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Abstract In this work (also, preprint ANL/MCS-
P3020-0812, Argonne National Laboratory) we intro-
duce a complementarity-based rolling friction model
to characterize dissipative phenomena at the interface
between moving parts. Since the formulation is based
on differential inclusions, the model fits well in the
context of nonsmooth dynamics, and it does not re-
quire short integration timesteps. The method encom-
passes a rolling resistance limit for static cases, similar
to what happens for sliding friction; this is a simple
yet efficient approach to problems involving transi-
tions from rolling to resting, and vice-versa. We pro-
pose a convex relaxation of the formulation in order
to achieve algorithmic robustness and stability; more-
over, we show the side effects of the convexification.
A natural application of the model is the dynamics
of granular materials, because of the high computa-
tional efficiency and the need for only a small set of
parameters. In particular, when used as a microme-
chanical model for rolling resistance between granular
particles, the model can provide an alternative way to
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capture the effect of irregular shapes. Other applica-
tions can be related to real-time simulations of rolling
parts in bearing and guideways, as shown in exam-
ples.
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1 Introduction

Rolling resistance has attracted the interest of re-
searchers since the early ages of applied mechanics [8,
26, 37]. During the past two centuries many models
have been proposed, depending on the required level
of detail and on the type of phenomena that cause the
rolling resistance; usually the number of parameters
increases with the complexity of the model. At one
end of the spectrum, for instance, there is case of the
rolling tire, which often requires sophisticated models
with a large number of parameters [24]. In this work,
on the other hand, we are interested in a model that
has a small number of parameters but is easily appli-
cable to problems with large number of parts, or with
requirements of high computational efficiency in gen-
eral. Superior performance stems from the adoption
of a set-valued formulation that finds the solution in
terms of a complementarity problem.

The advantages of a complementarity-based rolling
friction model are multiple: it encompasses both the
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moving and the static cases, it does not require regu-
larization and stiff force fields, it is an intuitive exten-
sion of the classic Coulomb-Amontons sliding friction
model to the rolling case, and it requires few param-
eters. A literature search reveals only a few contribu-
tions on this topic; among these we cite the relevant
work of [20].

A complementarity-based model can be particu-
larly useful in simulations that require algorithmic ro-
bustness and efficiency, such as in real-time simula-
tors, robotics, and virtual and augmented reality. To
this end we present an application of the method to the
efficient simulation of a linear guideway with recircu-
lating ball bearings.

Another motivation, also discussed in this paper,
is the simulation of rolling resistance among a large
number of parts. This happens, for example, when
studying granular materials, such as in the interaction
between machines and soils (tracked vehicles on sand,
tires on deformable ground, etc.) In the context of
granular material dynamics, rolling friction between
microscopic spherical particles has the side effect of
approaching, on a macroscopic scale, the same global
behavior of the granular assembly if it were modeled
with many faceted irregular shapes: there exists a rela-
tion between the degree of irregularity of the surfaces
and the rolling friction coefficient [9].

In the literature, typical approaches to the simula-
tion of contacts are based on the regularization of con-
tact forces; such forces, which are discontinuous in na-
ture, are approximated by smooth functions. Smooth-
ness allows the problem to be dealt as system of ordi-
nary differential equations (ODEs), the drawback be-
ing that the resulting ODEs, while tractable, are stiff,
thereby requiring short timesteps and leading to high
computational times [12]. The adoption of implicit
integrators might alleviate, but not eliminate, the is-
sue of stiffness. For instance, since the seminal work
of [7], most implementations of the discrete element
method (DEM) for the simulation of granular materi-
als are based on regularization of contact forces and
stiff ODEs. For very large systems, regardless of the
fact that one can exploit powerful hardware, the com-
putational time can be so high that some problems be-
come untractable.

For this reason in [32] we proposed an approach
based on differential variational inequalities (DVIs), as
an alternative to the classical regularization-based ap-
proaches. The DVI approach, whose capabilities are

not necessarily confined to granular problems, is a
recent general way of dealing with nonsmooth me-
chanical problems; the approach encompasses ODEs
as subcases as well as complementarity-based meth-
ods. In DVIs one can describe forces by means of set-
valued functions (multifunctions) that capture the non-
smooth nature of models such as the Signorini con-
tact law or the Coulomb friction; no stiff regulariza-
tions of discontinuities are needed because disconti-
nuities are presented directly as complementarity con-
straints. Large timesteps are allowed, but at the cost
of solving a variational inequality problem (a com-
plementarity problem, in the simplest case) for each
timestep [25].

A generic variational inequality (VI) is a problem
of the type

u ∈ K: 〈
F(u),y − u

〉 ≥ 0 ∀y ∈ K (1)

given a closed and convex K ∈ R
n set, and given a con-

tinuous F(u) : K → R
n. We call SOL(K,F ) the solu-

tion of problem (1). Variational inequalities are pow-
erful mathematical tools that have recently been used
also in game theory, continuum mechanics and other
scientific fields; a good reference is [18].

Assuming that the state of the system is defined by
x, one can define a DVI as the problem of finding the
function x on [0, T ],
dx
dt

= f (t,x,u) (2)

u ∈ SOL
(
K,F

(
t,x(t), ·)), (3)

along with boundary conditions Γ (x(0),x(T )) = 0.
For the class of mechanical problems that we are inter-
ested in, for example, the state can be x = {qT ,vT }T ,
with positions q and velocities v, and with u as the set
of reaction forces, that must satisfy a VI. References
about DVIs can be found in [28, 29]; details about
their practical implementations in terms of timestep-
ping schemes can be found, for instance, in [3, 11, 16,
25, 30, 31].

In the following we show that the introduction of
set-valued rolling friction does not affect overly the
complexity of the original DVI problem; the computa-
tional requirements are simply doubled with respect to
the case of just sliding friction. Also, spinning friction
(also known as drilling friction) can be added easily in
a similar way.
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Fig. 1 Rolling friction. Two examples in the two-dimensional
case

2 Set-valued rolling friction

In this paper we use set-valued functions to model
rolling contact forces between rigid parts. Such model
has mathematical similarities with the model for slid-
ing friction in the Amontons-Coulomb theory; simi-
lar to the Amontons-Coulomb friction model, the pro-
posed approach requires a small number of parameters
to describe the rolling resistance effect.

2.1 Rolling friction phenomena

Although the nonsmooth nature of the sliding fric-
tion is evident in nature, because the friction force is
abruptly clamped to a maximum value as soon as the
objects start sliding, the same sharpness is not evident
in the experimental observation of the rolling friction,
because rolling friction effect increases smoothly as
the rolling speeds increases. In fact, resistance to the
rolling motion usually takes place because in the con-
tact area there may be inelastic deformations of elasto-
plastic materials [24]: the final outcome of this hys-
teric deformation is that the resultant of all pressures is
always placed a bit ahead of the position that it would
take if the parts were not rolling.

