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Abstract The Generalized Differential Quadrature
(GDQ) Method is applied to study four parameter
functionally graded and laminated composite shells
and panels of revolution. The mechanical model is
based on the so-called First-order Shear Deformation
Theory (FSDT), in particular on the Toorani-Lakis
Theory. The solution is given in terms of generalized
displacement components of points lying on the mid-
dle surface of the shell. The generalized strains and
stress resultants are evaluated by applying the Dif-
ferential Quadrature rule to the generalized displace-
ments. The transverse shear and normal stress pro-
files through the thickness are reconstructed a posteri-
ori by using local three-dimensional elasticity equilib-
rium equations. In order to verify the accuracy of the
present method, GDQ results are compared with the
ones obtained with semi-analytical formulations and
with 3D finite element method. A parametric study
is performed to illustrate the influence of the parame-
ters on the mechanical behavior of functionally graded
shell structures made of a mixture of ceramics and
metal.

Preliminary results were presented by the authors at the XX◦
National Conference of Italian Association of Theoretical and
Applied Mechanics (AIMETA 2011).

F. Tornabene · E. Viola (�)
DICAM - Department, Faculty of Engineering, University
of Bologna, Bologna, Italy
e-mail: erasmo.viola@unibo.it

Keywords Shear and normal stress recovery ·
Functionally graded materials · Laminated composite
shells · First-order Shear Deformation Theory ·
Generalized Differential Quadrature Method

1 Introduction

The aim of this paper is to study the static behavior
of shell structures, which are very common structural
elements. During the last sixty years, two-dimensional
linear theories of thin shells and plates have been de-
veloped including important contributions by Tim-
oshenko and Woinowsky-Krieger [1], Flügge [2],
Gol’denveizer [3], Novozhilov [4], Vlasov [5], Ambar-
tusumyan [6], Kraus [7], Leissa [8, 9], Markuš [10],
Ventsel and Krauthammer [11] and Soedel [12]. All
these contributions are based on the Kirchhoff-Love
assumptions. This theory, named Classical Shell The-
ory (CST), assumes that normals to the shell middle-
surface remain straight and normal to it during de-
formations and unstretched in length. The transverse
shear deformation has been incorporated into shell
theories by following the theory of Reissner-Mindlin
[13], also named First-order Shear Deformation The-
ory (FSDT). By relaxing the assumption on the preser-
vation of the normals to the shell middle surface after
the deformation, a comprehensive analysis for elastic
isotropic shells and plates was made by Kraus [7] and
Gould [14, 15]. The present work is just based on the
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FSDT. In order to include the effect of the initial curva-
ture a generalization of the Classical Reissner-Mindlin
Theory (CRMT) has been proposed by Toorani and
Lakis [16]. In this way the CRMT becomes a par-
ticular case of the Classical Toorani-Lakis Theory
(CTLT). As a consequence of the use of this general
theory, it is worth remarking that the stress resultants
directly depend on the geometry of the structure in
terms of the curvature coefficients and the hypoth-
esis of the symmetry of the in-plane shearing force
resultants and the torsional couples declines. A fur-
ther improvement of the previous theories of shells
has been proposed in [17]. In this last work by Toorani
and Lakis, the kinematical model is generalized and
the effect of the curvature is included from the begin-
ning of the shell formulation. In this way the strain-
displacement relationships and the equilibrium equa-
tions in terms of displacements and rotations have to
be modified. In this paper the General Toorani-Lakis
Theory (GTLT) is considered. As for the static analy-
sis of shells, several studies have been presented ear-
lier. In the semi-analytical methods each static and
kinematic variable is transformed into a theoretical in-
finite Fourier series of harmonic components [18, 19].
However, the semi-analytical solutions show limita-
tions to consider any boundary condition, stacking
sequences as well as the panel geometries. It should
be noticed that finite element method (FEM) does not
present the above drawbacks and it represents there-
fore the most popular numerical tool [14, 15, 20–26].
Meshless methods are also available to solve analo-
gous problems such as reported in literature [27–31],
among others.

