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Abstract In this research article, the unsteady ro-
tational flow of an Oldroyd-B fluid with fractional
derivative model through an infinite circular cylinder
is studied by means of the finite Hankel and Laplace
transforms. The motion is produced by the cylinder,
that after time t = 0+, begins to rotate about its axis
with an angular velocity Ωtp. The solutions that have
been obtained, presented under series form in terms of
the generalized G-functions, satisfy all imposed initial
and boundary conditions. The corresponding solutions
that have been obtained can be easily particularized
to give the similar solutions for Maxwell and Second
grade fluids with fractional derivatives and for ordi-
nary fluids (Oldroyd-B, Maxwell, Second grade and
Newtonian fluids) performing the same motion, are
obtained as limiting cases of general solutions.

The most important things regarding this paper to
mention are that (1) we extracted the expressions for
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the velocity field and the shear stress corresponding
to the motion of Second grade fluid with fractional
derivatives as a limiting case of our general solutions
corresponding to the Oldroyd-B fluid with fractional
derivatives, this is not previously done in the litera-
ture to the best of our knowledge, and (2) the expres-
sions for the velocity field and the shear stress are in
the most simplified form, and the point worth mention-
ing is that these expressions are free from convolution
product and the integral of the product of the general-
ized G-functions.

Finally, the influence of the pertinent parameters
on the fluid motion, as well as a comparison between
models, is shown by graphical illustrations.

Keywords Oldroyd-B fluid with fractional
derivatives · Velocity field · Shear stress · Exact
solutions · Finite Hankel and Laplace transform

1 Introduction

The motion of a fluid in a rotating or translating cylin-
der is of interest to both theoretical and practical do-
mains. The flow through rotating cylinders, started
from rest, has applications in the food industry and is
one of the most important and most interesting prob-
lems of motion near rotating bodies. It has been in-
tensively studied since G.I. Taylor (1923) reported the
results of his famous investigations [1]. For Newtonian
fluids, the velocity distribution for a fluid contained in
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a circular cylinder can be found in [2], while the case
of a fluid contained in an annular region between two
cylinders, with a common axis, is given by [3]. Wa-
ters and King [4] studied the start-up Poiseuille flow
of an Oldroyd-B fluid in a straight circular tube. The
exact solution was obtained using the Laplace trans-
form method. Since an integral form of the constitu-
tive equation is used, only one initial condition is re-
quired for this unsteady problem. During recent years
quite a number of papers on this type of flow have been
published. Unsteady, pressure-driven flow of a classi-
cal Maxwell fluid in a pipe was studied by Rahaman
and Ramkissoon [5]. Exact solutions were obtained
as infinite Fourier-Bessel series. Wood [6] has consid-
ered the general case of helical flow of an Oldroyd-B
fluid, due to the combined action of rotating cylinders
(with constant angular velocities) and a constant axial
pressure gradient. Hayat et al. [7] obtained the veloc-
ity fields for some simple flows of Oldroyd-B fluids
using Fourier transform. Recently, Fetecau [8] has es-
tablished exact solutions for some unidirectional flows
of the same fluids in unbounded domains which geo-
metrically are axi-symmetric pipelike.

It is very important to study the mechanism of vis-
coelastic fluids flow in many industry fields, such as
oil exploitation, chemical and food industry and bio-
engineering. The first exact solutions for flows of non-
Newtonian fluids in such a domain seem to be those of
Ting [9] corresponding to Second grade fluids and Sri-
vastava [10] for Maxwell fluids. During recent years
quite many papers of this type have been published.
The most general solutions corresponding to the he-
lical flow of a Second grade fluid seem to be those of
Fetecau and Corina Fetecau [11], in which the cylinder
is rotating around its axis and sliding along the same
axis with time-dependent velocities. Other interesting
solutions for different flows of the same fluids have
been also obtained by Hayat et al. [12]. Exact solutions
for the helical flows of Oldroyd-B fluid in cylindrical
domains have been obtained Fetecau et al. [13]. In the
meantime a lot of papers regarding such motions have
been published [14, 15].

