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Abstract The free vibration of axially functionally
graded (FG) non-uniform beams with different bound-
ary conditions is studied using Differential Transfor-
mation (DT) based Dynamic Stiffness approach. This
method is capable of modeling any beam (Timoshenko
or Euler, centrifugally stiffened or not) whose cross
sectional area, moment of Inertia and material prop-
erties vary along the beam. The effectiveness of the
method is confirmed by comparing the present results
with existing closed form solutions and numerical re-
sults. In FG beams, flexural rigidity and mass density
may take majority of functions including polynomials,
trigonometric and exponential functions (converted to
polynomial expressions). DT based Dynamic stiffness
approach is proved to be a versatile and simple ap-
proach compared to many other methods already pro-
posed.

Keywords Timoshenko beam · Euler beam ·
Bending stiffness · Mass density · Functionally
graded material · Nonuniform beam

Nomenclature
A0 Area of the section at the root
A(x) Cross sectional area at any section
b(x) Breadth of the cross section at any section
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d(x) = E(x)I (x) Flexural rigidity at any section
E(x) Modulus of elasticity of the axially graded

material at any section
e Taper ratio
G(x) Modulus of rigidity at any section
h(x) Depth of the cross section at any section
I (x) Moment of Inertia at any section
I0 Moment of Inertia of the section at the

root
K(x) = κA(x)G(x) Shear rigidity at any section
K Structural stiffness matrix
KG Geometric stiffness matrix
L Length of the beam
mr = 1 Depth taper only
mr = 2 Both width and depth taper
MT Tip mass at the free end
M(x) Moment at any section
M Mass matrix
nt Number of terms
nr Material non-homogeneity factor
P(x) Centrifugal force or compressive load
p(x) Lateral load
p = PL2

EI0
Buckling load parameter

R Hub radius
s Summation index
T Typical material property
Ta,Tz Typical material property for Alumina and

Zirconia respectively
V (x) Shear force
w Lateral deflection of the centre line of the

beam
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x, y and z Cartesian coordinate axes
y(x) Function
β Tip mass parameter
δ = R/L Non-dimensional parameter for hub radius

η = √
Ω2 + ω2

κ Shear correction factor
λ Rotating speed parameter where

λ = Ω

√
ρ0A0L

4

E0I0
μ Natural frequency parameter where

μ = ω

√
ρ0A0L

4

E0I0
Ω Angular rotation speed in radians/sec
ϕ Shape function for θ

ρ(x) Mass density of axially graded material
at any section

ψ Shape function for bending rotation
θ Bending rotation
ω Natural frequency
ξ = x

L
Non-dimensional variable

ς Damping factor
∇ = d

dx
Operator

1 Introduction

There has been a great interest in the analysis of
the free vibration characteristics of elastic structures
such as turbine, compressor or helicopter blades, spin-
ning spacecraft and satellite booms rotating with con-
stant angular velocity. For a relatively long blade the
simplest response is the Euler Bernoulli beam model
(EBM). In some cases, these shafts are stubby and
when the higher modes in bending vibrations are con-
sidered, Timoshenko beam theory (TBT) is employed.
The only distinction between the above two theories
being shear deformation and rotary inertia are con-
sidered in TBT in addition to centrifugal force. With
the above, functionally graded material (FGM) com-
plicates the issue.

FGM are multiphase composites with volume frac-
tion of phase varying through a direction. FGM was
first proposed by material scientists in Sendai area in
Japan in 1984 [1, 2] as thermal barrier material. Since
then, these materials have been employed in many en-
gineering application fields such as aircrafts, space ve-
hicles, defense industries, electronic and biomedical
sectors. For functionally graded beams, gradient vari-
ation may be oriented in cross section, or in the ax-
ial direction. But in this research, gradient variation is
considered in axial direction.

Semi-inverse method was used to study beam with
axially FGM by Elishakoff and his co-workers [3, 4].
Many researchers have used numerical techniques
such as Frobenius and Rayleigh-Ritz methods [5–8].
Spectral finite element method (SFEM) also called dy-
namic stiffness method has been applied by Vinod et
al. [9], Doyle [10] to provide a high accuracy using
less number of elements. Wright et al. [11] applied the
Frobenius method (extended power series method) and
solved for natural frequencies of both uniform and ta-
pered rotating beam with cantilever or hinged bound-
ary conditions, in which tapered beam has a linear
variation of mass and flexural stiffness along the span
of the beam. Huang and Li [12] studied the free vibra-
tion of nonuniform axially FG beams by transforming
governing equation to Fredholm integral equation.

For Timoshenko beams, Mabie and Rogers [13]
solved the differential equation of vibration of a ta-
pered beam by using Bessel functions. Downs [14]
employed a dynamic discretization technique to cal-
culate the natural frequency of a tapered Timoshenko
beam. Finite element technique was used by Gupta and
Rao [15], Dawe [16], To [17], and Lees and Thomas
[18] to study the effect of shear deformation and rotary
inertia on the modal frequency of a tapered beam. The
free vibration characteristics of rotating Timoshenko
beams have also been extensively studied by Lee and
Lin [19], Du et al. [20], Nagaraj [21] and Lin and
Hsiao [22].

The vibration of tapered beams has also been stud-
ied by other methods such as the modified differen-
tial quadrature method by Choi and Chou 2001 [23],
the spline interpolation technique by Irie et al. [24],
the transfer matrix approach by Irie et al. [25] and the
method of Frobenius by Lee and Lin [26]. Shahba et
al. [27] applied FEM using Hermitian polynomials to
study the free vibration and stability of tapered axi-
ally functionally graded beam. Attarnejad et al. [28]
used basic displacement functions (BDF) for free vi-
bration analysis of non-prismatic Timoshenko beams.
Attarnejad and Shahba [29, 30] used basic displace-
ment functions to study the free vibration of centrifu-
gally stiffened tapered beams.

In the present paper, we adopt the Differential
transformation (DT) based dynamic stiffness method
to study the buckling and vibration characteristics of
axially FG tapered Euler and Timoshenko beams (cen-
trifugally stiffened or not) by considering four first
order differential equations. Zhou [31] was the first
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Fig. 1 Configuration of functionally graded tapered rotating cantilever beam

one to use differential transformation method (DTM)
in engineering applications. Since DTM is an effi-
cient tool for solving nonlinear or parameter vary-
ing systems, it has gained much attention by several
researchers such as Chen and Ju [32], Arikoglu and
Ozhol [33] and Bert and Zeng [34].

However, DT method considered in this paper is
much different from other investigators.

(a) DT based dynamic stiffness method does not pose
any restriction on both the type of material grada-
tion and variation of the cross section profile and
hence they could cover most of the engineering
problems dealing with axially FG beams.

(b) The technique is directly used to get the shape
functions for displacements and bending rotations
and hence stiffness, geometric stiffness and mass
matrices can be arrived at. Using finite element
procedure, these matrices are assembled to form
global matrices and applying boundary conditions
one can solve for the free and forced vibration
and stability problems for the beams and predict
the natural frequency and buckling load more pre-
cisely in comparison with previous works.

