

3
(A1 + A2 − 2A)

− 4

9
(1 + A1 + A2 + A)ε2

]
(68.2)

in which minus (plus) sign refer to the origin is at L4

(L5).

5.3 Elliptic orbits

After we eliminate the long or the short periodic terms,
the path of infinitesimal body will be an ellipse. We
can see this just if (62.1), (62.2) is rewritten for the
long periodic terms in the form

ξ = C1 cos s1t + D1 sin s1t (69.1)

η = C̄1 cos s1t + D̄1 sin s1t (69.2)

On the other hand if we substitute (66.1)–(66.4)
into (69.1), (69.2) and eliminate the time, these equa-
tions could be reduced to

α1ξ
2 + 2β1ξη + η2 = γ1 (70)
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This equation represents an ellipse with center at the
origin of coordinate system ξ and η, since
∣∣∣
∣
α1 β1

β1 1

∣∣∣
∣ = (2ϕns1Γ1)

2 > 0 (71)

where

α1 = s2
1 + Ω0

xx

s2
1 + Ω0

yy

(72.1)

β1 = Ω0
xy

s2
1 + Ω0

yy

(72.2)

γ1 = α1ξ
2
0 + 2β1ξ0η0 + η2

0 (72.3)

5.4 The orientation of principal axes of the ellipse

Since (70) include bilinear term ξη, then the principal
axes of the ellipse are rotated with an angle θ relative
to the coordinate system (ξ, η). This motivates us to in-
troduce a new coordinate (ξ̄ , η̄) such that the quadratic
term appears only without the bilinear. Hence the old
and the new coordinates systems are governed by the
following equations

ξ = ξ̄ cos θ − η̄ sin θ (73.1)

η = ξ̄ sin θ + η̄ cos θ (73.2)

Substituting (73.1), (73.2) into (70) and equate the
coefficient of ξ̄ η̄ by zero. The orientation of principal
axes is given as

tan 2θ = ±√
3

{
1 − 2μ + 8

3

(
1 − 19

8
μ

)
A1

− 4

3

(
1 + 7

4
μ

)
A2 − 4

3
(1 + μ)A

+ 8

9

[[
1 − 2μ + 13

3

(
1 − 55

26
μ

)
A1

− 8

3

(
1 − 5

16
μ

)
A2 − 11

3

(
1 + 5

11
μ

)
A

]
ε2

}

(74)

where plus sign refers to the center of ellipse at L4

while minus sign at L5.
Furthermore the lengths of semi-major (at ), semi-

minor (bt ) axes and the eccentricity (et ) as well as the
period of motion (Tt ) are controlled by

a2
t = 2γ1

[(1 + α1) − (1 − α1) cos 2θ + 2β1 sin 2θ ] (75.1)

b2
t = 2γ1

[(1 + α1) + (1 − α1) cos 2θ − 2β1 sin 2θ ] (75.2)

e2
t = 2[(1 − α1) cos 2θ − 2β1 sin 2θ ]

[(1 + α1) + (1 − α1) cos 2θ − 2β1 sin 2θ ] (76)

Tt = 2π

si
, i = 1,2 (77)

Now we will introduce an algorithm to find the el-
ements of the periodic orbits around the equilibrium
points. This algorithm will be formulated in the fol-
lowing steps:

1. Determine the parameters μ, A1, A2, A, ε1 and ε2

for any given system.
2. Evaluate Ω0

xx , Ω0
xy and Ω0

yy .
3. Evaluate τ .
4. Evaluate s1 and s2.
5. Evaluate m3.
6. Evaluate ξ0 and η0.
7. Evaluate α1, β1 and γ1.
8. Evaluate sin 2θ and cos 2θ .
9. Use steps 5 and 6 to obtain the lengths of semi-

major (ac) and semi-minor (bc) axes as well as
the value of the eccentricity (ec).

10. Use step 5 to find the period of motion Tc.
11. Use steps 7 and 8 to obtain the lengths of semi-

major (at ) and semi-minor (bt ) axes as well as the
value of the eccentricity (et ).

12. Use step 4 to find the period of motion Tt .
13. Steps 9 and 10 for periodic orbits around the

collinear points.
14. Steps 11 and 12 for periodic orbits around the tri-

angular points.