In the present paper, the analysis will be performed
by following two different paths. In the first one, the
solution is obtained by using the numerical technique
termed Generalized Differential Quadrature (GDQ)
method, which leads to a linear algebraic problem. The
mathematical foundations and recent developments of
the GDQ method as well as its major applications in
engineering are discussed in detail in the book by Shu
[32]. The solution is given in terms of generalized dis-
placement components of the points lying on the mid-
dle surface of the shell. Then, numerical results will
be also computed by using semi-analytical solutions
and commercial programs in order to verify the accu-
racy of the method at issue. It appears that the interest
of researches in this procedure is increasing due to its
great simplicity and versatility. As shown in the liter-
ature [33], GDQ technique is a global method, which

can obtain very accurate numerical results by using a
considerably small number of grid points. Therefore,
this simple direct procedure has been applied in a large
number of cases [34–78] to circumvent the difficulties
of programming complex algorithms for the computer,
as well as the excessive use of storage and computer
time.

After the solution of the fundamental system of five
equations in terms of displacements, the generalized
strains and stress resultants can be numerically evalu-
ated by applying the Differential Quadrature rule [32]
to the generalized displacements. In order to design
composite structures properly, accurate stress analy-
ses have to be performed. The determination of accu-
rate values for interlaminar normal and shear stresses
is of crucial importance. In this study, the transverse
shear and normal stress profiles through the thickness
are reconstructed a posteriori by simply using local
three-dimensional equilibrium equations. No prelim-
inary recovery or regularization procedure [21, 22, 25,
79, 80] on the extensional and flexural strain fields is
needed when the Differential Quadrature technique is
used. Based on the fact that the starting problem de-
rives from the 3D Elasticity and that it has been sim-
plified using the well-defined hypotheses of the FSDT,
the numerical approximated solution captures well the
real behavior of shells. Since the 3D Elasticity equa-
tions are always valid for the problem under consider-
ation, it is possible to use the approximated solution to
evaluate some quantities such as in-plane stresses and
their derivatives and to infer others quantities of inter-
est solving the 3D equilibrium equations such as shear
and normal stresses. Thus, if the in-plane stresses and
their derivatives are known, the three differential equa-
tions of the 3D elasticity can be seen as three indepen-
dent differential equations of the first order that can be
solved via the GDQ method along the thickness direc-
tion. The unknowns are the normal and shear stresses
through the thickness. The GDQ reconstruction proce-
dure needs only to be corrected to properly account for
the boundary equilibrium conditions. GDQ results are
compared with the ones obtained with semi-analytical
formulations and with finite element methods. Various
examples of stress profiles are presented to illustrate
the validity and the accuracy of the GDQ method. Un-
der the hypotheses of validity of the FSDT, very good
agreement between the proposed procedure and the
3D FEM solution is observed without using mixed for-
mulations and higher order kinematical models, that



Meccanica (2013) 48:901–930 903

Fig. 1 Coordinate system of a laminated composite shell

require an increase of the degrees of freedom [18–20,
23, 24, 26, 29, 31].

Due to the significant developments that have taken
place in functionally graded materials [56–60, 73, 81],
the increase in the their use in a lot of types of en-
gineering structures in the last decades calls for im-
proved analysis and design tools for these types of
structures. Thus, in this paper, functionally graded
shells are considered.

Functionally graded materials (FGMs) [81] are a
class of composites that have a smooth and continu-
ous variation of material properties from one surface
to another and thus can alleviate the stress concentra-
tions found in laminated composites. Typically, these
materials consist of a mixture of ceramic and metal,
or a combination of different materials, as reported in
literature [81–88]. In this study, ceramic-metal graded
shells of revolution with two different power-law vari-
ations of the volume fraction of the constituents in the
thickness direction are considered [56, 57]. The effect
of the power-law exponent and the power-law distribu-
tion choice on the mechanical behavior of functionally
graded shells and panels is investigated. This paper is
motivated by the lack of studies in the technical liter-
ature concerning the static analysis of doubly-curved
functionally graded shells and panels and the effect
of the power-law distribution choice on their mechan-
ical behavior. The aim is to analyse the influence of
constituent volume fractions and the effects of con-
stituent material profiles on the static response of the
structure. Various material profiles through the func-
tionally graded lamina thickness are used by varying
the four parameters of two power-law distributions.
A parametric study is undertaken, giving insight into