(c) DT replaces power series in establishing the dy-
namic stiffness of beams.

2 Governing differential equations

In Fig. 1, a cantilever beam of length L, which is
rigidly fixed on the periphery of a rigid hub of radius
R is shown. The hub is assumed to rotate about its ver-
tical axis ‘z’ at a constant angular speed Ω . We con-
sider the right hand Cartesian system and the origin is
located at the left end of the beam (centre of the hub).
The following assumptions are made [35].

(1) The x axis coincides with the neutral axis of the
beam in the un-deformed position.

(2) The beam cross section is doubly symmetric.
(3) The out-of-plane displacements are small and ne-

glected.
(4) The cross sections which are initially perpendic-

ular to the neural axis will remain plane but not
perpendicular after deformation for Timoshenko
beams.

(5) Coriolis effects are very small and neglected in
case of centrifugally stiffened beam.
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Based on Timoshenko beam theory, governing dif-
ferential equation for free transverse vibration of axi-
ally FG tapered rotating beams were derived by Kaya
[35] as well as Banerjee [36]. Here we will not repeat
the derivation and we give only governing equations
and the interested reader may consult Refs. [35, 36].

The shear force V = V (x, t) at any section includ-
ing shear deformation is given by

V (x, t) = P(x)
dw

dx
+ K(x)

(
dw

dx
− θ

)
(1)

where centrifugal force P(x) varies along the span
wise direction of the beam and is given by

P(x) =
∫ L

x

ρ(x)A(x)Ω2(R + x)dx

+ MT Ω2L(1 + δ) (2)

where K(x) = shear rigidity given by K(x) = κ ×
A(x)G(x) only for Timoshenko beams and κ = shear
correction factor depending on the cross section (val-
ues of κ for circular and rectangular cross section are
2/3 and 5/6). All the notations are defined in Nomen-
clature.

In case of buckling problems

V (x, t) = −P(x)
dw

dx
+ K(x)

(
dw

dx
− θ

)
(3)

where P(x) is the compressive load at any section.
The bending moment M = M(x, t) at any section

is given by

M(x, t) = d(x)
dθ

dx
(4)

where d(x) = E(x)I (x), the bending stiffness.
The equations of motion are obtained as

dM(x, t)

dx
+ ρ(x)I (x)Ω2θ + K(x)

(
dw

dx
− θ

)

− ρ(x)I (x)θ̈ = 0 (5)

and

dV (x, t)

dx
− ρ(x)A(x)ẅ = p(x, t) (6)

where

θ̈ = d2θ

dt2
and ẅ = d2w

dt2
(7)

Sinusoidal variation for transverse displacement and
bending rotation with circular frequency ω (assuming
the lateral load, p(x, t) = 0) is given by

w(x, t) = w sin(ωt + φ);
θ(x, t) = θ sin(ωt + φ)

(8a)

M(x, t) = M sin(ωt + φ);
V (x, t) = V sin(ωt + φ)

(8b)

where w, θ , M and V are functions of x only and the
variables with under score are functions of x and t .

Substituting Eqs. (8a), (8b) in Eqs. (4) and (5) we
get

dM(x)

dx
+ ρ(x)I (x)Ω2θ + K(x)

(
dw

dx
− θ

)

= −ω2ρ(x)I (x)θ = 0 (9a)
dV (x)

dx
= −ω2ρ(x)A(x)w (9b)

Equations (1), (3), (9a) and (9b) are written in matrix
form as⎡
⎢⎢⎣

∇ 0 0 0
0 ∇ −K(x) + ρ(x)I (x)Ω2 K(x)∇
0 − 1

d(x)
∇ 0

−1 0 −K(x) (P (x) + K(x))∇

⎤
⎥⎥⎦

×

⎧
⎪⎪⎨
⎪⎪⎩

V

M

θ

w

⎫
⎪⎪⎬
⎪⎪⎭

= −ω2

⎡
⎢⎢⎣

0 0 0 ρ(x)A(x)

0 0 ρ(x)I (x) 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎧
⎪⎪⎨
⎪⎪⎩

V

M

θ

w

⎫
⎪⎪⎬
⎪⎪⎭
(10)

In Eq. (10), for buckling problems P(x) is to be sub-
stituted as −P(x) where ∇ = d

dx
with boundary con-

ditions (V = 0 or w = 0; M = 0 or θ = 0 at x = 0
and x = L). It is to be noted that for a cantilever beam,
when the tip mass MT is added at the free end, the
shear at the free end is given by V − ω2MT w. Equa-
tion (10) can also be written as
⎡
⎢⎢⎣

∇ 0 0 ρ(x)A(x)ω2

0 ∇ ρ(x)I (x)η2 −P(x)∇
0 − 1

d(x)
∇ 0

−1 0 −K(x) (P (x) + K(x))∇

⎤
⎥⎥⎦

×

⎧
⎪⎪⎨
⎪⎪⎩

V

M

θ

w

⎫
⎪⎪⎬
⎪⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫
⎪⎪⎬
⎪⎪⎭

(11)

where

η2 = Ω2 + ω2 (12)
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3 Differential transformation element method
(DTEM)

In this section, the required mathematical background
for better understanding of DTEM based dynamic
stiffness method is presented.

If function y(x) is analytic in domain D; let x = x0

represent any point in the domain. Then Taylor’s series
expansion is given as

y(x) =
∞∑

s=0

1

s!
{

dsy(x)

dxs

}∣∣∣∣
x=x0

(x − x0)
s (13a)

where s belongs to the set of non-negative integers de-
noted as S domain.

(a) Differential transformation DT of y(x) is defined
as ȳ[s] as

ȳ[s] = 1

s!
{

dsy(x)

dxs

}∣∣∣∣
x=x0

(13b)

It is to be noted that differential transformation of any
function is written in square brackets with a bar over
the letter as shown in Eqs. (13a) and (13b).

(b) Inverse differential transformation (IDT): IDT is
known as presentation of y(x) by power series us-
ing DT of y(x) as

y(x) =
∞∑

s=0

ȳ[s](x − x0)
s (14a)

In practical problems, Eq. (14a) is replaced by a finite
series as

y(x) =
nt∑

s=0

ȳ[s](x − x0)
s (14b)

where nt (number of terms) is chosen such that y(x) =∑∞
s=nt+1 ȳ[s](x − x0)

s is negligibly small. In this pa-
per x0 is set to zero.

If y(x) is represented as polynomial expression as

y(x) =
nt∑

s=0

μs(x − x0)
s (15a)

then one can identify ȳ[0] = μ0, ȳ[1] = μ1 . . . ȳ[nt] =
μnt .

If y(x) is a function ȳ[0], ȳ[1], . . . , ȳ[nt] can be de-
termined using Eq. (13a).

