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Abstract In this study we deal with a microelec-
tromechanical system (MEMS) and develop a dynami-
cal integrity analysis to interpret and predict the exper-
imental response. The device consists of a clamped-
clamped polysilicon microbeam, which is electrostat-
ically and electrodynamically actuated. It has non-
negligible imperfections, which are a typical conse-
quence of the microfabrication process. A single-mode
reduced-order model is derived and extensive numer-
ical simulations are performed in a neighborhood of
the first symmetric natural frequency, via frequency re-
sponse diagrams and behavior chart. The typical soft-
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ening behavior is observed and the overall scenario is
explored, when both the frequency and the electrody-
namic voltage are varied. We show that simulations
based on direct numerical integration of the equation
of motion in time yield satisfactory agreement with the
experimental data. Nevertheless, these theoretical pre-
dictions are not completely fulfilled in some aspects.
In particular, the range of existence of each attractor is
smaller in practice than in the simulations. This is be-
cause these theoretical curves represent the ideal limit
case where disturbances are absent, which never oc-
curs under realistic conditions. A reliable prediction
of the actual (and not only theoretical) range of exis-
tence of each attractor is essential in applications. To
overcome this discrepancy and extend the results to
the practical case where disturbances exist, a dynam-
ical integrity analysis is developed. After introducing
dynamical integrity concepts, integrity profiles and in-
tegrity charts are drawn. They are able to describe
if each attractor is robust enough to tolerate the dis-
turbances. Moreover, they detect the parameter range
where each branch can be reliably observed in prac-
tice and where, instead, becomes vulnerable, i.e. they
provide valuable information to operate the device in
safe conditions according to the desired outcome and
depending on the expected disturbances.

Keywords Microelectromechanical systems ·
Multistability · Nonlinear dynamics · Dynamical
integrity
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Fig. 1 A schematic of the MEMS device

1 Introduction

Microelectromechanical systems (MEMS) are a
growing area of research. They are a very attractive
technology, with application covering various func-
tions, including sensing and actuation, which may be
applied in a large variety of fields, such as industrial,
communications and bioengineering [1]. Numerous
studies emphasize the importance of accurately pre-
dicting their dynamic behavior. This issue is faced
with various challenges, since the problem is inher-
ently multiphysical [2]. Difficulties are due, for in-
stance, to the intrinsically nonlinear electric excita-
tion, the geometrical nonlinearities, the uncertainties
in the damping estimation, and the imperfections com-
ing from the microfabrication process.

Several nonlinear phenomena may arise in MEMS.
The possibility to exploit them in practice is widely
emphasized in the literature [3–16]. Towfighian et al.
[3] explore the effects of a controller applied in an
electrostatic resonator. A deep parametric analysis de-
tects frequency and magnitude of the electrodynamic
voltage required to develop chaotic oscillations. In
slender shallow arched microbeams [4], Krylov et al.
highlight that this configuration may exhibit a rich
complex behavior, which may include bistable static
deflections and snap-through motion. A careful the-
oretical and experimental investigation is performed
and a satisfactory concurrence of theory and experi-
ments is observed. In a clamped-clamped microbeam
resonator, Mestrom et al. [5] experimentally acquire
the behavior chart reporting the electrodynamic volt-
age and the electrodynamic frequency where the cyclic
fold bifurcations occur. The hysteresis interval is an-
alyzed, which is observed to first increase and then
decrease. Rhoads et al. [6] explore a particular class
of MEMS, which exhibits a wide array of interesting
nonlinear features. The dynamic response is shown to
display not only typical hardening or softening nonlin-
ear characteristics, but also mixed nonlinear ones. The

frequency-dynamic voltage behavior chart underlines
the complexity of the response, which includes Arnold
tongues and saddle-node bifurcations and shows a
strong correlation with the experimental data. Got-
tlieb and Champneys [7] focus on the nonlinear dy-
namics arising in thermoelastic electrically actuated
microbeams. They develop a careful analysis to alert
the escape threshold and shed light on possible exis-
tence of global bifurcations and chaotic transients. In
a MEMS sensor, Alsaleem et al. [8] experimentally
observe jumps, hysteresis, dynamic pull-in, primary
and secondary resonances. The theoretical investiga-
tion provides a satisfactory matching with the exper-
imentation. Moreover, after performing a basin of at-
traction analysis, the safety of the device is discussed
by resorting to integrity profiles. Interesting nonlinear
features are observed also in many other micro and
nanostructures, e.g. in atomic force microscopy [9],
in micro-oscillators [10–13], in microresonators arrays
[14], and in nanosystems [15, 16].

The present paper is motivated by the increas-
ing attention toward describing and predicting the
nonlinear phenomena in MEMS. We deal with an
electrostatically and electrodynamically actuated mi-
crobeam, with some imperfections due to microfabri-
cation. A schematic is illustrated in Fig. 1. Frequency
response diagrams and behavior chart are performed.
They provide a good matching with the experiments.
However, they are not able to forewarn the practical
range of existence of each attractor. A similar discrep-
ancy between the actual and the theoretical response is
observed in many different systems [17]. Its interpreta-
tion calls for additional investigations, where not only
the local but also the global dynamics are examined.
In fact, as observed in Thompson [18], the aforemen-
tioned theoretical investigations do not take into ac-
count the presence of disturbances, which, instead, are
unavoidable in experiments and practice. Disturbances
give uncertainties to the operating initial conditions. If
the safe basin is not sufficiently “robust” to tolerate
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them, the actual response may be completely differ-
ent from what theoretically expected. This idea is ex-
tensively developed through a series of papers, where
dynamical integrity concepts are investigated in depth,
as the issue of a reliable integrity measure [19–21] and
the definition of safe basin [22–24]. We refer to Rega
and Lenci [25] for a deep overview on this topic.