6 Conclusions

The restricted three-body problem is generalized in
the sense that the three participating bodies are oblate
spheroids together with the effect of small perturba-
tions in the Coriolis and centrifugal forces. The ex-
istence and the linear stability of libration points are
studied, under the parameters effects of the oblateness,
the small perturbations in the Coriolis and centrifugal
forces. We use Lagrangian method for inverting series
expansions to construct a semi-closed form to deter-
mine the locations of collinear points.

Under these effects, the collinear points remain un-
stable and the triangular points are stable for
0 < μ < μc, and unstable for μc ≤ μ ≤ 1/2. We find
the periodic orbits around the five libration points
as well as the frequencies, the semi-major, the semi-
minor axes, the eccentricity and period of motion. In
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addition the directions of principal axes for the or-
bits around the triangular points and the coefficients
of long and short periodic terms are evaluated. Fur-
thermore an algorithm is constructed to calculate the
elements of the periodic orbits around these points.

Finally, we would like to indicate that our model
can be degraded into many special cases, some of this
cases are

• Classical problem: Ai = A = εi = 0, i = 1,2 (Sze-
behely [24]).

• When the effect in Coriolis force is only considered:
Ai = A = 0, ε1 �= 0, ε2 = 0, i = 1,2 (Szebehely,
[23]).

• When the effect in Coriolis and centrifugal forces
are considered: Ai = A = 0, εi �= 0, i = 1,2 (Bhat-
nagar and Hallan [6]).

• When the bigger primary is an oblate spheroid:
A1 �= 0, A2 = A = 0, εi = 0, i = 1,2 (Subbarao and
Sharma [22]).

• When both primaries are oblate spheroids: Ai �= 0,
A = 0, εi = 0, i = 1,2 (Bhatnagar and Hallan [7]).

• When the three participating bodies are oblate
spheroids: Ai �= 0, A �= 0, εi = 0, i = 1,2 (El-
Shaboury [10]).

The earlier cases are mentioned as examples but not
limited.

Appendix

A.1 The series coefficients at collinear points

• The series coefficients at L1 in (16)

a4 = (1 − a − p)

b
, a5 = (1 + 4a + 2p)

b

a6 = − (10ab + p − ap + 3bp + p2)

b2

a7 = (20ab − p − 4ap + 4bp − 2p2)

b2

• The series coefficients at L2 in (19)

b4 = (a + p − 1)

b
, b5 = (1 + 4a + 2p)

b

b6 = (10ab + p − ap + 3bp + p2)

b2

b7 = (20ab − p − 4ap + 4bp − 2p2)

b2

• The series coefficients at L3 in (22)

c0 = 16(a + p − 1)

32 − b − 4p

c1 = −16(16 + 144a − 3b − 2ab − 12ap + 72p − 4p2)

(32 − b − 4p)2

c2 = 8

(32 − b − 4p)3

(
512 + 25088a − 192b

− 608ab − 7b2 + 7ab2 + 8384p − 4160ap

+ 66bp + 70abp − 40p2 + 200ap2 + b2p

− 832p2 + 6bp2 + 40p3)

A.2 The coefficients of the discriminant in (47)

α = 27

[
1 + 13

3
(A1 + A2) + 4

3
A

+ 22

9

[
1 + 49

11
(A1 + A2) + 20

11
A

]
ε2

]

β = −27

[
1 + 1

9
(37A1 + 41A2) + 4

3
A

+ 2

9

[
11ε2 − (16ε1 − 160ε2)A1 + (16ε1

+ 134ε2)A2 + 20ε2A
]]

γ = [
1 − 3(A1 − A2 + 2A) − 10ε1A1

+ (16ε1 − 6ε2)(1 + 3A2) − 8(6ε1 − ε2)A
]

A.3 The coefficients of oblateness parameters for
critical mass in (51)

μ00 = 1

2

(
1 −

√
69

9

)
,

μ10 = 4

27
√

69
(36ε1 − 19ε2)

μ01 = 1

9

(
1 + 13√

69

)
, μ11 = 16

9

(
1 + 325

23
√

69

)
,

μ21 = 61

81

(
1 + 20091

1403
√

69

)

μ02 = 1

9

(
1 − 13√

69

)
, μ12 = 16

9

(
1 − 325

23
√

69

)
,

μ22 = 61

81

(
1 − 20091

1403
√

69

)

μ03 = 22

9
√

69
, μ13 = 8800

207
√

69
,

μ23 = 8296

621
√

69
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