The fundamental theorems of one dimensional dif-
ferential transformation are

w(x) = u(x) ± v(x); w̄[s] = ū[s] ± v̄[s]
w(x) = cu(x); w̄[s] = cū[s] if c is constant

If

w(x) = u(x)v(x),

w̄[s] =
s∑

i=0

ū[s − i]v̄[i]

w(x) = dpu(x)

dxp
,

w̄[s] = (s + 1)(s + 2) . . . (s + p)ū[s + p]

(15b)

Consider four first order differential equations over
the domain 0 ≤ x ≤ L. In order to solve the differ-
ential equation with Differential Transformation Ele-
ment Method (DTEM), firstly a recurrent relation is
obtained by using the IDT of each term in the differen-
tial equation and applying the theorems given above. It
is possible to express w̄[s], s = j, j + 1, j + 2, . . . , nt

in terms of θ̄[s], M̄[s] and V̄ [s], s = 0,1,2, . . . , j − 1
and centrifugal force term P̄ [s], s = 0,1,2, . . . , j − 1
using the recurrent relation. Similarly θ̄ [s], M̄[s] and
V̄ [s] in terms of other three quantities and centrifugal
force term P̄ [s].

Assume Young’s modulus E, mass density ρ,
breadth of the cross section at any section ‘b’, depth
of the section ‘h’ vary with respect to ξ as (ξ = x

L
)

E(ξ) = (
a1 + a2ξ + a3ξ

2);
ρ(ξ) = (

b1 + b2ξ + b3ξ
2);

b(ξ) = (c1 + c2ξ), h(ξ) = (h1 + h2ξ)

(16)

Hence area and moment of inertia vary as

A(ξ) = area = b(ξ)h(ξ) = (
e1 + e2ξ + e3ξ

2);
I = (

f1 + f2ξ . . . f5ξ
4) (17)

Flexural rigidity d(x) = E(x)I (x) and ρI (x) =
ρ(x)I (x) are given by

d(ξ) = (
g1 + g2ξ + g3ξ

2 + g4ξ
3 + · · · + g7ξ

6)
(18)

ρI (ξ) = (
q1 + q2ξ + q3ξ

2 + q4ξ
3 + · · · + q7ξ

6)

(19)

ρA(x) and K(x) variation is given by

ρA(ξ) = (
α1 + α2ξ . . . α5ξ

4);
K(ξ) = (

β1 + β2ξ . . . β5ξ
4) (20)
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Fig. 2 DTEM model (numbers in circles and beneath the beam respectively denote element and node numbers)

Centrifugal force at any section is given by

P(ξ) = Ω2RL

∫ 1

ξ

(
b1 + b2ξ + b3ξ

2)

× (
e1 + e2ξ + e3ξ

2)
(δ + ξ)dξ

= (
γ1 + γ2ξ . . . γ7ξ

6)
(21)

From the above power series, we obtain

d̄[1] = g1; d̄[2] = g2 . . . K̄[1] = β1;
K̄[2] = β2; ρI [1] = q1; ρI [2] = q2

ρA[1] = α1; ρA[2] = α2 . . . P̄ [1] = γ1;
P̄ [2] = γ2 . . .

(22)

In DTEM, the whole domain is firstly divided into
‘ne’ elements as shown in Fig. 2. The solution of the
governing differential equation in each element, i.e.
wi(x), θi(x), Mi(x) and Vi(x), i = 1,2, . . . ne are
sought. The stiffness matrix and the shape functions
for lateral displacements and bending rotations are ob-
tained automatically. Assume transverse displacement
w(x) and bending rotation θ(x) along the element
length could be expressed in terms of nodal ones as

w(x) =
4∑

j=1

ψj�j = ψT �

θ(x) =
4∑

j=1

φj�j = ΦT �

(23)

in which

� = {wiθiwj θj } (24)

ψ = {ψ1ψ2ψ3ψ4}T
Φ = {φ1φ2φ3φ4}T

(25)

where ψ are shown in Fig. 3.
With the help of kinetic energy, consistent mass

could be derived as

Mij =
∫ Le

0

(
ρ(x)A(x)ψiψj + ρ(x)I (x)φiφj

)
dx

(26)

Fig. 3 Shape functions for nodal displacements

and geometric stiffness matrix is obtained as

KGij =
∫ Le

0

(
dψ

dx

)

i

(
dψ

dx

)

j

dx (27)

Structural stiffness matrix is automatically obtained in
DTEM.

3.1 Derivation of recurrent relation

To get DT of Eq. (11), the following two axioms are
used. It is to be noted that from programming point of
view s = 1 to nt is considered instead of s = 0 to nt in
the usual way and nt denotes the number of terms. In
all the numerical examples investigated, the number of
terms considered is 40. The two axioms are

DT [AB] = Ā[1] × B̄[s]
+

s∑
i=2

Ā[i] × B̄[s − i + 1] (28)

and

DT
[
AB ′]

= sA[1] × B[s + 1]/L

+
k∑

i=2

(s − i + 1) × A[i] × B[s − i + 2]/L (29)
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where B ′ denotes dB
dx

. From the last equation of
Eq. (11)

−V − K(x)θ + (
P(x) + K(x)

)∇w = 0 (30)

Taking DT of the above equation and using the theo-
rems we get

w̄[s + 1] = L

s

{
(V̄ [s] + K̄[1] × θ̄ [s] − s1)

(P̄ [1] + K̄[1])
}

(31)

s1 in Eq. (31) is given by

s1 = −
s∑

i=2

{
K̄[i] × θ̄ [s − i + 1]

+ (
P̄ [i] + K̄[i]) × (s − i + 1)

× w̄[s − i + 2]/L}
(32)

From the third equation of Eqs. (11)

−M + E(x)I (x)∇θ = 0; or

−M + d(x)∇θ = 0
(33)

Taking DT of the above equation we get

θ̄ [s + 1] = L
{
M̄[s] − s2

}
/
(
s × d̄[1]) (34)

where

s2 = 1

L

k∑
i=2

(s − i + 1)d̄[i] × θ̄ [s − i + 2] (35)

From the second equation of Eqs. (11)

V + ∇M + ρ(x)I (x)η2θ − P(x)∇w = 0 (36)

Taking DT of the above equation we get

M̄[s + 1] = L

s

{−V̄ [s] − η2 × ρĪ [1] × θ̄[s]
+ s × P̄ [1] × w̄[s + 1]/L − s3

}
(37)

where

s3 = η2
k∑

i=2

{
ρI [i] × θ̄ [s − i + 1)

− (s − i + 1) × P̄ [i] × w̄[s − i + 2]/L}
(38)

From the first equation of Eqs. (11)

∇V + ω2ρ(x)A(x)w = 0 (39)

Taking DT of the above equation, we get

V̄ [s + 1] = −ω2L
{
ρA[1] × w̄[s] + s4

}
/s (40)

Fig. 4 Deformed shape unit lateral displacement at node i

where

s4 = ω2
s∑

i=2

ρA[i] × w̄[s − i + 1]

ρA(x) = ρ(x)A(x)

(41)

In the above equations w̄[1], θ̄[1], M̄[1] and V̄ [1] de-
note differential transformation values of deflection,
bending rotation, moment and shear at the origin of the
element. (In actual DTM, w̄[0], θ̄ [0], M̄[0] and V̄ [0]
are the deflection, rotation, moment and shear val-
ues at the origin of an element.) Using recurrence re-
lation, obtain w̄[2], w̄[3], . . . , w̄[nt], . . . , V̄ [2], V̄ [3],
. . . , V̄ [nt] where ‘nt’ denotes the number of terms.