Theoretical simulations based on dynamical in-
tegrity concepts are performed in many different
fields. Soliman and Thompson [26] apply these tools
to investigate the capsize of a ship. They observe that
the safe basin is eroded quite suddenly, which implies
that the wave height corresponding to the capsizes is
really smaller than that one where the final steady state
motions lose their stability. This kind of analysis of-
fered a new approach to the quantification of ship sta-
bility in waves. Infeld et al. [27] analyze the effect
of dam breaking on a symmetric downstream floating
body. They investigate the basin erosion, as caused by
a water surface soliton. The results provide a relevant
guide to design the distance that a marina should keep
from a large dam. In a suspension bridge, De Freitas
et al. [28] focus on the initial conditions in the phase
space where the bridge does not collapse. They high-
light the erosion of this region, which is enhanced by
the appearance of incursive fingers. In a 2-degrees-
of-freedom oscillator, De Souza and Rodrigues [29]
analyze the evolution of the safe basin and depict the
parameter regions where there are rapid or slow losses.
Gonçalves et al. [30] investigate the parametric in-
stability and escape boundaries in an excited cylin-
drical shell. They examine the changes of the basins
of attraction in the four-dimensional phase space and
develop integrity profiles to measure the magnitude
of the safe basin of the various solutions. Analyzing
the dynamical response of a carbon nanotube, Ruzzi-
coni et al. [31] perform a dynamical integrity analysis
via the combined use of different dynamical integrity
tools, in order to investigate the structural safety of
the device from different perspectives. A good con-
currence between dynamical integrity predictions and
experimental data is noticed in Lenci and Rega [32]
in a pendulum parametrically excited by wave motion,
where rotating solutions appear exactly where the dy-
namical integrity is large enough to sustain the exper-
imental imperfections.

Dynamical integrity concepts are applied also in
MEMS devices. Ruzziconi et al. [33], investigating
a MEMS capacitive accelerometer, use this analysis

to interpret and predict the experimental data coming
from a frequency sweeping process. They observe that
the experimental pull-in bands do not overlap to the
classical curves of appearance and/or disappearance of
the attractors, but are anticipated from them. They ex-
actly “follow” the integrity curves, i.e. these curves are
able to alert where the capacitive sensor can be oper-
ated in safe conditions, and where, instead, may prac-
tically fail. Alsaleem et al. [34] further develop these
results, by examining not only a neighborhood of the
primary resonance, but also a neighborhood of the sub-
harmonic one. They highlight that also in this case, the
dynamical integrity analysis is able to accurately pre-
dict the experimental pull-in bands. Settimi and Rega
[35] explore the nonlinear response of a noncontact
atomic force microscope via integrity profiles to en-
sure acceptable safety targets. Ruzziconi et al. [24],
analyzing a MEMS device with bistable static config-
uration, underline that the dynamical integrity analysis
may be used not only to detect the classical problem
of the disappearance of an attractor, but also to predict
the practical jump and the practical escape (pull-in).
Lenci and Rega [36] develop erosion profiles to design
a controller which is able to shift the pull-in threshold
toward higher excitation amplitudes.

In the present study, we perform a dynamical in-
tegrity analysis with the aim of detecting the parameter
ranges where the device may be effectively operated
in practice in safe conditions according to the desired
behavior, and forewarning where, instead, a different
outcome may arise.

The paper is organized as follows. After intro-
ducing the mechanical model (Sect. 2), we analyze
the theoretical multistability (Sect. 3) and the prac-
tical multistability via integrity profiles and integrity
charts (Sect. 4). The main conclusions are summarized
(Sect. 5).

2 Mechanical model

The considered MEMS device consists of a polysil-
icon microbeam actuated by an electrode, placed di-
rectly underneath it on a substrate (Fig. 1). The elec-
trode provides both an electrostatic and an electrody-
namic load, where VDC is the electrostatic voltage and
VAC cos(Ω̂ t̂) is the electrodynamic excitation, with
voltage VAC and frequency Ω̂ . The microbeam is not
straight, but curled up few microns, which is a typical
imperfection due to the microfabrication process. This
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microstructure was previously analyzed in [37, 38]. In
this section we briefly recall the major results, since
they are the starting point of the present paper.

In [37], a deep experimental investigation is devel-
oped. The first symmetric natural frequency is shown
to occur at Ω̂ ∼= 148.32 kHz. In this neighborhood,
several experimental frequency sweeps are performed,
where the electrodynamic voltage is kept constant and
the frequency is increased (forward sweep) or de-
creased (backward sweep) slowly, i.e. quasi-statically.
They are attained at VDC = 0.7 V and VAC = [0;5] V.
Two examples are reported in Fig. 2. All these sweeps
are acquired at about a small constant pressure, by us-
ing a frequency step that is small enough to guaran-
tee the steady-state condition at the end of each step,
where the maximum frequency amplitude of oscilla-
tions is recorded.