Many classical textbooks about applied mechanics
[8, 26, 37] describe a simplified model for this effect,
considering a rolling wheel of radius R and express-
ing the displacement of the contact force by a sin-
gle friction parameter ρ, which has the dimension of
length, or by a dimensionless coefficient of rolling fric-
tion fρ = ρ/R. The latter is also meant to allow an
easy comparison with sliding friction: Given a normal
force N acting on a rolling disc, the horizontal force
that is needed to keep it rolling at constant speed is
T = fρN (see Fig. 1), similar to the Coloumb sliding
friction case, T = fsN , with fs the coefficient of dry
sliding friction. Equivalently, the effect of T on the

disc can be replaced with a tractive torque M = T R,
that is, M = fρNR or

M = ρN. (4)

This model is highly nonlinear because it states that
the displacement, whose amount is ρ regardless of the
speed, has to change direction when the rolling speed
changes sign and must go to zero if there is no rolling
speed. This tristate model cannot be used practically
within a general-purpose numerical simulation frame-
work because scenarios often occur where a sphere or
a disc should come to rest over a horizontal surface:
since numerical roundoff considerations make impos-
sible that the speed will be exactly null, the speed may
actually oscillate around the null value, but even small
oscillations will change the sign of the rolling speed
and, consequently, also the displacement of the contact
force will oscillate over the endpoints of the −ρ,+ρ

interval. The final result will be numerically unstable.
For this reason, we express the rolling friction

model (4) as the following constraint with inequality

‖M‖ ≤ ρ‖N‖,
‖ωr‖(ρN − M) = 0, Mωr ≤ 0,

(5)

where ωr is the rolling angular velocity, which must be
opposite to the rolling resistant moment M . The third
condition of Eq. (5) can also be written as 〈M,ωr〉 =
−‖M‖‖ωr‖.

Note that for whatever positive or negative rolling
speed, this model corresponds to the classical rolling-
friction model (4), but for the transition from steady
state to moving state it changes the displacement in the
[−ρ,ρ] limit. With this improvement, the model can
be seen as the counterpart of the Amontons-Coulomb
friction model, because both can consider the static
case.

2.2 Three dimensional rolling friction model

For extending the two-dimensional rolling friction
model to the generic case of contact between shapes
in three-dimensional space, we introduce the follow-
ing assumption.

Assumption A1 The resisting torque is opposite to
the relative (rolling) angular velocity of the two bod-
ies, if any.
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Although Assumption A1 is always verified for 2D
problems, in some three-dimensional problems the re-
sisting torque can be misaligned with respect to the
relative angular velocity. See Appendix A for a deriva-
tion of the relative angular velocity.

In cases with plane symmetry in the surround-
ings of the contact (for instance if the area of con-
tact between two rolling bodies is an ellipse aligned
to the rolling direction and the material properties are
anisothropic), the speed of deformation of the mate-
rial is symmetric with respect to the plane of rotation,
thus resulting in a symmetric pressure distribution at
the area of contact, regardless of the type of viscous
constitutive law of the material. In this case, Assump-
tion A1 is always verified. This happens, for exam-
ple, in case of spheres that are in contact, each with
anisothropic material, or in spheres that are rolling on
flat surfaces.

Another special case that has much relevance in en-
gineering applications is the contact between two sur-
faces that can be locally approximated as two cylin-
ders with parallel axes. This happens, for instance, in
cam followers and in rollers over flat surfaces. In these
cases, the torque is aligned to the rolling angular ve-
locity.

In other situations, such as in the case of two
generic ellipsoids, the pressure distribution in the area
of contact (that is elliptical and not necessarily with
one of its main axes aligned to the direction of rolling)
generates a normal reaction whose offset with respect
to the plane of contact might be not aligned to the di-
rection of rolling, thus resulting in a resisting moment
that is not exactly aligned to the vector of the angular
velocity.

Given the ith contact, among two bodies A and B ,
let ni be the normal at the contact point, directed to-
ward the exterior of the A body. Let ui and wi be two
vectors in the contact plane such that ni ,ui ,wi ∈ R

3

are mutually orthogonal vectors.
The signed gap function Φi represents the con-

tact distance. For each contact that is active (that is
Φi(·) = 0 because bodies are touching), we introduce
the contact forces, while inactive contacts (Φi(·) > 0)
do not enforce any reaction.

The normal contact force is Fi
N = γ̂ i

nni , where
γ̂ i
n ≥ 0 is the multiplier that represents the modulus

of the reaction. Friction force, if any, is represented by
the multipliers γ̂ i

u , and γ̂ i
w which lead to the tangential

component of the reaction Fi
T = γ̂ i

uui + γ̂ i
wwi .

Because of the inequality γ̂ i
n ≥ 0, the mathematical

description of this unilateral model involves the Sig-
norini complementarity problem [30]:

γ̂ i
n ≥ 0 ⊥ Φi(·) ≥ 0. (6)

We introduce the rolling friction torque using the
multipliers τ̂ i

n, τ̂ i
u, and τ̂ i

w , which correspond to a nor-
mal component of the torque Mi

N = τ̂ i
nni and two tan-

gential components of the torque Mi
T = τ̂ i

uui + τ̂ i
wwi .

The normal component of the torque Mi
N is re-

sponsible for friction that reacts to spinning around
the vertical axis, while the tangential component
Mi

T = τ̂ i
uui + τ̂ i

wwi is the effect of the classical rolling
friction. The model (5) is extended to the three-
dimensional case, the following inequality holds for
nonzero rolling velocity.
∥∥Mi

T

∥∥ ≤ ργ̂ i
n

This corresponds to the inequality ρiγ̂ i
n ≥

√
τ̂ i
u

2 + τ̂ i
w

2.

The rolling velocity vector ωi
T is the part of the rel-

ative angular velocity vector ωi
r that lies on the contact

plane, that is, ωi
T = ωi

r − ni〈ωi
r ,ni〉; the condition that

requires ωi
T to be aligned and opposite to Mi

T can be
expressed as
〈
Mi

T ,ωi
T

〉 = −∥∥Mi
T

∥∥ ∥∥ωi
T

∥∥.

Therefore, the full rolling friction model for a con-
tact with rolling friction parameter ρi is mathemati-
cally equivalent to the following constraints:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρi γ̂ i
n ≥

√
τ̂ i
u

2 + τ̂ i
w

2

‖ωi
T ‖(ρi γ̂ i

n −
√

τ̂ i
u

2 + τ̂ i
w

2
) = 0,

〈Mi
T ,ωi

T 〉 = −‖Mi
T ‖ ‖ωi

T ‖.
(7)

Additionally, one can introduce the spinning fric-
tion, represented by a parameter σi , giving
⎧
⎪⎨

⎪⎩

σ iγ̂ i
n ≥ τ̂ i

n

‖ωi
N‖(σ i γ̂ i

n − τ̂ i
n) = 0,

〈Mi
N ,ωi

N 〉 = −‖Mi
N‖ ‖ωi

N‖.
(8)

Rolling contacts can be either sliding or not slid-
ing. In the former case there could be also tangential
forces caused by dynamical friction; in the latter case
there could be forces caused by sticking, the conse-
quence of static friction. Therefore we must introduce
the Amontons-Coulomb friction model to take care of
the tangential forces, either sliding or static.
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Within the classic theory of dry friction, the fric-
tion coefficient μi limits the ratio between the normal
and the tangential force, and the tangential force must
have a direction that is opposite to vi

T , the tangential
component of the relative velocity vi

r , if any, thus re-
quiring

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μiγ̂ i
n ≥

√
γ̂ i
u

2 + γ̂ i
w

2

‖vi
T ‖(μi γ̂ i

n −
√

γ̂ i
u

2 + γ̂ i
w

2
) = 0,

〈Fi
T ,vi

T 〉 = −‖Fi
T ‖ ‖vi

T ‖.
(9)

3 The complete DVI model

The system state is defined by the vector of general-
ized coordinates q ∈ R

mq and the vector of general-
ized speeds v ∈ R

mv . It might happen that mq > mv

because rotations of rigid bodies in three-dimensional
space are represented with unimodular quaternions
ε ∈ H1 to avoid singularities in the parametrization of
SO(R,3); anyway it is straightforward to define a (lin-
ear) map q̇ = Γ (q)v if q̇ is needed.