3.2 DTEM procedure to obtain shape functions,
stiffness matrix, geometric stiffness matrix and
mass matrices

Transverse displacements w(x) and bending rotation
θ(x) along element length could be expressed in terms
of nodal ones as given by Eq. (23). Assume we want
to get the shape function for wi = 1 and all other dis-
placements as zero. By recurrence relation for w̄[1] =
1 and M̄[1] = 1; V̄ [1] = 1 applied independently one
can calculate the displacement wj = ∑nt

s=1 w̄[s] at the
right end of the element as p1, y1, and z1 and calcu-
late the rotation at the right end θj = ∑nt

s=1 θ̄ [s] for the
same w̄[1] = 1 and M̄[1] = 1; V̄ [1] = 1 applied inde-
pendently as p2, y2, and z2 respectively (see Fig. 4).
To obtain the shape function for wi = 1 along with the
displacement we have transformation for moment Mi

and shear Vi which can be obtained from compatibility
equation as
[
y1 z1

y2 z2

] {
M̄i

V̄i

}
+

{
p1

p2

}
=

{
0
0

}
(42)
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From Eq. (42) one can solve for M̄i , V̄i and hence by
knowing w̄1, M̄1, V̄1 one could obtain the shape func-
tion ψ by using recurrence relation. The same exercise
is repeated for θi = 1, wj = 1 and θj = 1. Similarly
functions Φ could also be obtained as shape functions
for θ

ψ
4×1

= uuT

4×nt
xi

nt×1
(43)

and

Φ
4×1

= θθT

4×nt
xi

nt×1
(44)

where

xiT = 〈
1 ξ ξ2 ξ3 ξ4 . . . ξnt−1〉

(45)

The mass matrix is obtained using Eq. (26) and in that

ρA(ξ) = ρA[1] + ρA[2]ξ + ρA[3]ξ2 · · · (46)

and

ρI (ξ) = ρI [1] + ρI [2]ξ + ρI [3]ξ2 · · · . (47)

The first term of the right hand side of Eq. (26) can be
written as

MI =
nt∑

s=1

L

(∫ 1

0

{
ρA[s][uu]T xixiT ξ s−1[uu]}dξ

)

= L

nt∑
s=1

ρA[s]uuT axsuu (48)

The second term of mass matrix is obtained in a simi-
lar manner as

M II = L

nt∑
s=1

ρI [s]θθT axsθθ (49)

Combining, the mass matrix is obtained as

M = L

nt∑
s=1

ρA[s]uuT axsuu

+ L

nt∑
s=1

ρI [s]θθT axsθθ (50)

wherein axs

ax(i, j, s) = 1

(i + j + s − 2)
(51)

dψ

dx
= 1

L
uuT

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
1

2ξ

3ξ2

...

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 1

L
uuT ay

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
ξ

ξ2

...

...

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(52)

where

ay =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0
1 0 · · · · · · 0
0 2 · · · · · · 0
0 0 3 · · · 0
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎦

(53)

The geometric stiffness matrix is obtained using
Eq. (27) as

KG = 1

L
uuT ayax1ayT uu (54)

Hence for an element, stiffness matrix [K], geomet-
ric stiffness [KG] and mass matrix [M] can be estab-
lished. The element stiffness matrices are assembled
to form global flexural stiffness matrix, global geomet-
ric stiffness matrix and global mass matrices. Bound-
ary conditions are applied using Wilson’s Lagrangian
multiplier method [37] and the following equations are
solved as eigen value problem for natural frequencies
and buckling load.

[K]{r} = ω2[M]{r}; [K]{r} = Pcr [KG]{r} (55)

4 Numerical results and discussion

The following problems can be investigated using the
formulation developed in this paper.

(a) Free vibration of axially functionally graded ta-
pered centrifugally stiffened Timoshenko beams

(b) Stability analysis of axially functionally graded ta-
pered Timoshenko beams

(c) Free vibration analysis of axially functionally
graded tapered Timoshenko beams

(d) By assuming very high shear stiffness (say 1e20)
and neglecting rotary inertia, all the above three
analyses can be carried out for Bernoulli–Euler
beams.

4.1 Effects of variable cross section

Consider a tapered beam with a rectangular cross sec-
tion whose breadth and height both taper vary linearly
as

b = b0(1 − cbξ); d = d0(1 − chξ) (56)

where cb and ch are the taper parameters for the
breadth and height.
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Thus the cross sectional area and moment of inertia
vary along the beam axis as (when cb = ch = e)

A = A0(1 − eξ)mr; I = I0(1 − eξ)mr+2 (57)

Case A. Depth variation only (mr = 1)

A = A0(1 − eξ); I = I0(1 − eξ)3 (58)

where ξ = x
L

is the non-dimensional longitudinal co-
ordinate along the whole beam, L is the length of
whole beam and e is taper ratio and A0 and I0 are
respectively the values of cross-sectional area and mo-
ment of inertia at the root where x = 0.

Case B. Both depth and breadth variation (mr = 2)

A = A0(1 − eξ)2; I = I0(1 − eξ)4 (59)

It is instructive to remember that the beam would be
uniform when e = 0 and it would theoretically taper to
a point if e = 1 and if e is negative, section depth and
breadth increase from x = 0, i.e. (ξ = 0) to x = L, i.e.
(ξ = 1).

4.2 Variation of material properties

Moreover, the distribution of modulus of elasticity and
mass density are assumed to be respectively varied as
power law distribution [38]. It is assumed that the ax-
ially FG beams is made of two constituents namely
Aluminum and Zirconia with the following properties.
(Poisson’s ratio is assumed to be 0.3)

Al: E = 70 GPa; ρ = 2702 kg/m3

ZrO2: E = 200 GPa; ρ = 5700 kg/m3

T is a typical material property such as E and ρ

which is assumed to vary as

T = (Ta − Tz)

(
x

L

)nr

+ Tz (60)

where the subscripts ‘a’ and ‘z’ refer to the values
of the parameters for Aluminum and Zirconia respec-
tively and nr is the material non-homogeneity param-
eter. The variation of E is depicted for a unit length of
beam in Fig. 5 for different values of ‘nr’. It is obvi-
ous that the percentage content of Zirconia increases
as ‘nr’ increases towards infinity. It is recommended
by Nakamura et al. [39] that nr varies in the range of
1
3 ≤ nr ≤ 3 and any value out of this range would re-
sult into a FG material with too high percentage of one
of the constituents, here Zirconia.