Starting from these experimental data, in [38] a
model of the MEMS device is introduced. The mi-
crostructure is simulated as a fixed-fixed microbeam,
with length L and constant rectangular cross-section
of width b and thickness h. The shape imperfections
are expressed by a shallow arched initial shape, delin-
eated as y0(ẑ) = (1/2)y0(1 − cos(2πẑ/L)), where y0

is the maximum initial rise. Residual stresses are rep-
resented by a constant axial load P , which produces
the axial displacement wB at the right end B . The
nondimensional governing equation of the transverse
deflection can be written as

v̈ + ξ v̇ + v′′′′ + α
(
v′′ + y′′

0

) = −γFe (1)

where

α = n − ka

∫ 1

0

(
1

2

(
v′)2 + v′y′

0

)
dz (2)

and

Fe = (VDC + VAC cos(Ωt))2

(d + v(z, t) + y0(z))2
(3)

and the boundary conditions are

v(0, t) = 0, v′(0, t) = 0,

v(1, t) = 0, v′(1, t) = 0.
(4)

In Eqs. (1)–(4) we use the nondimensional variables,
which are related to the dimensional parameters with
hats as

z = ẑ

L
, t = t̂

T
(5)

and we express in microns the remaining variables of
length. The other parameters are

ka = EA

EJ
, γ = 1

2
ε0εrAc

L3

EJ
,

ξ = c
L4

EJT
, (6)

T =
√(

ρAL4
)
/(EJ ), Ω = Ω̂T

where EA is the axial stiffness, EJ is the bending
stiffness, A and J are the area and the moment of in-
ertia of the cross section, E is the effective Young’s
modulus, ρ is the material density, d is the gap width
between the stationary electrode and the ideal straight
configuration, Ac = bL is the overlapped area between
the microbeam and the stationary electrode, ε0 is the
dielectric constant in the free space, εr is the relative
permittivity of the gap space medium with respect to
the free space, and c is the viscous damping coeffi-
cient.

According to [37, 38], the device parameters are
E = 1.66·1011 N/m2 and ρ = 2332 kg/m3 (polysil-
icon material), εr = 1 (air), length L = 440 µm and
width b = 55.8 µm, h = 1.873 µm, y0 = 1.323 µm,
n = 64.274, d = 0.7 µm, and ξ = 0.085. Assuming
the electrostatic contribution negligible, which is the
case here since we deal with small VDC , both the static
nonlinear equation and the eigenvalue problem associ-
ated to the linear unforced undamped dynamics can be
solved in closed form. Consequently, the static deflec-
tion is

vs(z) = 1

2
1.327

(
1 − cos(2πz)

)
(7)

and the first symmetric mode is

φ(z) = 1.1665 sin(7.1172z) + 2.6334 cos(7.1172z)

− 1.4939 sinh(5.5574z)

+ 1.5055 cosh(5.5574z)

− 4.1389 cos(2πz) (8)

These results are collected to generate a reduced-order
model. After approximating the microbeam deflection
as v(z, t) ∼= vs(z) + ∑M

i=1 φi(z)Yi(t), where vs(z) is
the static configuration and φi(z) are the correspond-
ing mode shapes, the single first symmetric mode dy-
namics (M = 1) are considered, the Galerkin tech-
nique is applied. Since the resulting integral term in
the electric contribution is not very practical to be
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computed at each time step, we approximate it by
curve fitting. This yields

Ÿ + 0.085Ẏ + 1564.41Y − 1033.40Y 2 + 209.72Y 3

− 1.33949

(2.05926 − Y)2

(
VDC + VAC cos(Ωt)

)2 = 0

(9)

where Y(t) is the modal coordinate amplitude. It is
worth underlining that this model has many approxi-
mations, since, despite the experimental tests, no infor-
mation is available about the actual dimensions of sev-
eral parameters, e.g. a constant thickness is assumed,
but it could be varying. However, the identification
process used in [38] to extrapolate the unknowns is
very careful in providing a reliable matching with the
experiments.

Equation (9) is the reduced-order model that we
use for the forthcoming simulations. All of them are
mainly performed via self-developed codes imple-
mented in Mathematica and Matlab. Attractor-basins
phase portraits are obtained by the software package
Dynamics [39].

3 Theoretical and experimental multistability

We consider the device response in a neighborhood
of the first symmetric natural frequency and develop a
theoretical investigation, based on frequency response
curves, behavior charts and attractor-basins phase por-
traits, in order to examine the theoretical disappear-
ance of each attractor. This analysis is indispensable
for understanding the dynamics of the device, but is
not enough to predict the experimental range of exis-
tence of each branch.

3.1 The frequency response

To analyze the dynamics, we investigate the frequency
response diagrams, which represent the maximum am-
plitude of the oscillations, i.e. the maximum minus
the minimum of φ(z)Y (t) at each Ω . Two examples
are reported in Fig. 2, which illustrate the response at
VAC = 2.5 V and VAC = 3.5 V, expressed in dimen-
sional form. We can observe the non-resonant branch
(left frequency curve) and the resonant one (right fre-
quency curve). They exhibit the characteristic bend-
ing toward lower frequencies, which is typical of a
softening oscillator. This feature provides an interval

where both the attractors coexist, i.e. two different
kinds of oscillations with different characteristics may
take place at the same values of (Ω,VAC ). This is a
noteworthy aspect of the dynamics, since equips the
device of a certain versatility of behavior, which is
valuable in a variety of applications.