We also introduce generalized force fields fe(q,v, t)

and gyroscopic forces fc(q,v) giving a total force field
ft (q,v, t) ∈ R

mv .
The inertial properties of the system are represented

by the mass matrix M(q) ∈ R
mv×mv , assumed posi-

tive definite, usually block-diagonal in the case of rigid
bodies only.

Bilateral constraints are introduced through a set B
of scalar constraint equations, assumed differentiable
everywhere:

Ψ i(q, t) = 0, i ∈ B. (10)

We introduce ∇qΨ i = [∂Ψ i/∂q]T and ∇Ψ iT =
∇qΨ iT Γ (q), to express the constraint (10) at the ve-
locity level after differentiation:

dΨ i(q, t)

dt
= ∇Ψ iT v + ∂Ψ i

∂t
= 0, i ∈ B. (11)

Frictional unilateral contacts define a set A . For
each contact i ∈ A , we introduce the tangent space
generators Di

γu
, Di

γw
, Di

τu
, Di

τw
, Di

τn
∈ R

mv ; for details
about their formulation, see Appendix B.

Another way to write (7), (8), and (9) is to use
the maximum dissipation principle, thus leading re-

spectively to the following constraints on the dynamic
equilibrium

(
τ̂ i
u, τ̂

i
w

) = argminvT
(
Di

τu
τ̂ i
u + Di

τw
τ̂ i
w

)

s.t.
(
τ̂ i
u, τ̂

i
w

) ∈ Z i
r

Z i
r

�= {(
τ̂ i
u, τ̂

i
w

)∣∣
√

τ̂ i
u

2 + τ̂ i
w

2 ≤ ρiγ̂ i
n

}
(12)

(
τ̂ i
n

) = argmin vT
(
Di

τn
τ̂ i
n

)

s.t. τ̂ i
n ∈ Z i

s

Z i
s

�= {
τ̂ i
n

∣∣∣∣τ̂ i
n

∣∣ ≤ σ iγ̂ i
n

}
(13)

(
γ̂ i
u, γ̂ i

w

) = argmin vT
(
Di

γu
γ̂ i
u + Di

γw
γ̂ i
w

)

s.t.
(
γ̂ i
u, γ̂ i

w

) ∈ Z i
f

Z i
f

�= {
(γ̂ i

u, γ̂ i
w)

∣∣
√

γ̂ i
u

2 + γ̂ i
w

2 ≤ μiγ̂ i
n

}
(14)

Here, Z i
r , Z i

s , and, respectively, Z i
f , are the

rolling, spinning, and respectively, friction cone sec-
tions. Alternatively, for the case where the tangen-
tial rolling torques is not zero, we derive the Fritz
John optimality conditions for the nonlinear pro-
gram (12),

s = ∇τu,τw vT
(
Dτu τ̂

i
u + Dτw τ̂ i

w

)

− λω∇τu,τw

(
ργ̂ i

n −
√

τ̂ i
u

2 + τ̂ i
w

2 ) = 0 (15)

ρi γ̂ i
n −

√
τ̂ i
u

2 + τ̂ i
w

2 ≥ 0, ⊥ λω ≥ 0. (16)

When the tangential rolling torques are zero, the func-
tions defining Z i

r , are not differentiable so the above
derivation does not hold. However, for purposes of
exposing our formulation we will assume the op-
posite the case, and in later developments (40) we
remove this assumptions by using cone polar for-
malisms.

The same derivation can be performed for (12) and
(13); hence the complete model, including inertial ef-
fects, force fields, bilateral constraints, unilateral con-
tacts with friction, rolling friction, and spinning fric-
tion, is the following differential variational inequality
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q̇ = Γ (q)v

M(q)
dv
dt

=
∑

i∈A

(
γ̂ i
nDi

γn
+ γ̂ i

uDi
γu

+ γ̂ i
wDi

γw

+ τ̂ i
nDi

τn
+ τ̂ i

uDi
τu

+ τ̂ i
wDi

τw

)

+
∑

i∈B

γ̂ i
B∇Ψ i + ft (t,q,v)

i ∈ B: Ψ i(q, t) = 0

i ∈ A : γ̂ i
n ≥ 0 ⊥ Φi(q) ≥ 0

∇τu,τw vT
(
Dτu τ̂

i
u + Dτw τ̂ i

w

)

− λi
ω∇τu,τw

(
ρiγ̂ i

n −
√

τ̂ i
u

2 + τ̂ i
w

2) = 0

ρiγ̂ i
n −

√
τ̂ i
u

2 + τ̂ i
w

2 ≥ 0, ⊥ λi
ω ≥ 0

∇γu,γw vT
(
Dγu γ̂

i
u + Dγw γ̂ i

w

)

− λi
v∇γu,γw

(
μiγ̂ i

n −
√

γ̂ i
u

2 + γ̂ i
w

2) = 0

μiγ̂ i
n −

√
γ̂ i
u

2 + γ̂ i
w

2 ≥ 0, ⊥ λi
v ≥ 0

∇τnvT
(
Dτn τ̂

i
n

) − λi
τ∇τn

(
σ iγ̂ i

n − ∣∣τ̂ i
n

∣∣) = 0

μiγ̂ i
n − ∣∣τ̂ i

n

∣∣ ≥ 0, ⊥ λi
τ ≥ 0

(17)

The former DVI can be discretized in time. Using
a time step h, posing γ = hγ̂ , and adopting the ex-
ponential map Λ(·) described in [33] to allow direct
integration on the Lie group, we have the following
problem.

q(l+1) = Λ
(
q(l),v(l+1), h

)

Mv(l+1) =
∑

i∈A

(
γ i
nDi

γn
+ γ i

uDi
γu

+ γ i
wDi

γw

+ τ i
nDi

τn
+ τ i

uDi
τu

+ τ i
wDi

τw

)

+
∑

i∈B

γ i
B∇Ψ i + hft (t,q,v) + Mv(l)

i ∈ B: 1

h
Ψ i

(
q(l)

) + ∇Ψ iT v(l+1) + ∂Ψ i

∂t
= 0

i ∈ A : γ i
n ≥ 0 ⊥ 1

h
Φi

(
q(l)

) + ∇ΦiT v(l+1) ≥ 0

∇τu,τw vT
(
Dτuτ

i
u + Dτwτ i

w

)

− λi
ω∇τu,τw

(
ρiγ i

n −
√

τ i
u

2 + τ i
w

2 ) = 0

ρiγ i
n −

√
τ i
u

2 + τ i
w

2 ≥ 0, ⊥ λi
ω ≥ 0

∇γu,γw vT
(
Dγuγ

i
u + Dγwγ i

w

)

− λi
v∇γu,γw

(
μiγ i

n −
√

γ i
u

2 + γ i
w

2 ) = 0

μiγ i
n −

√
γ i
u

2 + γ i
w

2 ≥ 0, ⊥ λi
v ≥ 0

∇τnvT
(
Dτnτ

i
n

) − λi
τ∇τn

(
σ iγ i

n − ∣∣τ i
n

∣∣) = 0

μiγ i
n − ∣∣τ i

n

∣∣ ≥ 0, ⊥ λi
τ ≥ 0

(18)

This is a mixed nonlinear complementarity prob-
lem, whose solution is not guaranteed to exist. In-
deed, most existence results require monotonicity of
the mapping defining the complementarity problem.
In turn, this implies convexity of the solution set of
the nonlinear complementarity problem [10]. Unfor-
tunately, not even the weaker condition of the con-
vexity of the solution set can be guaranteed. Indeed,
it has been already shown that, for the subcase of a
linear complementarity problem (LCP) corresponding
to a simple pyramidal frictional model, the solution set
may be nonconvex [1]. This situation can occur only
if the mapping of the LCP is nonmonotone, which in
the linear case implies that its matrix is not positive
semi-definite.