Fig. 5 Variation of Young’s modulus along the beam axis with
respect to different values of nr

In this section, several numerical examples are pro-
vided to demonstrate the competency of the present
methods. In order to facilitate the presentation of re-
sults, the following dimensionless parameters are in-
troduced as

Hub radius parameter: δ = R

L

Rotary inertia parameter: r2 = I0

A0L2

Rotating speed parameter: λ = Ω

√
ρ0A0L4

E0I0

Tip mass parameter: β = MT

ρ0A0L

Natural frequency parameter for graded beams:

μ = ω

√
ρ0A0L4

E0I0
.

4.3 Convergence study

The competency of DT based dynamic stiffness (DS)
method in free vibration of centrifugally stiffened
tapered FG Timoshenko beams is verified through
several numerical examples. In what follows, firstly
the convergence of the DT based dynamic stiffness
method (DT-DS) is examined. Afterwards, the ef-
fects of rotation speed, taper ratio, material non-
homogeneity parameter on the natural frequencies are
investigated.

It is very important to study the convergence char-
acteristics of any numerical method to guarantee the
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successful application of the method to various engi-
neering problems. For the convergence study of (DT-
DS) approach, an axially functionally graded centrifu-
gally stiffened non-prismatic cantilever beam with the
following parameters is considered. Since rectangle
section is considered, shear correction factor may be
assumed as 5/6.

κ = 5

6
; mr = 2; nr = 2;

G = 0.3846E; δ = 0; λ = 5;

e = 0.8; r =
√

I0

A0
= 0.08

Figure 6 shows the relation between the number of
elements in (DT-DS) vs frequency parameter values.
Considering four frequency parameters, nt = 10 terms
would be sufficient to provide satisfactory results.
However, for a highly nonlinear problem more num-
ber of terms may be necessary to achieve the required
accuracy. Considering all the four frequency parame-
ters 10 terms with 40 elements would be sufficient to
solve the problem to a desired accuracy.

4.4 Numerical examples

Example 1 (Uniform cantilever Timoshenko beam
analysis (r = 1

30 )) The results of Table 1 illustrate the
effect of the rotational speed parameter λ, on the fun-
damental natural frequency of the Timoshenko beam.
The fundamental frequency values obtained by Dy-
namic stiffness method agree with Kaya [35] and

Fig. 6 Convergence characteristics of Dynamic stiffness
method

Ozgumus and Kaya [40]. All the four fundamental fre-
quencies increase with the increase in speed parame-
ter. The values of ρ, E, A, L are assumed as unity and
the shear correction factor κ is assumed as 5/6 and
G = 0.392E. The hub radius is assumed to be equal to
zero.

Example 2 Cantilever rotating Timoshenko beam with
rotational speed parameter 4 (mr = 1; κ = 2/3 (circu-
lar section); G = 0.375E; δ = 0; λ = 4) is considered.
Table 2 illustrates the variation of natural frequencies
of a rotating tapered Timoshenko beam with respect
to the taper ratio and rotary inertia parameter ‘r’. For
e = 0, 0.25, 0.5, the frequency parameter values are

Table 1 Variation of the fundamental frequency parameters (μ =
√

ρAL4ω2

EI ) of a rotating Timoshenko cantilever beam for various

value of λ (speed parameter) (λ =
√

ρAL4Ω2

EI (δ = 0, r = 1
30 , E

KG
= 3.059))

λ Method μ1 μ2 μ3 μ4

0 Present 3.4798 20.5897 53.3587 95.3477
Ref. [40] 3.4798 20.5891 53.3396 –

2 Present 4.0971 21.1772 53.9666 96.0345
Ref. [40] 4.0971 21.1765 53.9542 –

4 Present 5.5314 22.8475 55.7700 98.0593
Ref. [40] 5.5314 22.8466 55.7503 –

6 Present 7.2847 25.3817 58.6166 101.3223
Ref. [50] 7.2848 25.3802 58.5978 101.2325

8 Present 9.1524 28.5402 62.3544 105.6805
Ref. [50] 9.1524 28.5383 62.3331 105.5826

10 Present 11.0644 32.1276 66.8018 110.9715
Ref. [50] 11.0643 32.1251 66.7797 110.8710
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Table 2 Effect of rotary inertia and taper ratio parameters on the first six natural frequency parameters of tapered cantilever rotating
Timoshenko beam (λ = 4; δ = 0; mr = 1; κ = 2/3; G = 0.375E)

e μ\r 0.01 0.02 0.04 0.06 0.08 0.10

0 μ1 5.5791 5.5616 5.4951 5.3955 5.2750 5.1449
μ2 24.0993 23.6066 21.9574 19.9689 18.0661 16.3980
μ3 62.8313 59.8204 51.5031 43.7634 37.7601 33.2068
μ4 119.2481 109.5118 87.2835 70.2389 58.0473 47.8772
μ5 192.0369 169.5774 126.5043 97.8983 77.6885 58.9470
μ6 279.5836 236.3005 167.4769 124.5188 86.4281 66.3281

0.25 μ1 5.6955 5.6793 5.6176 5.5238 5.4089 5.2832
μ2 22.4245 22.0606 20.8062 19.2211 17.6409 16.2201
μ3 56.2869 54.1231 47.7641 41.3932 36.2109 32.2086
μ4 105.9175 98.8808 81.4300 67.0090 56.5291 48.5809
μ5 170.3942 153.9025 119.1292 94.4127 77.6753 63.8540
μ6 248.5546 216.9176 159.0911 122.3688 94.3178 67.1142

0.5 μ1 5.8737 5.8585 5.8002 5.7106 5.5989 5.4746
μ2 20.5979 20.3447 19.4441 18.2468 16.9922 15.8208
μ3 49.1315 47.6995 43.2071 38.3024 34.0490 30.6380
μ4 91.1103 86.4626 73.8248 62.3342 53.5745 47.0082
μ5 145.9774 134.9248 108.9238 88.6167 74.3941 64.1896
μ6 212.9662 191.3196 146.8746 116.0289 95.3126 73.3436

read approximately from Fig. 4 of Ozgumus and Kaya
[40] and compared with the present results in Table 2
and the agreement is quite good. When the rotary iner-
tia parameter increases, the natural frequency parame-
ter μ decreases. Although decreases, the product of μr

still increase and hence natural frequency increases.
Rotary inertia parameter has dominant effect on higher
modes. It is also seen that lower mode frequency pa-
rameters are not affected with increase in ‘r’ whereas
there is remarkably high decrease in higher mode fre-
quency parameter values. The taper ratio has decreas-
ing effect on natural frequency parameters.