The theoretical frequency response curves are over-
lapped with the experimental data. They show that
the model is able to achieve a very good match-
ing, since theoretical predictions and experimental re-
sponse nearly coincide. All the main features are ade-
quately represented, as the value where the first sym-
metric natural frequency appears, the bending toward
lower frequencies that arises in its neighbourhood
and the separation width between the two branches.
This occurs not only at low electrodynamic voltages
(Fig. 2a) but also at higher ones (Fig. 2b). Of course,
the simulations are not able to catch the 1/3 sec-
ond symmetric superharmonic, which occurs at Ω̂ ∼=
149.5 kHz, and the 1/3 second antisymmetric one,
which occurs at Ω̂ ∼= 145.3 kHz, since Eq. (9) includes
only the single first symmetric mode dynamics. How-
ever, the concurrence of results in all the main rele-
vant nonlinear phenomena confirms our confidence in
the reduced-order model, which is essential to develop
any further investigation.

The comparison between experiments and simula-
tions highlights that the range of existence of each at-
tractor, and consequently the multistability, is smaller
in practice. In the theoretical curves, both the non-
resonant branch and the resonant one loose stability (in
classical sense) by saddle-node (SN) bifurcation, after
which they vanish. In the experiments, the response
directly jumps from a branch to the other one at differ-
ent points from the bifurcation points predicted in the
theoretical curves.

In all the analyzed cases, when an attractor van-
ishes, there is a safe jump to the other branch, and
not dynamic pull-in. Thanks to the large difference be-
tween the maximum amplitude of the two attractors,
the jump is paralleled with a large stroke, which en-
hances the signal-to-noise ratio, i.e. the quality of the
signal. Multistability combined with jumps (with large
stroke) provides an interesting scenario from a practi-
cal point of view, since there is the opportunity to ac-
tivate a hysteretic loop between the non-resonant and
the resonant oscillations. This feature may be desirable
for instance in filters, where we are looking for an in-
terval with large oscillations bounded by ranges with
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Fig. 2 Frequency response diagram (in dimensional form) at (a) VAC = 2.5 V and (b) VAC = 3.5 V. The theoretical results achieved
by Eq. (9) are in black solid line. The experimental sweeps acquired in [37] are in grey stars (forward sweep) and circles (backward
sweep)

small ones, and in detection, where the device is ex-
pected to exhibit a certain motion and to switch into a
different kind of oscillation upon detection of a phys-
ical parameter. Also, the frequency curves achieved
in the present case-study refer to moderately low val-
ues of electrodynamic excitation, i.e. these phenomena
may be triggered at low power consumption, which
is even more desirable. The valuable relevance of all
these nonlinear dynamic features in applications un-
derlines the importance of detecting where the disap-
pearance of each attractor effectively occurs in prac-
tice, and not only in theory, i.e. where we can count on
an effective multistability of attractors and where we
should expect the safe jump between them.

On one hand, the theoretical length of each branch
corroborates the reliability of the model, since it un-
derlines that the simulations are able to catch all the

experimental extent of both the attractors, and not only
a part of it. On the other hand, this discrepancy empha-
sizes the need of additional investigations to be inter-
preted.

3.2 The overall scenario

We focus on the theoretical predictions and develop a
behavior chart to illustrate the overall scenario of the
main dynamical events, when both the electrodynamic
voltage and the frequency are varying. This is reported
in Fig. 3 along with the measured experimental data
[37]. Operatively, the chart is obtained by perform-
ing many frequency response diagrams, like those in
Fig. 2, by detecting the frequency Ω and the voltage
VAC where each attractor theoretically disappears, and
by reporting these coordinates in the (Ω,VAC ) space.
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Fig. 3 Behavior chart showing the nondimensional frequency versus the dynamic voltage. The experimental disappearance of the
non-resonant and resonant branch is represented, respectively, in diamonds and circles

In the neighbourhood of the resonance, at (Ω,VAC )
approximately equal to (39.6,0.14), we can observe
the degenerate cusp bifurcation point where the non-
resonant and the resonant attractor separate. At this
point, the theoretical appearance and/or disappearance
of the non-resonant and the resonant branch coincides.
Beneath this voltage threshold, the response of the sys-
tem presents only one branch, whereas, beyond it, it
splits into the non-resonant and the resonant one, and
both of them need to be examined. The curves denote
their theoretical bounds of existence. The region where
the non-resonant attractor exists is located at the left
hand side of the chart, from the unforced dynamics to
its SN bifurcation (SN non-res). The resonant one, in-
stead, appears at its SN (SN res) and extends its range
of existence beyond this line, throughout all the right
hand side of the chart, up to exceed the analyzed pa-
rameter range.

The two curves of SN bifurcation delimitate the
range of parameters where both the non-resonant and
the resonant oscillations coexist, i.e. where the theo-
retical simulations predict multistability of behavior
in the device response. The chart clearly illustrates
the considerable enlargement of the range of multista-
bility, which gradually characterizes wider and wider
frequency values, when increasing VAC . This phe-
nomenon is deeply influenced by the resonant branch,
since a slight increment of VAC provides a large shift
of its SN bifurcation toward lower frequency values,

which significantly broadens the range of existence
of the attractor. The non-resonant branch, instead, re-
duces its extent when VAC increases, but this decre-
ment is not substantial.