4 Casting to a convex solvable problem

In the following we show that, under mild conditions,
the original problem can be relaxed as a monotone
cone complementarity problem (CCP) that guarantees
existence of the solution and convexity of the solu-
tion set. The problem is equivalent to a convex opti-
mization problem, a feasible quadratic programming
problem (QP) with conical constraints. We note that
while one cannot guarantee uniqueness of the solution
of the CCP (indeed, lack of uniqueness of the forces
is known to appear even in frictionless cases that are
linear and convex problems), one can guarantee un-
der some mild assumptions uniqueness of the velocity
solution [2]. The latter condition is sufficient for a pre-
dictive time-stepping scheme to exist.

Assume that for each contact i ∈ A we define the
vector of wrench reactions

γ i
A = {

γ i
n, γ i

u, γ i
w, τ i

n, τ
i
u, τ

i
w

}T

and the corresponding twist of local linear and angu-
lar velocities in the contact point, plus the stabilization
term 1

h
Φ(q), that is,

ui
A =

{
∇Φi,T v + 1

h
Φi,

Di,T
γu

v,Di,T
γv

v,Di,T
τn

v,Di,T
τu

v,Di,T
τw

v
}T

.

In the rest of this section we omit the i indexes for
compactness.

We differentiate the Fritz John optimality condi-
tions (15) obtaining, for the rolling friction part,
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vT Dτu = λωτu

1
√

τ 2
u + τ 2

w

(19)

vT Dτw = λωτw

1
√

τ 2
u + τ 2

w

. (20)

Then,

λω =
√(

DT
τu

v
)2 + (

DT
τw

v
)2

. (21)

Note that for the sliding friction one gets simi-
lar results, vT Dγu = λvγu1/

√
γ 2
u + γ 2

w and vT Dγw =
λvγw1/

√
γ 2
u + γ 2

w , with λv =
√

(DT
γu

v)2 + (DT
γw

v)2;

whereas for the spinning friction vT Dτn = λτ τn/|τn|,
with λτ = DT

τn
v|τn|/τn.

Now, the inner product for the complementarity in
the optimality condition requires that

λω

(
ργn −

√
τ 2
u + τ 2

w

)
= 0

λω

√
τ 2
u + τ 2

w = λωργn. (22)

Similarly one can derive, for sliding and spinning,

λv

√
γ 2
u + γ 2

w = λvμγn (23)

λτ |τn| = λτσγn. (24)

If we assume the orthogonality of γ A and uA , we
have

〈γ A ,uA 〉

= γn

(
∇ΦT v + 1

h
Φ

)
+ γuDT

γu
v + γwDT

γw
v

+ τnDT
τn

v + τuDT
τu

v + τwDT
τw

v = 0. (25)

By adding a relaxation term Ar for the normal ve-
locity, the orthogonality condition for unilateral con-
tact in the discretized DVI (18) becomes

γn ≥ 0 ⊥ 1

h
Φ + ∇ΦT v + Ar ≥ 0.

Since complementarity implies nullity of inner prod-
uct, we then have

γn

(
1

h
Φ + ∇ΦT v

)
= −γnAr ≥ 0. (26)

By exploiting (26), (19), (20), and so forth, recalling
that x2/|x| = |x|, with simple algebraic manipulation,
we rewrite (25) as

〈γ A ,uA 〉 = −γnAr + γ 2
u λv√

γ 2
u + γ 2

w

+ γ 2
wλv√

γ 2
u + γ 2

w

+ τ 2
uλω√

τ 2
u + τ 2

w

+ τ 2
wλω√

τ 2
u + τ 2

w

+ τ 2
nλτ

|τn| = 0

γnAr = λv

√
γ 2
u + γ 2

w + λω

√
τ 2
u + τ 2

w + λτ |τn|.

(27)

By substituting (22), (23), and (24) in (27), and by
simplifying γn, we have that the relaxation term that
allows orthogonality of γ ’s and u’s is, for the ith con-
tact i ∈ A ,

Ai
r = μi

√(
Di

γu
v
)2 + (

Di
γw

v
)2

+ ρi

√(
Di

τu
v
)2 + (

Di
τw

v
)2 + σ i

∣∣Di
τn

v
∣∣. (28)

The introduction of the Ai
r term has the drawback

of modifying the contact constraint; from a practi-
cal point of view there is the side effect that the gap
between objects increase with the sliding speed in-
stead of remaining equal to zero; this effect has been
discussed in [33] for the simple case of sliding fric-
tion. Now, introducing also rolling and spinning fric-
tion, one can see from Eq. (28) that rotational mo-

tion increases the gap (the
√

(Di
τu

v)2 + (Di
τw

v)2 term

is also the norm of ωi
T ), and that the increase is al-

ways directed outward. This is the price for having
convexified the original problem. In many situations
this can be acceptable, indeed one can demonstrate

that at steady state, i.e. when ∇ΦiT v = 0 in (26), the
separation gap Φi decreases with low speeds, low μ,
ρ, σ , and small timesteps.

We note that if we plan to use rolling friction to
simulate granular material, the above mentioned side
effect of the relaxation leads to a dilatancy effect that
really happens in physical world.

Aiming at a generic compact notation, we now in-
troduce bi

A ∈ R
6 = { 1

h
Φi,0,0,0,0,0}T , and we build

the following aggregate vectors bA ∈ R
6nA , γ A ∈

R
6nA , uA ∈ R

6nA :

bA = {
b1,T

A ,b2,T
A , . . . ,bnA ,T

A

}T
,

γ A = {
γ 1,T

A ,γ 2,T
A , . . . ,γ

nA ,T

A

}T
,

uA = {
u1T

A ,u2T

A , . . . ,unA ,T

A

}T
.

(29)
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For each contact we can define a matrix with six
columns,

Di = [∇Φi
∣∣Di

γu

∣∣Di
γw

∣∣Di
τn

∣∣Di
τu

∣∣Di
τw

]
, (30)

and a six-dimensional cone that defines the set of ad-
missible reactions in the sliding, rolling, spinning fric-
tion contact:

Z i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ ∈ R
6

∣∣∣∣∣∣∣∣∣

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μiγn ≥
√

γ 2
u + γ 2

w,

ρiγn ≥
√

τ 2
u + τ 2

w,

σ iγn ≥ |τn|

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (31)

Similarly, for bilateral constraints, we have bB ∈
R

nB , and γ B ∈ R
nB :

bB =
{

1

h
Ψ 1 + ∂Ψ 1

∂t
,

1

h
Ψ 2 + ∂Ψ 2

∂t
, . . . ,

1

h
Ψ nB + ∂Ψ nB

∂t

}T

γ B = {
γ 1
B, γ 2

B, . . . , γ
nB
B

}T

uB = {
u1

B, u2
B, . . . , u

nB
B

}T
.