Example 3 Consider a tapered axially FG Timoshenko
beam with δ = 0 rotating with a speed of λ = 5.
The material follows power law with nr = 2. The
first four dimensionless natural frequency parameters
of the beam are tabulated in Table 3 for mr = 2. It
can be verified that the frequency parameter values
for all types of boundary conditions investigated de-
crease with taper ratio except for C-F condition where
it shows an increasing trend. The first four normalized
mode shapes of the beam with taper ratios e = 0, 0.8
are given in Fig. 7 for mr = 1, nr = 2 for C-F bound-
ary conditions and these four normalized mode shapes
compare well qualitatively with Fig. 7 of Ref. [41].

Fig. 7 The first four normalized mode shapes (solid line: e = 0;
dotted line: e = 0.8) of an axially graded rotating tapered Tim-
oshenko beam with λ = 2; δ = 0; and mr = nr = 2: Boundary
Condition C-F

Example 4 Table 4 shows the buckling loads of a non
rotating homogeneous uniform Timoshenko column
(r = 0.1; κ = 5/6; G = 0.3846E) and the results agree
with Wang et al. [42].

Example 5 Time history analysis of a simply sup-
ported Timoshenko beam subjected to step loading at
mid span of the beam (L = 10 m; b = 0.1 m; h =
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Table 3 Effect of taper ratio on fundamental frequency parameters of rotating axially FG Timoshenko beam with different BCS
(r = 0.08; mr = 2; nr = 2; κ = 5/6; G = 0.3846E; λ = 5)

BCS μ Method\e 0 0.2 0.4 0.6 0.8

C-F μ1 Present 6.5492 6.8456 7.2476 7.8363 8.8046

Ref. [50] 6.5490 6.8455 7.2477 7.8375 8.8103

μ2 Present 20.1634 19.9545 19.6601 19.3307 19.2247

Ref. [50] 20.1594 19.9507 19.6569 19.3170 19.2635

μ3 Present 40.4996 39.2292 37.6905 35.8192 33.6024

Ref. [50] 40.4696 39.2011 37.6655 35.8002 33.6037

μ4 Present 62.2050 60.6617 58.4054 55.3384 51.1202

Ref. [50] 62.1017 60.5612 58.3131 55.2606 51.0782

C-P μ1 Present 14.0328 13.5267 12.9208 12.1967 11.3448

Ref. [50] 14.0314 13.5256 12.9202 12.1971 11.3482

μ2 Present 33.4846 32.0707 30.3854 28.3053 25.5703

Ref. [50] 33.4670 32.0551 30.3725 28.2966 25.5713

μ3 Present 55.6102 53.5175 50.9386 47.6127 42.9311

Ref. [50] 55.5302 53.4452 50.8759 47.5631 42.9053

μ4 Present 78.3744 76.1937 73.0856 68.8491 62.5113

Ref. [50] 78.1607 75.9876 72.9007 68.6944 62.4072

C-C μ1 Present 16.2510 15.4826 14.5651 13.4538 12.0895

Ref. [50] 16.2489 15.4809 14.5640 13.4538 12.0919

μ2 Present 34.8109 33.6254 32.0858 29.9958 26.9365

Ref. [50] 34.7911 33.6073 32.0703 29.9844 26.9337

μ3 Present 56.2017 54.4807 52.29581 49.3064 44.6603

Ref. [50] 56.1192 54.4041 52.2298 49.2500 44.6258

μ4 Present 78.3768 76.5054 73.9286 70.2859 64.3744

Ref. [50] 78.1624 76.2979 73.7369 70.1197 64.2439

P-P μ1 Present 11.1496 10.2250 9.1372 7.8499 6.3271

Ref. [50] 11.1490 10.2245 9.1372 7.8505 6.3295

μ2 Present 30.9399 29.0945 26.9534 24.4290 21.3636

Ref. [50] 30.9261 29.0829 26.9447 24.4244 21.3674

μ3 Present 53.9994 51.5652 48.5295 44.7684 39.6664

Ref. [50] 53.9261 51.5000 48.5352 44.7738 39.6496

μ4 Present 77.9281 75.3004 71.8307 67.1910 60.3614

Ref. [50] 77.7108 75.0993 71.6545 67.0478 60.2707

Table 4 Buckling load parameters of homogeneous Timoshenko column for various boundary conditions (r = 0.1, G = 0.3846E,
κ = 5/6)

Method Cantilever Simply supported Clamped-pinned Clamped-clamped

Present 2.2910 7.5466 11.9421 17.6982

Ref. [42] 2.2912 7.5459 11.9421 17.6892

0.1 m; E = 2.058 × 1011 N m−2, ν = 0.3; κ = 5/6;
ρ = 7860 kg m−3; F(t) = 300 N at mid span of the
beam). Figure 8 shows the vertical response at the mid
span of the beam for the first 5.0 seconds and com-
pares well qualitatively with the results obtained by

Tang [43]. Tang [43] used Leung’s equation to de-
rive the overall mass and stiffness matrix which is
more suitable for response analysis than the overall dy-
namic stiffness matrix. Tang [43] obtained the results
of forced vibration of the beam by the precise time
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Fig. 8 Forced vibration response of a simply supported Timo-
shenko beam

integration method of Zhong and Williams [44]. But
in the present analysis, considering only first five fun-
damental modes, the mass and stiffness matrices are
reduced to the size of 5 × 5 and forced vibration anal-
ysis is carried out by using Newmark’s linear acceler-
ation method with step size of 0.005 seconds up to 5
seconds. For comparison, forced response for damped
system (with damping factor ς = 0.05) is also carried
out for the same beam and plotted in Fig. 8.

Example 6 Consider an axially FG tapered non rotat-
ing Timoshenko beam with material non-homogeneity
parameter nr = 2. The first four frequency parameters
of the beam with C-F, H-H; and C-C boundary condi-
tions are given in Table 5. The results agree well with
those of Shahba et al. [27].

Table 5 The first four dimensionless frequency parameters and buckling load parameter of an axially FG tapered Timoshenko beam
with different BCS (nr = 2; mr = 2; r = 0.1)

BCS e Method μ1 μ2 μ3 μ4 p

CF 0 Present 3.8830 15.2620 31.6426 47.7114 1.9813
Ref. [27] 3.8828 15.2589 31.6177 47.6343 −

0.2 Present 4.2382 15.3421 31.0386 47.6000 1.4449
Ref. [27] 4.2384 15.3441 31.0546 47.6550 1.4455

0.4 Present 4.7112 15.3532 30.2315 46.6905 0.9334
Ref. [27] 4.7121 15.3573 30.2496 46.7483 0.9344

0.6 Present 5.3900 15.3363 29.1692 45.0504 0.4745
Ref. [27] 5.3931 15.3467 29.1962 45.1172 0.4759

0.8 Present 6.4908 15.5230 27.8439 42.4777 0.1301
Ref. [27] 6.5009 15.5568 27.9102 42.5941 0.1317

H-H 0 Present 7.9877 24.2638 42.3642 54.9263 5.5372
Ref. [27] 7.9872 24.2521 42.3024 54.8771 −