In addition to the theoretical results, in the chart
we show the (Ω,VAC ) values where the non-resonant
and the resonant attractor experimentally disappear,
which are denoted, respectively, with diamonds and
circles. They are extracted from the experimental data
in [37] by repeating the same procedure used to pro-
vide the theoretical curves. The experimental bands
of disappearance of each branch do not coincide with
the theoretical ones, but are slightly shifted from them
and occur in the region where each attractor is the-
oretically expected to exist. This is because, as pre-
viously observed, the peaks in the experimental fre-
quency sweeps do not coincide with the peaks in the
theoretical frequency responses.

3.3 Attractor-basins scenario

To understand the previous discrepancy between the-
oretical predictions and experimental data, it is es-
sential to analyze the device response not only lo-
cally, by studying each single attractor, but also glob-
ally, by focusing on the attractor-basin scenario. For
this reason, we systematically perform attractor-basins
phase portraits to achieve detailed information about
the global dynamics. In Fig. 4 we show some exam-
ples at VAC = 3.5 V. The basins are orange and green,
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Fig. 4 Attractor-basins phase portrait at VAC = 3.5 V and (a) Ω = 38; (b) Ω = 38.8; (c) Ω = 39; (d) Ω = 39.22

respectively, for the non-resonant and the resonant
branch. The white color denotes a third scenario, the
escape, where the system experiences dynamic pull-in.

Approaching the resonance, the resonant branch
appears. At Ω = 38 (Fig. 4a), its basin is still rather
narrow, whereas the other basin is particularly wide.
Increasing Ω , this outline rapidly changes. At Ω =
38.8 (Fig. 4b), the two basins are comparable. Each
one of them presents a compact area, which is appre-
ciably large and mainly develops around the attractor,
and a non-compact one, which is even wider and con-
sists of thin tongues spiraling around the compact part.
A wide compact part is very important to reliably oper-
ate the device. In fact, disturbances inevitably give un-
certainties to the operating initial conditions. The wide
compact area is essential to tolerate them since all the
initial conditions in this area reach the same attractor at
steady dynamics. Conversely, the non-compact region
is sensitive to disturbances, because a small shift in

the initial conditions may lead to a different outcome.
Further increasing Ω , the basin and the compact part
of the resonant branch significantly enlarges at the ex-
pense of the basin of the non-resonant one, which con-
siderably shrinks. At Ω = 39 (Fig. 4c) the magnitude
of this last basin is still wide. At Ω = 39.22 (Fig. 4d),
instead, it becomes nearly residual. The experimen-
tal disappearance of the non-resonant branch exactly
occurs at Ω = 39.08 (Ω̂ = 146.55 kHz), i.e. between
these two last scenarios, where the compact area of
its basin becomes too small and vulnerable to distur-
bances. Similarly, the resonant branch experimentally
disappears at Ω = 38.59 (Ω̂ = 144.71 kHz), which is
in the interval between Fig. 4a and Fig. 4b.

For the sake of completeness, it is worth observing
that, at the experimental disappearance, each attractor
and the compact part of its basin are located far from
the escape. They are immersed and surrounded by the
other basin. This guarantees the safe jump between the
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two branches, as observed in the experimental data.
However, further amplifying the electric excitation be-
yond the analyzed range, the resonant attractor and its
basin turn closer and closer to the escape (not shown in
the figures). When an attractor disappears, this outline
may prevent the safe jump and may directly lead to the
unsafe dynamic pull-in, i.e. the failure of the device.

4 Practical multistability

In Sect. 3, we can observe that the extent of each
branch is longer in the numerical simulations than
in the experimental data. This is because numerical
simulations are theoretical limits. They do not con-
sider the inevitable presence of disturbances, which
are unavoidable in experiments and applications. To
take them into account and explore their effects, we
develop a dynamical integrity analysis, based on in-
tegrity profiles and integrity charts, in order to predict
the range of existence of each attractor in practice.

4.1 Disturbances

Many sources of disturbances are inevitably encoun-
tered in microstructures in experiments and applica-
tions. Before performing the dynamical integrity anal-
ysis, it is worth providing some examples to highlight
them.

Disturbances may arise in the initial conditions.
For instance, the following of the attractor in the
frequency response is experimentally achieved via a
sweeping process, which is based on varying the fre-
quency through discontinuous steps. This procedure
inevitably induces perturbations in the initial condi-
tions. In all the sweeps in [37], much attention is de-
voted in decreasing this kind of disturbances, e.g. by
choosing a small frequency step and by applying a
large settling time to ensure steady state, in order that
the experimental data are as much reliable as possible.
Despite the efforts to reduce disturbances, they can-
not be completely cancelled. If the considered attrac-
tor is not provided of a large “safe” basin, the attractor
may not be able to tolerate perturbations. This shrinks
the actual range of existence of the considered attrac-
tor. The response may switch to another final behavior,
and the resulting outcome may differ from the theoret-
ical predictions. The theoretical analysis conducted in
Sect. 3 is not able to catch this aspect, since it predicts

the disappearance of an attractor at the same values of
(Ω,VAC ), both in case of a large and a small frequency
step.