(32)

The complete aggregate vectors and matrices of the
entire system are

γ S = {
γ T

A ,γ T
B

}T
, uS = {

uT
A ,uT

B

}T
,

bS = {
bT

A ,bT
B

}T
,

(33)

DS = [
Di1

∣∣Di2
∣∣ . . .

∣∣DinA
∣∣∇Ψ 1

∣∣∇Ψ 2
∣∣ . . .

∣∣∇Ψ nB
]
.

(34)

Moreover we define the product of all the sliding
and rolling friction cones and the possible values of
reactions in bilateral constraints as

Υ = (×i∈A Z i
) × (×i∈BR) (35)

and its polar (note that R
◦ = {0}):

Υ ◦ = (×i∈A Z i◦) × (×i∈B{0}). (36)

Now we proceed with a simplification by introduc-
ing

k̃(l) = M(l)v(l) + hft
(
t (l),q(l),v(l)

)
. (37)

From the relaxed version of (18) one can see that
uS = Nγ S + r, where

N = DT
S M(l)−1

DS (38)

r = DT
S M(l)−1

k̃ + bS . (39)

The entire system is described by the following CCP:

(Nγ S + r) ∈ −Υ ◦ ⊥ γ S ∈ Υ. (40)

The CCP (40) is also equivalent to a variational in-
equality as expressed in the VI of Eq. (1), namely

γ S ∈ Υ : 〈Nγ S + r,y − γ S 〉 ≥ 0 ∀y ∈ Υ. (41)

Several theoretical results for (41) can be obtained
by noting that it is related to the following optimiza-
tion problem.

min
γ S ∈Υ

1

2
γ T

S Nγ S + rT γ S (42)

Theorem 1 Consider the variational inequality (41)
and the optimization problem (42). Then the following
statements hold:

(i) If (42) has a solution, then that solution satisfies
the variational inequality (41). Conversely, any
solution of (41) is a solution of (42).

(ii) Either (42) has a solution, or there exists γ̃ S

such that DS γ̃ S = 0.
(iii) If (42) has two solutions γ 1

S and γ 2
S , then they

must satisfy DS γ 1
S = DS γ 2

S .

Proof If (42) has a solution, then since the constraints
Υ are convex, they must satisfy the Kuhn-Tucker con-
ditions, which are simply the statement of (41). Con-
versely, because of the convexity of the cone Υ and of
the objective function, any Kuhn-Tucker solution is a
global solution, which proves Part (i).

For Part (ii), if the objective function of (42) is
bounded below over the convex set Υ , it follows
that the problem (42) must have a solution. As-
sume that this is not the case, that is, that there ex-
ists a sequence γ n

S ∈ Υ , n = 0,1,2, . . . such that
1
2γ nT

S Nγ n
S + rT γ n

S → −∞. Because of the conti-
nuity of the objective function, such a sequence must
satisfy ‖γ n

S ‖ → ∞ (otherwise the objective function
would stay bounded). In particular, this implies that

1

2
γ nT

S Nγ n
S + rT γ n

S ≤ 0; ∀n ≥ n0 (43)

for some integer n0. Define the scaled vector γ̃ n
S =

γ n
S‖γ n
S ‖ ∈ Υ . Since the scaled vector sequence is in the

unit ball, which is compact, it must have a limit point,
which we denote by γ̃ ∗

S . We assume, without loss of
generality, that the entire sequence converges to this
point. Dividing (43) by ‖γ n

S ‖2 and taking the limit,
we have that the second term goes to 0, and we obtain
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1

2
γ ∗T

S Nγ ∗
S . ≤ 0

Using the expression for N , (38), and the fact that
the mass matrix is positive definite, this implies that
DS γ̃ ∗

S = 0, which in turn proves Part (ii) of the the-
orem.

For Part (iii), assume that there are two solutions of
the optimization problem (42), γ 1

S and γ 2
S . Then, by

the fact that the objective function is convex and that
the constraints are convex, for any t ∈ [0,1], we have
that γ 1

S + t (γ 2
S − γ 1) is also a solution of (42). That

is, the objective function value
(
γ 1

S + t
(
γ 2

S − γ 1))T
N

(
γ 1

S + t
(
γ 2

S − γ 1))

+ rT
(
γ 1

S + t
(
γ 2

S − γ 1))

is constant in t . This function is a quadratic, and this
can occur only if the coefficient in t2 is 0, that is,
(
γ 2

S − γ 1)T
N

(
γ 2

S − γ 1) = 0.

Again using the expression for N , (38), and the fact
that the mass matrix is positive definite, this im-
plies that DS (γ̃ 2

S − γ̃ 1
S ) = 0, which in turn proves

Part (iii) of the theorem. The proof of the theorem is
complete. �

After the dual variables γ S have been obtained
from the VI (41), one can easily compute also the pri-
mal variables with the affine mapping:

v(l+1) = M(l)−1
DS γ S + M(l)−1

k̃. (44)

In what sense the problem has a unique solution
now revolves around the results of Theorem 1. The key
assumption that we make is that the friction cone of
our problem is pointed, that is,

γ S ∈ Υ, DS γ S = 0 ⇒ γ S = 0. (45)

Note that Υ is only a set of multipliers (that is, the
contact constraint forces in the coordinates attached to
the contact, not the bodies) that is mapped into fric-
tion forces (and the friction cone, that is, in general
coordinate) by means of the mapping DS γ S , and
thus (45) is a statement about friction forces. More-
over, we use here an algebraic definition of pointed-
ness, although it does have a geometrical interpretation
in the all-contact case: the friction cone DS Υ does
not contain a nontrivial linear space, and thus its origin
is “pointed”. The reason we use the algebraic formula-
tion is that it applies for cases where joint constraints

are also included and where the constraint set is alge-
braically pointed, but not geometrically. More impor-
tantly the algebraic definition is also intuitive from a
mechanics perspective: there are no contact forces that
are valid from a constraint perspective but that pro-
duce a zero total force. In other words, the multibody
system cannot get stuck through its internal forces, a
configuration known to lead to virtually unpredictable
behavior. For one contact, this condition immediately
holds when we have rolling, sliding, and spinning fric-
tion; for more contacts, whether this holds depends on
the configuration.

With this definition we have the following result,
which elucidates the existence and uniqueness of a so-
lution.

Theorem 2 Assume that the friction cone attached to
the CCP (or VI) (41) is pointed in the sense of defini-
tion (45). Then

(i) The VI (41) has a solution.
(ii) Any two solutions of the VI result in the same ve-

locity vector (44).

Proof If the friction cone is pointed, then, by Theo-
rem 1(ii), the optimization problem (42) must have
a solution. Then, by Theorem 1, that solution is also
a solution of the variational inequality (41), which
proves the claim (i). For the second part, assume that
the VI (41) has two solutions, γ 1

S , and γ 2
S . From

Theorem 1(i), these are also solutions of the optimiza-
tion problem (42). From Theorem 1(ii), these solutions
satisfy

DS γ 1
S = DS γ 2

S .

Looking at (44) and how the velocity solutions are
computed from the solutions of (42), one can see that
this relationship implies that the velocities computed
from either are the same. The proof of (ii) and the the-
orem is complete. �

With this theorem, it follows that under the condi-
tion of pointedness of the friction cone, the VI (41)
is well posed and its solution is unique in velocities.
The latter condition is sufficient to result in a predic-
tive simulation, since it results in uniqueness of the
trajectory. We also point out that in the case of friction
it is unreasonable to expect that the forces are unique,
as can be immediately contemplated from the example
of a block resting on a table with friction, which has
multiple frictional solutions.
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5 Numerical solution scheme

Obtaining the unknown γ S dual variables from the VI
of Eq. (41) is the most complex and time-consuming
task in the simulation process. In fact, the solution
of large VIs is currently a debated and actively re-
searched topic in applied mathematics, and there exist
no unique “best” algorithms to approach their solution.