Nowadays, fractional calculus has encountered
much success in the description of viscoelasticity
[16–20]. The starting point of the fractional derivative
model of a non-Newtonian fluid is usually a classical
differential equation which is modified by replacing
the time derivative of an integer order by the fractional
calculus operators. This generalization allows one to

define precisely non-integer order integrals or deriva-
tives. Tan et al. [18] and Xu and Tan [21] examined the
velocity field, stress field and vortex sheet of a gener-
alized Second-order fluid with fractional anomalous
diffusion. Song and Jiang [22] achieved satisfactory
result to apply the constitutive equation with fractional
derivative to the experimental data of viscoelasticity.
Tan et al. [23] and Tan and Xu [24] applied fractional
derivative to the constitutive relationship models of
Maxwell viscoelastic fluid and Second grade fluid, and
studied some unsteady flows.

The main idea of this work is to establish exact so-
lutions for the velocity field, and the adequate shear
stress corresponding to the unsteady rotational flow
of an incompressible Oldroyd-B fluid with fractional
derivatives through an infinite circular cylinder in-
duced by a time-dependent shear. The motion of the
fluid is produced by the cylinder, which after time
t = 0+, begins to rotate about its axis with a time-
dependent angular velocity. The solutions that have
been obtained, presented under series form in terms of
the generalized G-functions, are established by means
of the finite Hankel and Laplace transforms. The sim-
ilar solutions for the Maxwell and Second grade flu-
ids with fractional derivatives and for ordinary fluids
(Oldroyd-B, Maxwell, Second grade and Newtonian
fluids) performing the same motion, are obtained as
limiting cases of general solutions.

2 Governing equations

The flows to be here considered have the velocity v
and the extra-stress S of the form [25]

v = v(r, t) = w(r, t)eθ , S = S(r, t), (1)

where eθ is the unit vector in the θ -direction of the
cylindrical coordinates system r , θ and z. For such
flows, the constraint of incompressibility is automat-
ically satisfied.

Furthermore, if initially the fluid is at rest, then

v(r,0) = 0, S(r,0) = 0. (2)

The governing equations, corresponding to such mo-
tions of Oldroyd-B fluid, are given by [25](

1 + λ
∂

∂t

)
τ(r, t)

= μ

(
1 + λr

∂

∂t

)(
∂

∂r
− 1

r

)
w(r, t); (3)
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(
1 + λ

∂

∂t

)
∂w(r, t)

∂t

= ν

(
1 + λr

∂

∂t

)(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
w(r, t), (4)

where μ is the dynamic viscosity, ν = μ/ρ is the kine-
matic viscosity, ρ being the constant density of the
fluid, λ is the relaxation time, λr is the retardation
time, and τ(r, t) = Srθ (r, t) is the non-trivial shear
stress.

The governing equations corresponding to an in-
compressible Oldroyd-B fluid with fractional deriva-
tives (OBFFD), performing the same motion, are ob-
tained by replacing the inner time derivatives with re-
spect to t from Eqs. (3) and (4), by the fractional dif-
ferential operator [17, 26]

D
γ
t f (t) =

{
1

Γ (1−γ )
d
dt

∫ t

0
f (τ)

(t−τ)γ
dτ, 0 ≤ γ < 1;

d
dt

f (t), γ = 1,
(5)

where Γ (·) is the Gamma function.
Consequently, the governing equations to be used

here are
(
1 + λD

β
t

)
τ(r, t)

= μ
(
1 + λrD

γ
t

)( ∂

∂r
− 1

r

)
w(r, t), (6)

(
1 + λD

β
t

)∂w(r, t)

∂t

= ν
(
1 + λrD

γ
t

)( ∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
w(r, t). (7)

When β,γ → 1, Eqs. (6) and (7) reduce to Eqs. (3)
and (4), because D1

t f = df
dt

. Furthermore, the new ma-
terial constants λ and λr (although, for the simplicity,
we keep the same notation) reduce to the previous ones
for β,γ → 1.

3 Starting flow through an infinite circular
cylinder

Suppose that an incompressible OBFFD is situated at
rest in an infinite circular cylinder of radius R (> 0).
After time t = 0+, the cylinder suddenly begins to ro-
tate about its axis with an angular velocity Ωtp . Ow-
ing to the shear the inner fluid is gradually moved, its
velocity being of the form (1)1. The governing equa-
tions are given by Eqs. (6) and (7), while the appropri-
ate initial and boundary conditions are

w(r,0) = ∂w(r,0)

∂t
= 0,

τ (r,0) = 0; r ∈ [0,R],
(8)

w(R, t) = RΩtp; t ≥ 0, p ∈ N, p > 0, (9)

where Ω is a constant and N is the set of natural num-
bers.