In addition to disturbances in the initial conditions,
we have to mention also at least another source of un-
certainty. This is represented by the slight imperfec-
tions of the device with respect to the considered the-
oretical model, e.g. the approximations in estimating
the damping, in deriving the model, in identifying the
unknown parameters, etc. These disturbances are con-
ceptually different from the previous case, since refer
to small perturbations in the structure. Nevertheless,
they are unavoidable as well. They coexist and mix
with the previous ones. For this reason, the dynamical
integrity is called to take all of them into account.

4.2 Integrity profiles

In this section we perform the dynamical integrity
analysis. In particular, after introducing the dynamical
integrity tools of safe basin and dynamical integrity
measure, we develop integrity profiles to investigate
the loss of structural safety.

It is worth underlining that our aim is to detect the
parameter ranges where each branch may practically
(and not theoretically) vanish because of the presence
of disturbances. Therefore, we use the dynamical in-
tegrity analysis to investigate the phenomenon of dis-
appearance of each attractor (and not other phenom-
ena, as the jump or the dynamic pull-in). To this pur-
pose, we consider both the non-resonant branch and
the resonant one, and investigate each one of them, one
by one, separately.

The safe basin is the set, in the phase space, of all
the initial conditions sharing a certain property. Many
different definitions of safe basin have been consid-
ered in the literature [22–24], according to which safe
condition is desired to be investigated. In the present
case-study, since we focus on the existence and/or dis-
appearance of each single attractor, the safe condition
is represented by having, at the steady-state dynamics,
the motion under consideration, whereas the unsafe
condition is represented by other motions (the other
bounded oscillation or the escape). Hence, for each at-
tractor, we assume as safe basin its own basin of at-
traction.

We measure the dynamical integrity by using the
Local Integrity Measure (LIM) introduced by Soliman
and Thompson [19]. The LIM is the normalized min-
imum distance from the attractor to the boundary of
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Fig. 5 Attractor-basins phase portrait at (Ω;VAC ) equal to
(38.85;5) with examples of circles for the evaluation of LIM

the safe basin, i.e. the radius of the largest circle en-
tirely belonging to the safe basin and centered at the
attractor. Examples of circles used in the definition of
LIM are reported in Fig. 5. We normalize each radius
with the analogous radius drawn for the non-resonant
branch at (Ω;VAC ) equal to (44;0.01), i.e. next to the
unforced dynamics and far from resonance.

The LIM is an appropriate measure for our case.
It takes into account the steady-state dynamics, con-
siders only the compact ‘core’ of the safe basin and
rules out the non-compact regions, which are danger-
ous in practice. Thus, it is suitable for the analysis of
these experimental data, since they are coming from
a sweeping process, where at the end of each step
the system is in steady-state conditions. Nevertheless,
other measurements could be accurate; for instance the
Integrity Factor proposed by Lenci and Rega in [20].

To analyze the structural safety of the device, we
build integrity profiles, where we report the LIM as
a function of the frequency, at a certain fixed VAC

value. Operatively, once fixed VAC , each integrity pro-
file is obtained by performing many attractor-basins
phase portraits, which are sampled using a grid in the
frequency of 
Ω = 0.1 (or less), by computing the
LIM (normalized radius) for both the non-resonant
and the resonant branch, and by plotting LIM versus
frequency. The obtained profiles are reported in Fig. 6.

We focus on the resonant branch and analyze the
range Ω = [37.8;39.3], Fig. 6a. As an example, we
consider the profile at VAC = 3.5 V. At Ω = 39.1,
there is LIM ∼= 15 %, which is not particularly wide,
but is still large enough to guarantee the attractor to be

experimentally visible. Decreasing Ω , the LIM slides
down to smaller values. This fall is gradual but inex-
orable. It produces a significant deterioration in the
reliability of the attractor, because it now has a nar-
row safe basin. The smaller integrity enhances the sen-
sitivity of the system to unexpected excitations, and
eventually makes the attractor vulnerable to the exper-
imental disturbances. The experimental disappearance
of the resonant branch exactly occurs in this range, at
Ω = 38.59, with LIM ∼= 6.64 %. The last part of the
integrity profile is characterized by a tiny dynamical
integrity. The LIM keeps decreasing, but slowlier, up
to the disappearance of the attractor (not shown in the
figure). Since the dynamical integrity is only residual,
this remaining theoretical range of existence of the at-
tractor cannot be caught in practice by the sweeping
process.

Comparing the frequency response (Fig. 2b) to the
integrity profile (Fig. 6a) when Ω decreases, the am-
plitude of the resonant oscillations gradually increases
while the dynamical integrity drops. Moderately large
motions can still be experimentally observed, since
they are equipped with an acceptable integrity. How-
ever, considerably larger vibrations do not exist from
a practical point of view, since they are not robust
enough to tolerate disturbances.