As a comparison, the much easier linear prob-
lems that often arise in the simulation of classical
ODEs and DAEs belong to the so-called polynomial
P-class because they can be solved in polynomial
time O(nc), if n represents the size of the prob-
lem in our case, the number of constraints on the
system. On the other hand, VIs (as well as QPs,
LCPs, and CCPs as special cases) are highly nonlin-
ear problems, whose general complexity class is said
to be nondeterministic-polynomial NP-hard, which of-
ten means an intractable growth of computational time
for even moderate sizes of the domain [4]. Only spe-
cial subcases of VIs can exploit the more friendly and
tractable P class, such as the monotone VIs that we
are dealing with. Exact methods for their solution, al-
though running with polynomial time O(nc), might
experience high c; thus the solution is still difficult,
and often it is necessary to accept truncation to ap-
proximate solutions [22].

In [33] we presented a fixed-point iteration that can
solve the CCP problem with Amontons-Coulomb fric-
tion only. Adding the set-valued rolling and spinning
friction model presented in this paper, one can develop
a new flavor of that iterative scheme, with minor modi-
fications. Omitting the details, we note that the method
iterates the following function, which is convergent for
a proper choice of ω ∈ R

+, λ ∈ (0,1] and K :

γ r+1
S = λΠΥ

(
γ r

S − ωBr
(
Nγ r

S + r

+ Kr
(
γ r+1

S − γ r
S

))) + (1 − λ)γ r
S , (46)

r = 0,1,2, . . . .

The ΠΥ operator is a projection onto Υ , so that
ΠΥ (γ ) = argminζ∈Υ ‖γ − ζ‖. Given the separable
cone structure of ΠΥ as defined in Eq. (35), the
computation of ΠΥ (γ ) can be split into nA projec-
tions Πi

Z (γ i ) and into nB identities (no projections
are required for the bilateral constraints). The orig-
inal Πi

Z (γ i ) projection discussed in [33] operates
only on the three values of the reactions that must
obey the Amontons-Coulomb friction. In the advanced

case, however, that includes also rolling friction and
spinning friction one must map the six-dimensional
wrench onto the six-dimensional cone Z defined in
Eq. (31), so Πi

Z (γ i ) : R
6 → R

6. See Appendix C for
details about this projection.

Given the requirement of solving a VI for each
timestep, the DVI approach appears to be less com-
petitive than the classic DEM concept of regulariz-
ing nonsmooth phenomena via smooth but stiff force
fields, because DEMs lead to uncoupled equations of
motion of ODE type with basic linear O(nb) complex-
ity for each timestep. However, our DVI setting per-
mits large timesteps because it does not suffer from
the stability issues implied by stiff forces in DEMs, so
the increased workload for each timestep is paid back
by fewer timesteps being required [32].

We remark that a parallel version of this rolling and
spinning friction model can be easily implemented on
parallel hardware of GPU type, as described in [34],
and on hybrid high-performance computers [21].

6 Examples

6.1 Comparison against analytical solution

A simple validation against the analytical solution for
a rolling disk is presented here. We consider a rolling
disk with radius R = 1 m, mass M = 10 kg, moment
of inertia J = 4 kg m2, initial position x|t=0 = 0 m ini-
tial horizontal speed on x axis vx |t=0 = 1 m/s, initial
angular velocity ω|t=0 = −1 rad/s. We use a rolling
friction parameter ρ = 0.02 m and a sliding/static fric-
tion coefficient μ = 0.9. The gravity acceleration is
gy = −9.8 m/s2.

Figure 2 plots the motion of the disk which rolls
until it comes to a rest because of the deceleration
caused by the rolling friction. Figure 3 shows that
the deceleration is constant (linear speed) in analyt-
ical theory, which uses the constant resistant torque
Tr = M · gy · ρ; a similar behavior can be seen in the
results of the DVI model.

6.2 Simulation of a linear guideway

Linear guideways based on recirculating ball bear-
ings represent an advanced technology for constrain-
ing linear motion. They avoid the problem of sliding
friction between the translating parts by interposing
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Fig. 2 Motion of the rolling disk: comparison with classic the-
ory

Fig. 3 Velocity of the rolling disk: comparison with classic the-
ory

rows of rolling spheres that can recirculate back in en-
closed channels, like tracks in a tank. In this section we
present the simulation of the linear system depicted in
Fig. 4, as an example of a device that involves many
contacts with rolling friction. The model is based on a
35 mm wide rail, with four rows of recirculating balls,
each steel ball having a diameter of 2Rb = 6.4 mm.
Nine balls, on average, provide the contact in each row,
and the four rows define four contact directions with
45◦ orientation, as shown in Fig. 5.

Although this type of guideway avoids sliding fric-
tion, a small resistance remains, caused by rolling
friction, as shown in the scheme of Fig. 6. This ef-
fect can be easily simulated by using the proposed
complementarity-based approach to rolling friction:
we modeled the guideway in a 3D CAD software, we
saved the parts using a custom translation software, we
imported the file in our software, and we simulated it.

We assumed that the contact between the spheres
and the raceways is always aligned to the 45◦ direc-
tion, so we introduced eight stretched boxes as colli-
sion shapes, as shown in Fig. 7; in this way the colli-
sion algorithm of our software can automatically com-

Fig. 4 The simulated linear guideway, with the scheme of the
recirculating balls

Fig. 5 Section of the linear guideway, showing the contact be-
tween balls and grooves

pute the contact points between the balls and the race-
ways. In other types of guideways, the raceways are
shaped like Gothic arcs: these can be modeled as well,
but such nodeling would not add much to the discus-
sion.

No significant side contact occurs between rolling
balls (in some models plastic spacers exclude this pos-
sibility), and we did not consider static preload, al-
though it could be simulated as well.

Since the system has many more contact constraints
than needed, the indeterminacy is solved by introduc-
ing a Tikhonov regularization: from a numerical point
of view this means adding a nonzero diagonal C to the
N matrix of Eq. (38), that is, NTyk = N + C. From a
mechanical point of view, the Tikhonov regularization
means that we introduce compliance in contacts; in de-
tail, we generate C from the inverses of the stiffness
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Fig. 6 Schematic representation of the forces acting on the
rolling balls

Fig. 7 Collision primitives used in the simulation

values in contact points, as computed by the Hertz-
Mindlin theory.

The manufacturer of the guideway provides the fol-
lowing formula for estimating the resistance to hori-
zontal sliding at low speeds: Fx = −sign(vx)(ζFy +
S), where Fy is the normal load, ζ is typically about
0.005, and S is the force caused by the sliding fric-
tion of seals and scrapers, in our case S = 5.3 N. Such
friction is introduced in our model by using a con-
vex box-constraint of the type −S ≤ γ̂S ≤ S, whose
effect on the DVI is similar to the already discussed,
and more complex, contact constraints. The effect of
the ζFy term comes from the simulation of the many
rolling contacts, each with a rolling friction parameter
ρ = ζRb . Results from the simulations show precise
agreement with the above formula, as shown in Fig. 8.
For zero speed, the model is able to describe also the
sticking effect that, although modest, can be measured
on this class of devices.