the effects of the material composition on the static re-
sponse of doubly-curved shell structures. Static char-
acteristics are illustrated by varying one parameter at
a time, in turn. It is worth noting that a simple effi-
cient method for accurate evaluation of the through-
the-thickness distribution of shear and normal stresses
in composite laminated shells under consideration can
be easily applied to different generalized displacement
field solutions obtained with other numerical methods
and with more sophisticated kinematical models.

2 Geometry description and shell fundamental
systems

The basic configuration of the problem considered
here is a laminated composite doubly-curved shell as
shown in Fig. 1. The coordinates along the meridian
and circumferential directions of the reference surface
are ϕ and s, respectively. The distance of each point
from the shell mid-surface along the normal is ζ . Con-
sider a laminated composite shell made of l laminae or
plies, where the total thickness of the shell h is defined
as:

h =
l∑

k=1

hk (1)

in which hk = ζk+1 − ζk is the thickness of the k-th
lamina or ply.

In this study, doubly-curved shells of revolution and
degenerated shells such as plates are considered. For
these types of structures the expressions of the merid-
ian curve are reported in [70, 73], so no further con-
sideration will be introduced. The angle formed by
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the extended normal n to the reference surface and
the axis of rotation x3, or the geometric axis x′

3 of
the meridian curve, is defined as the meridian angle ϕ

and the angle between the radius of the parallel circle
R0(ϕ) and the x1 axis is designated as the circumferen-
tial angle ϑ as shown in [70]. For these structures the
parametric coordinates (ϕ, s) define, respectively, the
meridian curves and the parallel circles upon the mid-
dle surface of the shell. The curvilinear abscissa s(ϕ)

of a generic parallel is related to the circumferential
angle ϑ by the relation s = ϑR0. The horizontal ra-
dius R0(ϕ) of a generic parallel of the shell represents
the distance of each point from the axis of revolution
x3. Rb is the shift of the geometric axis of the curved
meridian x′

3 with reference to the axis of revolution
x3. The position of an arbitrary point within the shell
material is defined by coordinates ϕ (ϕ0 ≤ ϕ ≤ ϕ1), s

(0 ≤ s ≤ s0) upon the middle surface, and ζ directed
along the outward normal and measured from the ref-
erence surface (−h/2 ≤ ζ ≤ h/2).

The present shell theory is based on the follow-
ing assumptions: (1) the transverse normal is inex-
tensible so that the normal strain is equal to zero:
εn = εn(ϕ, s, ζ, t) = 0; (2) the transverse shear defor-
mation is considered to influence the governing equa-
tions so that normal lines to the reference surface
of the shell before deformation remain straight, but
not necessarily normal after deformation (a relaxed
Kirchhoff-Love hypothesis); (3) the shell deflections
are small and the strains are infinitesimal; (4) the
shell is moderately thick, therefore it is possible to as-
sume that the thickness-direction normal stress is neg-
ligible so that the plane assumption can be invoked:

σn = σn(ϕ, s, ζ, t) = 0; (5) the linear elastic behavior
of anisotropic materials is assumed; (6) the rotary iner-
tia and the initial curvature are also taken into account.