Varying the electrodynamic voltage, the scenario
in Fig. 6a practically remains unchanged, except for
some minor differences. At VAC = 2.5 V, the range
with negligible LIM is nearly imperceptible, then, it
progressively enlarges. When increasing VAC , the val-
ues of LIM corresponding to the experimental disap-
pearance slightly increase, but remain confined in a
precise and very narrow interval, LIM = 6.2–6.8 %.
This is in agreement with the experimental data, since
these frequency sweeps are acquired under very sim-
ilar experimental conditions (e.g. with the same fre-
quency step, at about same pressure, etc.), and there-
fore, the attractor is expected to disappear in the ex-
periment at about the same level of integrity. Only ex-
ceptions occur at higher VAC , in particular at VAC =
4.5 V, where the resonant branch disappears at LIM
∼= 7.5 %, and at VAC = 5 V, where it disappears at
LIM ∼= 8.9 %. These values are slightly higher, but
not excessively. This fact may be due to the model.
As explained in Sect. 2 and underlined in [38], we are
aware that the present model has many approxima-
tions, since many physical parameters are unknown.
Raising VAC , the effects of the nonlinearities increase
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Fig. 6 Integrity profiles for (a) the resonant branch and (b) the non-resonant one, at different VAC values

and the effects of the approximations of the model am-
plify, which affects the reliability of the results. Nev-
ertheless, it may be related also to deterioration of the
device, which is due to the multiplicity of the per-
formed experiments. Note that the experimental back-
ward sweep at VAC = 5 V was the last sweep that we
were able to achieve, after which the microstructure
broke.

A similar dynamical integrity analysis is developed
for the non-resonant branch. According to the remarks
in the attractor-basins phase portraits (Figs. 4), the
compact part of its basin strongly reduces very close
to the curve of disappearance, which may make the
attractor vanish in practice in this neighborhood. On
the contrary, slightly far from this curve, this attractor
has a basin with a large compact part, since the reso-
nant branch either does not exist or has a small basin.
Consequently, in this range the attractor is expected
to have a broad dynamical integrity, i.e. to be robust
and not vulnerable to disturbances. For this reason,

in the non-resonant case, we can investigate the dy-
namical integrity in a smaller interval than in the reso-
nant one. In particular, we consider Ω = [38.3;39.35],
since this is the most critical range where the attractor
needs to be analyzed from a dynamical integrity per-
spective (Fig. 6b).

The integrity profiles are slightly different from
those of the resonant attractor. Considering VAC =
3.5 V at increasing Ω , the integrity curve initially de-
clines slowly, then descends more rapidly, and finally
drops abruptly within a narrow range, which directly
ends with the theoretical SN bifurcation. The experi-
mental disappearance occurs at LIM ∼= 17.7 %. This
general outline does not substantially change by vary-
ing VAC . Similarly to the resonant branch, when VAC

increases, the experimental disappearance occurs at a
slightly higher LIM. Nevertheless, we can identify a
precise range where the attractor experimentally van-
ishes in all the analyzed frequency sweeps, LIM =
16–19 %. Even if this interval is slightly larger than
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that one observed for the resonant branch, it corre-
sponds to a small band of frequency, where the attrac-
tor may practically vanish.

Note that there is a very relevant difference in
the dynamical integrity scenario between the two
branches. The loss of robustness is very rapid in the
non-resonant case. In the resonant one, instead, the fall
is considerably slow, and, consequently, a small inter-
val of LIM denotes a broad band of frequency. Hence,
accuracy in detecting the LIM is particularly valuable
in the resonant branch, more than in the non-resonant
one.

4.3 Integrity charts

To have a detailed description of the loss of struc-
tural safety when both the frequency and the electro-
dynamic voltage are varying, we make the integrity
charts in Fig. 7. They are obtained by performing sev-
eral integrity profiles at different values of VAC , with
step 
VAC = 0.5 V, and by plotting the curves of con-
stant percentage of LIM. They summarize the overall
scenario.

We can observe that the experimental data “follow”
exactly these curves. In the resonant branch, Fig. 7a,
safe conditions are ensured at LIM > 8 % (except at
VAC = 5 V). Below this percentage, the attractor be-
comes practically vulnerable, since the safe basin is
not sufficiently robust to tolerate the disturbances. It is
at about LIM = 6–8 % that, in practice, the final mo-
tion may become different from the theoretical pre-
dictions, leading to a jump to the other branch. The
last range with LIM < 6 % actually does not exist
under realistic conditions, with these expected distur-
bances. Similarly, the non-resonant attractor, Fig. 7b,
can safely operate the device up to LIM > 20 %. Then,
the LIM drops faster (the lines of constant percent-
age of LIM are closer and closer) up to the disap-
pearance of the attractor (at SN non-res). At about
LIM = 15–20 %, which corresponds to a tiny fre-
quency range, the response jumps to the other branch.
The final range of existence of the attractor is only the-
oretical.

These results highlight that, despite numerous un-
certainties in the model, dynamical integrity is able
to detect a precise range of LIM, which corresponds
to a certain range of frequency, where we can expect
to observe the experimental disappearance of the ana-
lyzed attractor. Beneath this interval, the branch prac-

Fig. 7 Frequency-dynamic voltage integrity charts for the
practical disappearance of the attractors: (a) resonant branch;
(b) non-resonant branch

tically does not exist, although it appears in the the-
oretical predictions. Therefore, this analysis is able
to provide a satisfactory interpretation of the distur-
bances inevitably encountered in the experimentation.
Of course, the more accurate is the model, the more
precise will be the dynamical integrity analysis in pre-
dicting the threshold of practical disappearance.
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Hence, Eq. (9) is able not only to predict the general
outline of the frequency sweeps, but also to provide re-
liable (and not rough) predictions of the experimental
extent of each branch. Note that, up to VAC = 4.5 V,
the practical disappearance occurs within a very small
range of LIM. After this VAC value, the range grad-
ually enlarges, both in the non-resonant and in the
resonant branch. Thus, the dynamical integrity anal-
ysis may be used also as a valuable tool to denote the
threshold of applicability of the model, since is able to
detect the voltage boundary after that the model slowly
starts to decrease its accuracy. In the present case, this
threshold practically covers all the range with avail-
able experimental data.