Fig. 8 Resisting force Fx for different values of rolling friction
parameter ρ, with and without the effect of seal friction (case of
load Fy = 490 N)

6.3 Application to the simulation of granular
materials

The mechanics of granular matter has became a fer-
tile research topic only recently, because of the vast
computational resources that are required. One of the
fields that would benefit from advances in this area is
pharmaceutical engineering, where multibody dynam-
ics could be used to study processes that involve pow-
ders: milling, blending, granulation, compression, and
coating [17].

In the popular discrete element method (DEM), the
bulk material is discretized in many particles with uni-
lateral frictional contacts [7]. Various micromechani-
cal contact models are available in the DEM field in
order to define the interaction between the particles;
in most cases, the nonsmooth nature of contact means
that those models always produce stiff contact forces,
and hence, that short integration timesteps are needed.

The need of rolling friction in granular simulations
is motivated by experimental evidence; for example
[23] shows that rolling resistance can have marked in-
fluence on the mechanics of particle assemblies at mi-
croscales; in some cases, its effect can be more rel-
evant than interparticle sliding friction [36]. Rolling
friction has been shown to affect only marginally the
elastic properties of granular assemblies, but other col-
lective phenomena such as shear resistance and dila-
tancy are significantly affected [5].

In some cases the simple inhibition of particle ro-
tations in DEM algorithms can improve the solution
with respect to the case of free frictionless rotation [6].
During the past few years, more sophisticated models
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Fig. 9 A typical pile of gravel and a conveyor, in a plant for
separating raw materials

of rolling friction have been proposed for interparticle
contacts, for example in [14]. Given the difficulty of
tuning the parameters of complex models, approaches
based on few parameters such as the approach of [15]
are welcome.

To some extent, the macroscopic effect of rolling
friction in granular media is similar to the effect of
dealing with nonspherical particles [19].

The collective behavior of particles with irregular
and faceted shapes is different from the behavior of
spherical particles, even if granular assemblies share
the same granulometry and friction; in general, oddly
shaped particles tend to generate less deformable as-
semblies when compared with spherical particles of
equal size [35]. Of course, a straightforward approach
could take into account the simulation of all the de-
tailed shapes, but this would lead to high simulation
times, both because there will be multiple contacts be-
tween pairs of particles and because the collision de-
tection phase would require more RAM and CPU time
to process those contacts.

The rolling friction model discussed above can be
used for simulating the granular materials such as in
the example of Fig. 9. If one tries to simulate the pile
of gravel with plain rigid spheres, the angle of repose
of the cone will be small when compared with the real
case, because the lack of irregularities on the simu-
lated spheres lead to a loose, granular flow. Yet, by
introducing increasing values of rolling and spinning
friction in a model with simple spheres, the stacking is
less loose and we can obtain the same results that one
can achieve by introducing particles with odd shapes

Fig. 10 Simulated pile of gravel, without rolling friction. Case
with ρ = 0 m, σ = 0 m, after 13 s of simulation

(which would require much larger computational re-
sources).

We simulated the free stacking of 10,000 particles,
each with a diameter Ds = 45 mm, falling from an
height of 1 m into a 2 m × 2 m flat container. The
density of the particles is δ = 2 028 kg/m2; the sliding
friction coefficient is μ = 0.6, also used as static fric-
tion coefficient. The flow is about 800 particles/s, and
gravity is g = −9.81 m/s2. We simulated this system
for increasing values of rolling and spinning friction.
Specifically, we tested values of rolling friction param-
eter in the 0–0.01 m range; for simplicity we made the
spinning friction parameter equal to the rolling one in
all tests. The timestep was h = 0.005 s, and the simu-
lated time 15 s. As shown in Fig. 10, the case without
rolling friction produces an almost flat stack, whereas
Fig. 11 shows that the proposed rolling friction model
is able to produce a steep cone typical of particles of
irregular shapes yet featuring the benefit of using sim-
ple spheres (see also Figs. 12 and 13).

7 Conclusion

We presented a rolling friction model that fits in the
context of DVIs, and we discussed theoretical issues
about the existence and uniqueness of the solution.
Details about an implementation in the form of a con-
vex cone-complementarity problem are given, show-
ing that the approach features a relatively simple algo-
rithmic complexity yet provides stable, fast, and robust
solutions. These features, coupled with the ease of use,
make the method a good candidate for enriching the
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Fig. 11 Simulated pile of gravel, with rolling friction
ρ = 0.01 m and spinning friction σ = 0.01 m

Fig. 12 Angle of repose for different values of rolling friction

Fig. 13 Angle of repose ψ with same μ = 0.6, for increasing
values of ρ

capabilities of DVI simulations of rigid contacts, es-
pecially when fast, real-time performance is required

or when a large number of parts is involved, such as in
granular flows.
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Appendix A: Kinematics of rolling in
three-dimensional space

Let ω
(W)
A,W and ω

(W)
B,W denote the angular velocities of

two bodies A and B , relative to the absolute refer-
ence frame W and expressed in the basis of the frame
(W). We assume A and B to be rigid or with neg-
ligible deformations. Introducing the rotation matrix
RA,W ∈ SO(R,3) that represents the rotation of A re-
spect to W , we have ω

(W)
A,W = RA,Wω

(A)
A,W and ω

(W)
B,W =

RB,Wω
(A)
B,W .

Let the unimodular quaternion εA,W ∈ H1 repre-
sent the rotation of the frame A respect to absolute
frame W . We recall that, for unimodular quaternions,
the inverse ε−1 is also the conjugate ε∗. We also recall
that it is possible to compute R from ε and vice versa.

Thanks to a property of quaternion algebra [13] the
relative rotation of two references is

εB,A = ε∗
A,WεB,W .

By performing differentiation respect to time, we
get

ε̇B,A = ε̇∗
A,WεB,W + ε∗

A,W ε̇B,W .

From the result in [27], the quaternion derivative
can be transformed in angular velocity, using pure
quaternions:
[
0,ω

(A)
BA

] = 2ε̇B,Aε∗
B,A (47)

= 2ε̇∗
A,WεB,W

(
ε∗
A,WεB,W

)∗

+ 2ε∗
A,W ε̇B,W

(
ε∗
A,W εB,W

)∗
. (48)

Since (ε∗
1ε2)

∗ = ε∗
2ε1, and remembering that εε∗ =

1, we can develop Eq. (48) into
[
0,ω

(A)
BA

] = 2ε̇∗
A,WεA,W + 2ε∗

A,W ε̇B,W ε∗
B,W εA,W .

(49)

The product ε̇B,W ε∗
B,W in the second term of the

summation can be replaced with the pure quater-
nion 1

2 [0,ω
(W)
B,W ] using Eq. (47). Also, the first term
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can be premultiplied by ε∗
A,WεA,W = 1, becoming

2ε∗
A,WεA,W ε̇∗

A,W εA,W ; here the product between the
second and third quaternion can be replaced with the
pure quaternion 1

2 [0,ω
(W)
A,W ]∗, again using Eq. (47).

Thus we have
[
0,ω

(A)
BA

] = ε∗
A,W

[
0,ω

(W)
A,W

]∗
εA,W

+ ε∗
A,W

[
0,ω

(W)
B,W

]
εA,W . (50)

A rotation in 3D space of the vector part of a pure
quaternion can be obtained with unitary quaternions,
that is, [0,v(W)] = εA,W [0,v(A)]ε∗

A,W .