0.2 Present 7.2225 23.1257 41.0674 57.3713 3.4698
Ref. [27] 7.2245 23.1398 41.1243 59.5225 3.4735

0.4 Present 6.2718 21.7254 39.3424 57.6395 1.8664
Ref. [27] 6.2755 21.7423 39.3994 57.7881 1.8702

0.6 Present 5.0640 19.9664 36.9684 54.9521 0.7671
Ref. [27] 5.0709 19.9917 37.0337 55.1026 0.7707

0.8 Present 3.4305 17.6686 33.4251 50.5663 0.1670
Ref. [27] 3.4452 17.7204 33.5322 50.7616 0.1697

C-C 0 Present 12.6890 26.6569 43.4356 59.4149 11.3147
Ref. [27] 12.6873 26.6413 43.3688 59.2779 −

0.2 Present 12.2382 26.1318 42.5980 59.3868 7.2973
Ref. [27] 12.2429 26.1524 42.6634 59.5335 7.3377

0.4 Present 11.6616 25.3678 41.4674 58.3744 4.1313
Ref. [27] 11.6683 25.3905 41.5341 58.5279 4.1590

0.6 Present 10.9084 24.1968 39.7889 56.5047 1.8451
Ref. [27] 10.9200 24.2270 39.8636 56.6668 1.8590

0.8 Present 9.8941 22.2401 36.8881 52.9827 0.4589
Ref. [27] 9.9207 22.3010 37.0050 53.1931 0.4650
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Table 6 Predictions of non-dimensional natural frequency μ2 = ρA0ω2L4

EI0
of a tapered cantilever beam under different rotation speeds

ρA(x) = ρA0(1 − 0.5x/L); EI(x) = EI0(1 − 0.5x/L) where λ2 = ρA0Ω2L4

EI0

λ I mode II mode III mode

Present Ref. [7] Present Ref. [7] Present Ref. [7]

0 3.8238 3.8238 18.3173 18.3173 47.2649 47.2648

2 4.4368 4.4368 18.9366 18.9366 47.8717 47.8716

4 5.8788 5.8788 20.6852 20.6852 49.6457 49.6456

6 7.6551 7.6551 23.3093 23.3093 52.4633 52.4633

8 9.5540 9.5540 26.5437 26.5437 56.1596 56.1595

10 11.5015 11.5015 30.1828 30.1827 60.5640 60.5639

Example 7 In this example, we consider a tapered ro-
tating Euler beam with cantilevered boundary condi-
tions. Wright et al. [11] and Hodges and Rutkowski
[45] studied the same example. Wang and Wereley
[7] used only one single SFEM with 80 terms in the
Frobenius power series to obtain the natural frequen-
cies. The mass distribution was assumed to be linear as
ρ(x) = ρ0(1−0.5ξ) and the flexural stiffness EI(x) as
EI(x) = EI0(1 − 0.5ξ)3. This is a depth tapered beam
with depth taper ratio as 0.5. All the three modal fre-
quencies as shown in Table 6 exactly match with Wang
and Wereley [7] where the rotation speed varies from 0
to 10. Banerjee [8] also studied the same example us-
ing uniform rotating dynamic stiffness method where
20 elements were included. In this paper, for a tapered
beam exact displacement function is obtained in DT
based Dynamic stiffness method.

Example 8 (Axially FG beam with δ = 0 and λ = 2)
The material follows the power law with nr = 2. The
first four non-dimensional natural frequencies of the
beam are tabulated in Table 7 for mr = 1 (depth ta-
pered beam) and compared with Zarrinzadeh et al.
[46] who solved the problem by Finite element ap-
proach and the agreement is very good. It is gen-
erally observed that the natural frequencies for all
types of boundary conditions decrease with taper ra-
tio with some exceptions. The fundamental frequency
increases with respect to taper ratio for C-F condition.
These effects are also observed for homogeneous ro-
tating beams by Attarnejad and Shahba [29].

Example 9 Table 8 shows the results of free vibra-
tion analysis of axially functionally graded Euler beam

(E = E0(1+ξ), ρ = ρ0(1+ξ +ξ2)) (mr = 2) by (DT-
DS) method and compared with Shahba et al. [27]. It
is observed that all natural frequencies decrease with
the increase in taper ratio except for the fundamental
mode of C-F boundary condition. This exception has
been also well pointed out by Ozgumus and Kaya [47]
for homogeneous tapered beams in the literature.

Example 10 (Buckling load of axially functionally
graded column) As a comparison, we consider the
flexural rigidity of the column is of the form EI(x) =
EI0(1 + ξ − ξ2) where EI0 is the flexural rigidity of
the column at ξ = 0. Elishakoff [48] has given the
exact buckling load as Pcr = 12EI0

L2 . But no closed
form solution is available for the same column with
other boundary conditions. Huang and Li [49] used
Fredholm integral equation and obtained the buckling
loads for columns with various boundary conditions
and the results of the present analysis are compared
with Huang and Li [49] in Table 9 and the agreement
is quite good.

Example 11 (Buckling load of axially functionally
graded column) We consider two special flexural
rigidities of polynomial form, one being linearly vary-
ing flexural rigidity EI(x) = EI0(1 + ξ) and the other
being parabolically varying flexural rigidity EI(x) =
EI0(1 + ξ)2. The results obtained by the present anal-
ysis are compared in Table 9 with Huang and Li [49]
and they are in excellent agreement with the published
results.
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Table 7 Effect of taper ratios on the natural frequency parameters of rotating axially functionally graded Euler beam (mr = 1, nr = 2,
λ = 2)