We can observe that each integrity chart sketches
not only the curves detecting the range of experimen-
tal disappearance of each attractor, but also many other
curves at different values of constant percentage of
LIM. Accordingly, each chart is able to abstract from
the particular case-study and examine a more general
scenario, where different disturbances are assumed. It
illustrates that the wideness of the range where each
attractor practically exists may be enlarged (reduced)
by decreasing (increasing) the disturbances. It predicts
the expected boundaries of disappearance of each at-
tractor. Therefore, each chart may serve as a guideline
for the design, since, depending on the magnitude of
the expected disturbances, it can be used to establish
safety factors in order to operate the device in safe con-
ditions with the desired behavior.

The final scenario is schematically summarized in
Fig. 8, where we report the major results. For each at-
tractor, the integrity curves divide the region of its the-
oretical existence into two different areas: the area of
practical existence and the area of practical disappear-
ance. In the range of practical existence, the attractor
can be reliably observed under realistic conditions, be-
cause it is robust enough to tolerate the inevitable dis-
turbances. In the range of practical disappearance, the
attractor exists in the theoretical predictions but can-
not be used in practice, because is practically vulner-
able. To operate the device in safe conditions with a
certain final motion, this last region has to be avoided.
This area may be quite narrow, as for the non-resonant
attractor, or wide, as for the resonant one, where the
range where we can rely on the attractor is consider-
ably reduced. Thus, these curves detect the practical
bounds of existence of each attractor, identify where
only the non-resonant branch can be experimentally

Fig. 8 Schematic integrity chart. The white region represents
the parameter range where only one branch (non-resonant or
resonant) exists both in theory and in practice. The light grey re-
gion represents the range where only one branch exists in prac-
tice, whereas the other one (expressed in brackets) practically
disappears. The region where both the branches practically co-
exist is dark grey

observed, where only the resonant one, and where,
instead, they actually coexist, and underline that, be-
cause of disturbances, the range of practical existence
is inevitably a subset of the range of theoretical one.

5 Conclusions

A MEMS device based on an imperfect microbeam
electrically actuated has been investigated in a neigh-
borhood of its first symmetric natural frequency. The
experimental data of a frequency sweeping process
have been interpreted and predicted via a dynamical
integrity analysis.

After introducing a reduced-order model, we have
developed an extensive investigation of the theoreti-
cal response. Frequency response curves and behavior
charts have been performed. This analysis is essential
to understand the dynamics arising in the device and
to confirm the reliability of the reduced-order model.
It provides a very detailed description of the overall
scenario when both the frequency and the electrody-
namic voltage are varying. Nevertheless, despite the
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very good matching between theoretical results and
experimental data, we have observed that the attractors
in the experiments have a smaller range of existence
than in the theoretical predictions. This is because all
these results do not consider the presence of distur-
bances. They may come from many different areas,
ranging from the discontinuous frequency steps in the
sweeping process, to the approximations in the mod-
eling, uncertainties in the shape, material properties,
damping estimation, etc. Their presence is unavoid-
able in experiments and practice.

To take them into account, we have introduced a dy-
namical integrity analysis, which is able to investigate
the practical response under realistic conditions. We
have focused on the practical disappearance of each at-
tractor. The definition of the safe basin and the choice
of the integrity measure have been selected in order
to establish a continuous parallelism between dynami-
cal integrity tools and experimental frequency sweeps.
Many integrity profiles have been performed. We have
highlighted that they provide quantitative information
about the practical loss of structural safety. Moreover,
they are able to describe and forewarn the experimen-
tal disappearance of each attractor.

All these results have been collected in the integrity
charts. They are able to predict, properly and accu-
rately, the final behavior of the MEMS device. They
detect the range of LIM where each attractor practi-
cally vanishes, i.e. they tell in advance at what per-
centage of LIM the jumps will happen. They identify
the threshold which separates the area of practical ex-
istence, where the attractor can safely operate the de-
vice, from the area of practical disappearance, where
the attractor becomes vulnerable to disturbances. We
have observed that the practical range of existence of
each branch (and, consequently, the practical range of
multistability) is smaller, and sometimes remarkably
smaller than the theoretical one.

We have highlighted the valuable information pro-
vided by these charts for the engineering design. In
fact, they may be used to predict the experimental re-
sponse under different experimental conditions, i.e. to
establish factors of safety to operate the device reliably
in safe conditions, depending on the expected distur-
bances.

We have stressed that this study cannot prescind
from a good classical modeling, since the more accu-
rate is the mechanical modeling, and the more precise
is the dynamical integrity analysis in predicting the ex-
perimental response.

Therefore, the integrity charts are able both to inter-
pret the experimental data, and to predict the expected
behavior when varying the experimental disturbances,
and to detect the range of applicability of the model,
after which the theoretical results slowly start to de-
crease their accuracy.

Summarizing, in this paper, by investigating the re-
sponse of a particular MEMS device, the issue of ex-
ploring the dynamical integrity in a system has been
addressed and its efficiency in the design to operate the
structure according to the desired outcome has been
highlighted. We have underlined the large applicability
of this analysis both in MEMS and, more in general,
in systems.
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