Equations (6) and (7) containing fractional deriva-
tives along with initial and boundary conditions can be
solved in principle by several methods, i.e. Homotopy
Perturbation Method (HPM), Variational Iteration
Method (VIM), Homotopy Analysis Method (HAM),
and Adomian Decomposition Method (ADM). Of
these methods the integral transform technique is sys-
tematic, efficient and powerful tool. In the following,
we shall use the Laplace transform to eliminate the
time variable, and the finite Hankel transform for the
removal of spatial variable. However, in order to avoid
the burdensome calculations of residues and contour
integrals, we shall apply the discrete inverse Laplace
transform method.

3.1 Calculation of the velocity field

Applying the Laplace transform to Eqs. (7) and (9), we
get
(
q + λqβ+1)w(r, q)

= ν
(
1 + λrq

γ
)( ∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
w(r, q), (10)

w(R,q) = RΩp!
qp+1

, (11)

where w(r, q) and w(R,q) are the Laplace transforms
of the functions w(r, t) and w(R, t), respectively.

We shall denote by [27]

w
H
(rn, q) =

∫ R

0
rw(r, q)J1(rrn) dr, (12)

the finite Hankel transform of the function w(r, q), and
the inverse Hankel transform of wH (rn, q) is given
by [27]

w(r, q) = 2

R2

∞∑
n=1

J1(rrn)

J 2
2 (Rrn)

wH (rn, q),

rn being the positive roots of the equation J1(Rr) = 0,
and Jp(.) is the Bessel function of the first kind of
order p. Multiplying now both sides of Eq. (10) by
rJ1(rrn), then integrating with respect to r from 0
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to R, and taking into account Eqs. (11) and (12), and
the result which we can easily prove
∫ R

0
r

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
w(r, q)J1(rrn) dr

= RrnJ2(Rrn)w(R,q) − r2
nw

H
(rn, q), (13)

we find that

wH (rn, q)

= (
ν + νλrq

γ
)
ΩR2rnJ2(Rrn)

× p!
qp+1(q + νr2

n + λqβ+1 + νr2
nλrqγ )

. (14)

It can be also written in the suitable form

wH (rn, q) = w1H (rn, q) + w2H (rn, q), (15)

where

w1H (rn, q) = ΩR2p!J2(Rrn)

rn

1

qp+1
, (16a)

w2H (rn, q)

= −ΩR2p!J2(Rrn)

rn

× 1 + λqβ

qp(q + νr2
n + λqβ+1 + νr2

nλrqγ )
. (16b)

Applying the inverse Hankel transform to Eqs. (16a)
and (16b), and using the known formula
∫ R

0
r2J1(rrn) dr = R2

rn
J2(Rrn),

we get

w1(r, q) = Ωrp!
qp+1

; (17a)

w2(r, q) = −2Ωp!
∞∑

n=1

J1(rrn)

rnJ2(Rrn)

× 1 + λqβ

qp(q + νr2
n + λqβ+1 + νr2

nλrqγ )
.

(17b)

Using the identity

1

(q + νr2
n + λqβ+1 + νr2

nλrqγ )

= 1

λ

∞∑
k=0

k∑
m=0

k!
m!(k − m)!

×
(

−νr2
n

λ

)k

λm
r

qγm−k−1

(qβ + 1
λ
)k+1

, (18)

Eq. (17b) can be written as

w2(r, q) = −2Ωp!
λ

∞∑
n=1

J1(rrn)

rnJ2(Rrn)

×
∞∑

k=0

k∑
m=0

k!
m!(k − m)!

(
−νr2

n

λ

)k

λm
r

× (qγm−k−p−1 + λqβ+γm−k−p−1)

(qβ + 1
λ
)k+1

. (19)

After taking the inverse Hankel transform of Eq. (15),
it leads to

w(r, q) = Ωrp!
qp+1

− 2Ωp!
λ

∞∑
n=1

J1(rrn)

rnJ2(Rrn)

×
∞∑

k=0

k∑
m=0

k!
m!(k − m)!