BCS μ Method\e 0.0 0.2 0.4 0.6 0.8

C-C μ1 Present 20.8998 18.9040 16.7755 14.4417 11.7191

Ref. [46] 20.8998 18.9039 16.7754 14.4416 11.7191

μ2 Present 58.5678 52.7377 46.5184 39.6926 31.7054

Ref. [46] 58.5674 52.7373 46.5180 39.6923 31.7051

μ3 Present 115.6549 103.9306 91.4119 77.6530 61.5112

Ref. [46] 115.6540 103.9298 91.4111 77.6523 61.5106

μ4 Present 191.8589 172.2437 151.2891 128.2418 101.1657

Ref. [46] 191.8573 173.2422 151.2878 128.2405 101.1646

P-P μ1 Present 10.0557 9.0058 7.8656 6.5869 5.0513

Ref. [46] 10.0556 9.0057 7.8655 6.5869 5.0513

μ2 Present 38.8041 34.9068 30.8038 26.3822 21.3557

Ref. [46] 38.8038 34.9066 30.8036 26.3819 21.3555

μ3 Present 86.5675 77.7549 68.4207 58.2758 46.5910

Ref. [46] 86.5667 77.7542 68.4201 57.2753 46.5905

μ4 Present 153.3802 137.6545 120.9408 102.6888 81.5051

Ref. [46] 153.3789 137.6533 120.9397 102.6878 81.5042

C-F μ1 Present 4.8142 4.9117 5.0459 5.2477 5.6035

Ref. [46] 4.8142 4.9116 5.0458 5.2470 5.6034

μ2 Present 23.6964 22.1973 20.6027 18.8878 17.0531

Ref. [46] 23.6964 22.1971 20.6025 18.8876 17.0528

μ3 Present 62.2947 56.7757 50.9236 44.5820 27.4282

Ref. [46] 62.2940 56.7751 50.9230 44.5815 37.4277

μ4 Present 119.7210 108.2365 96.0219 82.7028 67.4070

Ref. [46] 119.7198 108.2354 96.0209 82.7019 67.4062

C-P μ1 Present 15.6599 14.4883 13.2189 11.8004 10.1039

Ref. [46] 15.6598 14.4881 13.2188 11.8003 10.1038

μ2 Present 49.0113 44.4589 39.6089 34.2992 28.1229

Ref.[46] 49.0109 44.4585 39.6085 34.2929 28.1226

μ3 Present 101.5241 91.5529 80.9228 69.2731 55.6961

Ref. [46] 101.5232 91.5521 80.9221 69.2725 55.6955

μ4 Present 173.0918 155.7085 137.1607 116.8062 93.0203

Ref. [46] 173.0903 155.7070 137.1594 116.8050 93.0193

5 Conclusions

For uniform Cantilever Timoshenko rotating beam
analysis the fundamental frequency parameter values
obtained by Dynamic Stiffness method agree with
Kaya [35] and Ozgumus and Kaya [40]. All the four
fundamental frequencies increase with the increase in
speed parameter.

It is also seen that lower mode frequencies are not
affected with increase in ‘r’ whereas there is remark-

ably high decrease in higher mode frequency values.
The taper ratio has decreasing effect on natural fre-
quencies.

It can be verified that the frequency values for all
types of boundary conditions investigated decrease
with taper ratio except for C-F condition where it
shows an increasing trend.

For non rotating homogeneous uniform Timo-
shenko column (r = 0.1; κ = 5/6; G = 0.3846E) the
buckling loads calculated agree with Wang et al. [42].



1068 Meccanica (2013) 48:1053–1070

Table 8 Non-dimensional transverse frequencies (μ =
√

ρA0L4ω2

EI0
) for an axially FG tapered beam; Boundary Condition: C-C; Mode:

1–2 (EA = EA0(1 + ξ); ρA = ρA0(1 + ξ + ξ2), mr = 2 (μ—frequency parameter); p = buckling load parameter = PcrL
2

EI0
)

BCS μ/p Method\e 0 0.2 0.4 0.6 0.8

C-F μ1 Present 2.4256 2.6863 3.0484 3.5976 4.5651

Ref. [51] 2.4256 2.6863 3.0486 3.5985 4.5695

μ2 Present 18.6041 17.7500 16.8562 15.9586 15.2814

Ref. [51] 18.6042 17.7501 16.8571 15.9616 15.2955

p Present 3.1177 2.4638 1.7988 1.1208 0.4440

Ref. [51] 3.1177 2.4638 1.7988 1.1208 0.4441

C-C μ1 Present 20.4721 18.1994 15.8343 13.3216 10.5256

Ref. [51] 20.4721 18.1996 15.8350 13.3238 10.5339

μ2 Present 56.5482 50.4552 44.0341 37.1026 29.2089

Ref. [51] 56.5491 50.4565 44.0370 37.1104 29.2402

p Present 57.3940 37.6024 21.7813 10.0640 2.6650

Ref. [51] 57.3948 37.6028 21.7817 10.0645 2.6649

P-P μ1 Present 9.0286 8.1461 7.1251 5.8860 4.2265

Ref. [51] 9.0286 8.1462 7.1254 5.8867 4.2283

μ2 Present 36.3715 32.5118 28.4989 24.2429 19.5172

Ref. [51] 36.3717 32.5123 28.5003 24.2469 19.5300

p Present 14.5113 9.5971 5.6228 2.6338 0.7075

Ref. [51] 14.5113 9.5171 5.6228 2.6338 0.7078

Table 9 Critical buckling load parameter of a FG Euler column for various BCS

BCS EI = EI0(1 + ξ − ξ2) EI = EI0(1 + ξ) EI = EI0(1 + ξ)2

Present Ref. [49] Present Ref. [49] Present Ref. [49]

C-F 2.863751 2.863571 3.117696 3.117696 3.836377 3.836377

P-P 12.000000 12.000000 14.511250 14.511250 20.792290 20.792288

C-P 23.664382 23.664377 29.448970 29.448963 42.109190 42.109176

C-C 45.395645 45.395607 57.394010 57.393956 81.923469 81.923363

For axially functionally graded Euler beam (E =
E0(1+ ξ), ρ = ρ0(1+ ξ + ξ2)) (mr = 2) it is observed
that all natural frequencies decrease with the increase
in taper ratio except for the fundamental mode of C-F
boundary condition.

Regarding the DT-DS method the following con-
clusions are arrived at.

DTM exactly coincides with the traditional Taylor
series method when it is applied to problems involv-
ing ordinary differential equations [52]. This method
captures the effects of variable cross section, centrifu-
gal force and the material non-homogeneity parame-
ter due to axially graded material. Since Wilson’s La-

grangian multiplier method is used, it is easy to incor-
porate the boundary conditions. DT-DS method con-
siders four first order differential equations instead of
one fourth order differential equation and hence writ-
ing the Differential transform is an easy task. This
method is superior to many other methods because
of its simplicity and accuracy in calculating natural
frequencies and buckling load and plotting the mode
shapes also.

It was shown in the paper that an efficient finite ele-
ment could be developed based on structural mechan-
ics principles. Instead of assuming shape functions be-
fore hand as in classical finite element method, in the
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DT-DS method proposed, shape functions are derived
using DTM satisfying overall equilibrium and compat-
ibility of a beam. Hence they represent real deforma-
tions which depend on the variation of material prop-
erties such as modulus of elasticity and mass density,
variation of geometry (b,h) of the beam. These defor-
mations (shape functions) are substituted in the poten-
tial and kinetic energy expressions to derive the stiff-
ness and mass matrices to carry out static and free and
forced vibration analysis. Since the new shape func-
tions were derived based on the static deformations,
in static problem exact results were obtained by using
two elements whereas in dynamic problem at least 10
elements are needed to get the accurate result. Though
there are many methods proposed to find the shape
functions, a DTM based method is simple, precise and
easy to use compared to many other methods devel-
oped. Since DT based Dynamic Stiffness method (DT-
DS) is efficient tool for solving nonlinear or parameter
varying systems, it is expected that this method will
find a wide range of applications in structures of func-
tionally graded materials.
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