Hence, recalling that [0,ω
(W)
A,W ]∗ = −[0,ω

(W)
A,W ] by

the property of conjugate quaternions, we can rewrite
Eq. (50) and obtain the expected result for relative an-
gular velocity ωr :
[
0,ω

(A)
BA

] = −[
0,ω

(A)
A,W

] + [
0,ω

(A)
B,W

]

ω
(A)
BA = ω

(A)
B,W − ω

(A)
A,W .

(51)

Appendix B: Formulation of D vectors

We assume that the vector of generalized veloci-
ties v contains the speeds of the centers of mass
of the bodies ẋ(W), expressed in absolute coordi-
nates (W) and the angular velocities ω(i) expressed
in the local coordinates of the ith body, as v =
[ẋ(W)

1 ,ω
(1)
1 , ẋ(W)

2 ,ω
(2)
2 , . . .]T .

Given a contact between a pair of two rigid bodies
A and B , we define the positions of the two contact
points with respect to the centers of mass, expressed
in the coordinate systems of the two bodies, as s(A)

A

and s(B)
B . The absolute rotations of the coordinate sys-

tems of the bodies are R
(W)
A ,R

(W)
B ∈ SO(R,3) and

the absolute rotation of the contact plane is R
(W)
P ∈

SO(R,3) = [n,u,w]. Thus, the vectors Dγn , Dγu , Dγw

can be computed as Dγ = [Dγn,Dγu,Dγw ] ∈ R
3×mv ,

DT
γ = [

0, . . . , R
(W)T

P , −R
(W)T

P R
(W)
A s̃

(A)
A , . . . ,

0, . . . , −RT
P , R

(W)T

P R
(W)
B s̃

(B)
B ,

. . . , 0
]
, (52)

where s̃ is the skew symmetric matrix such that s̃x =
s ∧ x.

Similarly, recalling the result in Eq. (51), one
can compute the vectors Dτn , Dτu , Dτw as Dτ =
[Dτn ,Dτu ,Dτw ] ∈ R

3×mv :

DT
τ = [

0, . . . , 0, R
(W)T

P R
(W)
A , . . . ,

0, . . . , 0, −R
(W)T

P R
(W)
B , . . . , 0

]
.

(53)

We remark that, because of the extreme sparsity of
(52) and (53), only the following four 3 × 6 matrices
need to be stored per each contact

DT
γ,A = [

R
(W)T

P , −R
(W)T

P R
(W)
A s̃

(A)
A

]
(54)

DT
γ,B = [−R

(W)T

P , R
(W)T

P R
(W)
B s̃

(B)
B

]
(55)

DT
τ,A = [

0, R
(W)T

P R
(W)
A

]
(56)

DT
τ,B = [

0, −R
(W)T

P R
(W)
B

]
(57)

Here we considered B as the reference body: other-
wise, if A were the reference for contact coordinates,
signs should be swapped in all terms in Eqs. (52)–(57).

Appendix C: Computing projections on
intersections of cones

We describe the procedure to compute the Euclidean
projection of a point x on an intersection of circular
cones that have one common component (in the case
studied here, that component is the normal force). We
assume that a generic point x is structured as follows:

x = (x0, l1, l2, . . . , lm), x0 ∈ R, li ∈ R
ni , (58)

and that the m circular cones are second-order cones
defined by

x ∈ Ki ⇔ μix0 ≥
√

‖li‖2,

where μi > 0, i = 1,2, . . . ,m. We are interested in
computing the projection of a vector x on

⋂
Ki , that

is,

x̃ =
∏

⋂
Ki

(x) ⇔ ‖x − x̃‖2 = min
y∈⋂

Ki

‖x − y‖2.

For example, in the case treated in this work, we are in-
terested in simultaneous modeling of sliding, rolling,
and spinning friction in three dimensional configura-
tions. That is, we have three cones, m = 3 and x is
a six-dimensional vector, x = (γn, γu, γw, τu, τw, τn).
The mapping (58) is the following: x0 = γn, l1 =
(γu, γw), l2 = (τu, τw), l3 = τn. The friction coeffi-
cients are μ1 = μ, μ2 = ρ, μ3 = σ .

The crucial observation that simplifies the compu-
tation of the projection is that the component l̃i of the
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projection x̃ must be collinear with li . Indeed, if this
is not the case, then rotating l̃i over li will preserve
feasibility but will necessarily reduce ‖x − x̃‖, a con-
tradiction. Therefore, there exists ti such that l̃i = ti li .
The optimization that defines the projection then be-
comes

min
y0,t1,t2,...,tm

(y0 − x0)
2 +

m∑

i=1

(
ti

μiy0

‖li‖ − 1

)2

‖li‖2,

0 ≤ ti ≤ 1, i = 1,2, . . . ,m.

We have normalized the component of y in terms of y0

to allow for the range of ti to be the same. For a given
y0, the optimal ti , which we denote by ti (y0), is easy
to compute. Indeed we obtain the following

ti (y0) =
⎧
⎨

⎩

‖li‖
μiy0

‖li‖
μiy0

≤ 1

1 ‖li‖
μiy0

> 1

⇒ ti (y0)
μiy0

‖li‖ − 1 =
⎧
⎨

⎩

0 ‖li‖
μiy0

≤ 1

μiy0‖li‖ − 1 ‖li‖
μiy0

> 1

Substituting ti for the optimal values ti (y0) in the opti-
mization problem, we obtain that the problem is equiv-
alent to

min
y0

ψ(y0) := (y0 − x0)
2

+
m∑

i=1

I[y0<
‖li‖
μi

](y0)

(
μiy0

‖li‖ − 1

)2

‖li‖2.

Here I is the indicator function of a set. It is immedi-
ately apparent that this function is piecewise quadratic
and that it is convex. Indeed, convexity follows from
the fact that each term function is convex, the first term
as a quadratic, and the other terms as their graphs are
the union of a parabola with a flat line.

To find its optimum, we can do the following.

1. Define and order the breakpoints 0, and ‖li‖
μi

, with
i = 1,2, . . . ,m. Successive breakpoints define a
piece.

2. On each piece find the minimum of the quadratic
function.

3. Compute the overall minimum, which is the lowest
value of all such minima.

Once x̃0 = y0 is determined, ti (y0) is computed, and
the other components of the projection are computed
as l̃i = ti (x̃0)

μi x̃0‖li‖ .

For a large number of breakpoints we can ex-
ploit convexity of ψ , by noting that we can evalu-
ate the function at the breakpoints, and find the mini-
mum value. Then, by convexity, the overall minimum
must occur in a segment that neighbors the breakpoint
with the minimum value. Hence, one minimizes the
quadratic only in those intervals.

To summarize:

1. Define and order the breakpoints 0, and ‖li‖
μi

, with
i = 1,2, . . . ,m. Successive breakpoints define a
piece. We assume without loss of generality that
the labels have been permuted so that the natural
order has the breakpoints in increasing order, that
is, i < j ⇒ ‖li‖

μi
<

‖lj ‖
μj

. If two breakpoints have the
same value, we delete their index.

2. Enumerate the objective function ψ at the break-
points, and find the i for which ψ(

‖li‖
μi

) ≤ ψ(
‖lj ‖
μj

),
∀j . If there is one such i, the overall minimum is
on a neighboring segment; if there are two, it is on
the segment in between (there cannot be three dif-
ferent indices, since the function is not piecewise
constant).

3. Minimize the piecewise quadratic on either the one
or two segments identified, and report the result.

For a small number of breakpoints (i.e., the number
of cones m is small), it is not likely that this reduced
method would practically be much faster than compre-
hensive enumeration.
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