(
−νr2

n

λ

)k

λm
r

× (qγm−k−p−1 + λqβ+γm−k−p−1)

(qβ + 1
λ
)k+1

. (20)

Now taking the inverse Laplace transform of Eq. (20),
the velocity field w(r, t) is given by

w(r, t) = Ωrtp − 2Ωp!
λ

∞∑
n=1

J1(rrn)

rnJ2(Rrn)

×
∞∑

k=0

k∑
m=0

k!
m!(k − m)!

(
−νr2

n

λ

)k

λm
r

× [
Gβ,γm−k−p−1,k+1

(−λ−1, t
)

+ λGβ,β+γm−k−p−1,k+1
(−λ−1, t

)]
, (21)

where the generalized function Ga,b,c(·,·) is defined
by [28, Eqs. (97) and (101)]

Ga,b,c(d, t)

= L−1
{

qb

(qa − d)c

}

=
∞∑

k=0

dkΓ (c + k)

Γ (c)Γ (k + 1)

t(c+k)a−b−1

Γ [(c + k)a − b] ;

Re(ac − b) > 0,

∣∣∣∣ d

qa

∣∣∣∣ < 1.

(22)

3.2 Calculation of the shear stress

Applying the Laplace transform to Eq. (6), we find that

τ(r, q) = μ
(1 + λrq

γ )

(1 + λqβ)

(
∂

∂r
− 1

r

)
w(r, q), (23)

where w(r, q) = w1(r, q) + w2(r, q).
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Using Eqs. (17a) and (17b), we can calculate
(

∂

∂r
− 1

r

)
w(r, q)

= −2Ωp!
∞∑

n=1

J1(rrn)

rnJ2(Rrn)

× 1 + λqβ

qp(q + νr2
n + λqβ+1 + νr2

nλrqγ )
, (24)

and by using Eqs. (23) and (24), we have

τ(r, q) = 2μΩp!
∞∑

n=1

J2(rrn)

J2(Rrn)

× (1 + λrq
γ )

qp(q + νr2
n + λqβ+1 + νr2

nλrqγ )
. (25)

In view of the identity (18), Eq. (25) can be equiva-
lently written as

τ(r, q) = 2μΩV

λ

∞∑
n=1

J2(rrn)

J2(Rrn)

×
∞∑

k=0

k∑
m=0

k!
m!(k − m)!

(
−νr2

n

λ

)k

× λm
r

[
qγm−k−p−1

(qβ + 1
λ
)k+1

+ λr

qγm+γ−k−p−1

(qβ + 1
λ
)k+1

]
.

(26)

Now taking the inverse Laplace transform of both
sides of Eq. (26) and using Eq. (22), we find that

τ(r, t) = 2μΩp!
λ

∞∑
n=1

J2(rrn)

J2(Rrn)

×
∞∑

k=0

k∑
m=0

k!
m!(k − m)!

(
−νr2

n

λ

)k

× λm
r

[
Gβ,γm−k−p−1,k+1

(−λ−1, t
)

+ λrGβ,γm+γ−k−p−1,k+1
(−λ−1, t

)]
. (27)

4 The special cases

4.1 Ordinary Oldroyd-B fluid

Making β,γ → 1 into Eqs. (21) and (27), we ob-
tain the similar solutions for the velocity field

wOO(r, t) = Ωrtp − 2Ωp!
λ

∞∑
n=1

J1(rrn)

rnJ2(Rrn)

×
∞∑

k=0

k∑
m=0

k!
m!(k − m)!

(
−νr2

n

λ

)k

λm
r

× [
G1,m−k−p−1,k+1

(−λ−1, t
)

+ λG1,m−k−p,k+1
(−λ−1, t

)]
, (28)

and for the shear stress

τOO(r, t) = 2μΩp!
λ

∞∑
n=1

J2(rrn)

J2(Rrn)

×
∞∑

k=0

k∑
m=0

k!
m!(k − m)!

(
−νr2

n

λ

)k

× λm
r

[
G1,m−k−p−1,k+1

(−λ−1, t
)

+ λrG1,m−k−p,k+1
(−λ−1, t

)]
, (29)

for an ordinary Oldroyd-B fluid performing the same
motion.

4.2 Maxwell fluid with fractional derivatives

Making λr → 0 into Eqs. (21) and (27), we obtain the
velocity field

wFM(r, t) = Ωrtp − 2Ωp!
λ

×
∞∑

n=1

J1(rrn)

rnJ2(Rrn)

∞∑
k=0

(
−νr2

n

λ

)k

× [
Gβ,−k−p−1,k+1

(−λ−1, t
)

+ λGβ,β−k−p−1,k+1
(−λ−1, t

)]
, (30)

and the associated shear stress

τFM(r, t) = 2μΩp!
λ

∞∑
n=1

J2(rrn)

J2(Rrn)

∞∑
k=0

(
−νr2

n

λ

)k

× Gβ,−k−p−1,k+1
(−λ−1, t

)
, (31)

corresponding to Maxwell fluid with fractional deriva-
tives performing the same motion are recovered
[29, Eqs. (21) and (26)].

4.3 Ordinary Maxwell fluid

Making β → 1 in Eqs. (30) and (31), we get the ex-
pressions for velocity field
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wOM(r, t) = Ωrtp − 2Ωp!
λ

×
∞∑

n=1

J1(rrn)

rnJ2(Rrn)

∞∑
k=0

(
−νr2

n

λ

)k

× [
G1,−k−p−1,k+1

(−λ−1, t
)

+ λG1,−k−p,k+1
(−λ−1, t

)]
, (32)

and the associated shear stress

τOM(r, t) = 2μΩp!
λ

∞∑
n=1

J2(rrn)

J2(Rrn)

∞∑
k=0

(
−νr2

n

λ

)k

× G1,−k−p−1,k+1
(−λ−1, t

)
, (33)

corresponding to an ordinary Maxwell fluid.

4.4 Second grade fluid with fractional derivatives

Making λ → 0, taking νλr = α and α1 = αρ (the ma-
terial constants for Second grade fluid) into Eqs. (21)
and (27), and using (A.1) and (A.2), the expressions
for the velocity field

wFS(r, t) = Ωrtp − 2Ωp!

×
∞∑

n=1

J1(rrn)

rnJ2(Rrn)

∞∑
k=0

(−νr2
n

)k

× G1−γ,−γ k−γ−p,k+1
(−αr2

n, t
)
, (34)

and the associated shear stress

τFS(r, t) = 2Ωp!
∞∑

n=1

J2(rrn)

J2(Rrn)

∞∑
k=0

(−νr2
n

)k

× [
μG1−γ,−γ k−γ−p,k+1

(−αr2
n, t

)
+ α1G1−γ,−γ k−p,k+1

(−αr2
n, t

)]
, (35)

corresponding to Second grade fluid with fractional
derivatives performing the same motion are recovered
[30, Eqs. (21) and (26)].

4.5 Ordinary Second grade fluid

Making γ → 1 into Eqs. (34) and (35), we obtain the
velocity field

ωOS(r, t) = Ωrtp − 2Ωp!
∞∑

n=1

J1(rrn)

rnJ2(Rrn)

∞∑
k=0

(−νr2
n

)k

× G0,−k−p−1,k+1
(−αr2

n, t
)
, (36)

and the associated shear stress

τOS(r, t) = 2Ωp!
∞∑

n=1

J2(rrn)

J2(Rrn)

∞∑
k=0

(−νr2
n

)k

× [
μG0,−k−p−1,k+1

(−αr2
n, t

)
+ α1G0,−k−p,k+1

(−αr2
n, t

)]
, (37)

corresponding to an ordinary Second grade fluid per-
forming the same motion.

These solutions can also simplified to give (see also
Eqs. (A.3)–(A.4) from Appendix)

ωOS(r, t) = Ωrtp − 2Ωp!
(−ν)p

∞∑
n=1

J1(rrn)

r
2p+1
n J2(Rrn)

× (
1 + αr2

n

)p−1

[
exp

( −νr2
nt

1 + αr2
n

)

−
p−1∑
j=0

1

j !
( −νr2

nt

1 + αr2
n

)j
]
, (38)

τOS(r, t) = 2p!ρΩ

∞∑
n=1

J2(rrn)

r2
nJ2(Rrn)

×
[

tp−1

(p − 1)! −
(

−1

ν

)p−1
(1 + αr2

n)p−2

r
2(p−1)
n

×
{

exp

( −νr2
nt

1 + αr2
n

)

−
p−2∑
j=0

1

j !
( −νr2

nt

1 + αr2
n

)j
}]

. (39)

Equation (39) doesn’t hold for p = 1, for linear case
Ωt , we put p = 1 in Eqs. (36) and (37), and using
Eqs. (A.3) (for p = 1) and (A.5) from Appendix, we
get the following expression

w(r, t) = Ωrt − 2Ω

ν

∞∑
n=1

J1(rrn)

r3
nJ2(Rrn)

×
[

1 − exp

( −νr2
nt

1 + αr2
n

)]
, (40)

τ(r, t) = 2ρΩ

∞∑
n=1

J2(rrn)

r2
nJ2(Rrn)

×
(

1 − 1

1 + αr2
n

exp

( −νr2
nt

1 + αr2
n

))
(41)

which are the similar solutions for flows induced by a
circular cylinder subject to a constant angular acceler-
ation Ω that have been recently obtained in [13].
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Fig. 1 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (21) and (27) for R = 0.2, V = 1, p = 2, λ = 6, λr = 3,
ν = 0.0035, μ = 2.96, β = 0.7, γ = 0.8 and different values of t

4.6 Newtonian fluid

Now, making λr → 0 in Eqs. (38) and (39), we get the
velocity field w(r, t) as

wN(r, t) = Ωrtp − 2Ωp!
(−ν)p

∞∑
n=1

J1(rrn)

r
2p+1
n J2(Rrn)

×
[

exp
(−νr2

nt
) −

p−1∑
j=0

1

j !
(−νr2

nt
)j

]
,

(42)

and the associated shear stress

τN(r, t) = 2p!ρΩ

∞∑
n=1

J2(rrn)

r2
nJ2(Rrn)

×
[

tp−1

(p − 1)! − 1

(−ν)p−1r
2(p−1)
n

×
{

exp
(−νr2

nt
) −

p−2∑
j=0

1

j !
(−νr2

nt
)j

}]
,

(43)

corresponding to a Newtonian fluid performing the
same motion for p > 1.

Now, making λr → 0 into Eqs. (40) and (41), we
obtain the velocity field

w(r, t) = Ωrt − 2Ω

ν

∞∑
n=1

J1(rrn)

r3
nJ2(Rrn)

× [
1 − exp

(−νr2
nt

)]
, (44)

and the associated shear stress

τ(r, t) = 2ρΩ

∞∑
n=1

J2(rrn)

r2
nJ2(Rrn)

(
1 − exp

(−νr2
nt

))
(45)

corresponding to a Newtonian fluid subject to flow in-
duced by a circular cylinder which is subject to a con-
stant angular acceleration Ω .

5 Numerical results and discussion

In the previous sections, exact analytical solutions for
the velocity field and the adequate shear stress corre-
sponding to the unsteady flow of an incompressible
OBFFD through an infinite circular cylinder are ob-
tained. In order to reveal some relevant physical as-
pects of the obtained results, the diagrams of the ve-
locity as well as those of the shear stress are depicted
against r for different values of time t and of the per-
tinent parameters.

Figures 1a and 1b clearly show that both the ve-
locity and the shear stress are increasing functions
of t . They are also increasing functions of r , excepting
τ(r, t) on a small interval near the boundary. Figure 2
shows the influence of the parameter p on the fluid
motion, it shows that the velocity and the shear stress
are also increasing functions of p. The influence of
the kinematic viscosity ν on the fluid motion is shown
in Figs. 3a and 3b, velocity w(r, t) is an increasing
function of ν, while shear stress τ(r, t) is a decreasing
function of ν.

The influences of relaxation time λ and retardation
time λr on the velocity and shear stress are shown
in Figs. 4 and 5. The two parameters, as expected,
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Fig. 2 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (21) and (27) for t = 4, R = 0.2, V = 1, λ = 6, λr = 3,
ν = 0.0035, μ = 2.96, β = 0.7, γ = 0.8 and different values of p

Fig. 3 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (21) and (27) for t = 5, p = 2, R = 0.2, V = 1, λ = 7,
λr = 4, μ = 2.96, β = 0.6, γ = 0.9 and different values of ν

Fig. 4 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (21) and (27) for t = 6, R = 0.2, p = 2, V = 2, λr = 5,
ν = 0.0025, μ = 2.96, β = 0.8, γ = 0.9 and different values of λ
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Fig. 5 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (21) and (27) for t = 6, R = 0.2, p = 2, V = 1, λ = 7,
ν = 0.003, μ = 2.96, β = 0.7, γ = 0.8 and different values of λr

Fig. 6 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (21) and (27) for t = 7, R = 0.2, p = 2, V = 1, λ = 6,
λr = 3, ν = 0.003, μ = 2.96, γ = 0.9 and different values of β

Fig. 7 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by Eqs. (21) and (27) for t = 7, R = 0.2, p = 2, V = 1, λ = 10,
λr = 4, ν = 0.003, μ = 2.96, β = 0.2 and different values of γ
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Fig. 8 Profiles of the velocity w(r, t) and shear stress τ(r, t) corresponding to the Oldroyd-B, Maxwell and Second grade fluids with
fractional derivatives and ordinary fluids (Oldroyd-B, Maxwell, Second grade and Newtonian), for t = 6, R = 0.2, p = 2, V = 1,
λ = 3, λr = 1, ν = 0.003, μ = 2, β = 0.1 and γ = 0.1

have opposite effects on the fluid motion. More ex-
actly the velocity and the shear stress are decreasing
functions with respect to λ and increasing ones with
regards to λr . The influences of the fractional param-
eters β and γ on the fluid motion are presented in
Figs. 6 and 7. Their effects are also opposite, but they
are qualitatively the same as those of λr and λ, respec-
tively. More exactly the velocity w(r, t) and the shear

stress τ(r, t) are increasing functions with regards to
β and decreasing ones with regards to γ .

Finally, for comparison, the profiles of w(r, t)

and τ(r, t) corresponding to the flow of Oldroyd-
B, Maxwell and Second grade fluids with fractional
derivatives and ordinary fluids (Oldroyd-B, Maxwell,
Second grade and Newtonian) are together depicted in
Fig. 8 for the same values of t and of the common ma-
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terial parameters. The Maxwell fluid with fractional
derivatives, as it results from these figures, is the slow-
est and the Second grade fluid with fractional deriva-
tives is the swiftest on the whole flow domain. The
units of the material constants are SI units within all
figures, and the roots rn have been approximated by
(4n + 1)π/(4R).

6 Concluding remarks

The purpose of this paper was to establish exact an-
alytical solutions for the velocity field and the ade-
quate shear stress corresponding to the unsteady flow
of an incompressible OBFFD through an infinite cir-
cular cylinder. The motion of the fluid is produced by
the cylinder, which after time t = 0+, begins to rotate
about its axis with a time-dependent angular veloc-
ity. The solutions that have been obtained by means
of the finite Hankel and Laplace transforms, are pre-
sented under series form in terms of the generalized
G and Bessel functions satisfy all initial and boundary
conditions. The similar solutions for the Maxwell and
Second grade fluids with fractional derivatives and or-
dinary fluids (Oldroyd-B, Maxwell, Second grade and
Newtonian fluids) performing the same motion, are
obtained as limiting cases of general solutions. Fur-
thermore, the solutions (30) and (31) corresponding
to Maxwell fluid with fractional derivatives, solutions
(34) and (35) corresponding to Second grade fluid with
fractional derivatives and solutions (40) and (41) cor-
responding to Second grade fluid are equivalent to
those obtained in [11, 29, 30] by a different technique.
The results categorically indicate the following find-
ings:

– The solutions obtained for Maxwell and Second
grade fluids with fractional derivatives and ordinary
Second grade fluid by two different methods are
equivalent.

– It is noted that the velocity of the fluid is an increas-
ing function with respect to t and r on the whole
flow domain.

– The velocity of the fluid increases for increasing ν

while the shear stress has opposite property.
– It is observed that rheological parameters λ and λr

have a strong influence on the fluid motion, but their
effects are opposite.

– The fractional parameters β and γ have a opposite
effects on the fluid motion.

– The rheological parameters λ and fractional param-
eters γ qualitatively have the same effects on the
fluid motion. It is also observed that rheological
parameters λr and fractional parameters β qualita-
tively have same effects on the fluid motion, but op-
posite to λ and γ .

– The Maxwell and Oldroyd-B fluids with fractional
derivatives are slower than the ordinary Maxwell
and Oldroyd-B fluids while Second grade fluid with
fractional derivatives is faster than ordinary Second
grade fluid.
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Appendix A

∞∑
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