Consistent with the assumptions of a moderately
thick shell theory reported above, the displacement
field can be expressed in the following form:

Uϕ(ϕ, s, ζ, t) =
(

1 + ζ

Rϕ

)
uϕ(ϕ, s, t) + ζβϕ(ϕ, s, t)

Us(ϕ, s, ζ, t) =
(

1 + ζ sinϕ

R0

)
us(ϕ, s, t)

+ ζβs(ϕ, s, t)

W(ϕ, s, ζ, t) = w(ϕ, s, t)

(2)

where uϕ , us , w are the displacement components of
points lying on the middle surface (ζ = 0) of the shell,

along meridian, circumferential and normal directions,
respectively, while t is the time variable. βϕ and βs

are normal-to-mid-surface rotations. The in-plane dis-
placements Uϕ and Us are assumed to vary linearly
through the thickness, while W remains independent
of ζ . Differently from the previous works by Torn-
abene [70], the displacement field has been improved
taking into account the effective geometry of the shell
and in particular the curvature effect has been directly
introduced into the kinematical model as proposed by
Toorani and Lakis [16].

Due to the changing of the kinematical model,
the relationships between strains and generalized dis-
placements along the shell reference surface (ζ = 0)

become the following:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0
ϕ

ε0
s

γ 0
ϕ

γ 0
s

χ0
ϕ

χ0
s

ω0
ϕ

ω0
s

γ 0
ϕn

γ 0
sn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Rϕ

∂
∂ϕ

0 1
Rϕ

0 0
cosϕ
R0

∂
∂s

sinϕ
R0

0 0

0 1
Rϕ

∂
∂ϕ

0 0 0
∂
∂s

− cosϕ
R0

0 0 0
1

R2
ϕ

∂
∂ϕ

− 1
R3

ϕ

∂Rϕ

∂ϕ
0 0 1

Rϕ

∂
∂ϕ

0
cosϕ
R0Rϕ

sinϕ
R0

∂
∂s

0 cosϕ
R0

∂
∂s

0 sinϕ
RϕR0

∂
∂ϕ

+ cosϕ
RϕR0

− sinϕ cosϕ

R2
0

0 0 1
Rϕ

∂
∂ϕ

1
Rϕ

∂
∂s

− sinϕ cosϕ

R2
0

0 ∂
∂s

− cosϕ
R0

0 0 1
Rϕ

∂
∂ϕ

1 0

0 0 ∂
∂s

0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

uϕ

us

w

βϕ

βs

⎤

⎥⎥⎥⎥⎦
(3)
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In relationships (3), the first four strains ε0
ϕ , ε0

s ,
γ 0
ϕ , γ 0

s are the in-plane meridian, circumferential and
shearing components, and χ0

ϕ , χ0
s , ω0

ϕ , ω0
s are the cor-

responding curvature changes. The last two compo-
nents γ 0

ϕn, γ 0
sn are the transverse shearing strains. The

shell is assumed to be made of a linear elastic com-
posite laminate. Accordingly, the following constitu-
tive equations relate internal stress resultants and in-
ternal couples with generalized strain components on
the middle surface:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nϕ

Ns

Nϕs

Nsϕ

Mϕ

Ms

Mϕs

Msϕ

Tϕ

Ts

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ā
(0)
11ϕ A

(0)
12 Ā

(0)
16ϕ A

(0)
16 Ā

(1)
11ϕ A

(1)
12 Ā

(1)
16ϕ A

(1)
16 0 0

A
(0)
12 Ā

(0)
22s A

(0)
26 Ā

(0)
26s A

(1)
12 Ā

(1)
22s A

(1)
26 Ā

(1)
26s 0 0

Ā
(0)
16ϕ A

(0)
26 Ā

(0)
66ϕ A

(0)
66 Ā

(1)
16ϕ A

(1)
26 Ā

(1)
66ϕ A

(1)
66 0 0

A
(0)
16 Ā

(0)
26s A

(0)
66 Ā

(0)
66s A

(1)
16 Ā

(1)
26s A

(1)
66 Ā

(1)
66s 0 0

Ā
(1)
11ϕ A

(1)
12 Ā

(1)
16ϕ A

(1)
16 Ā

(2)
11ϕ A

(2)
12 Ā

(2)
16ϕ A

(2)
16 0 0

A
(1)
12 Ā

(1)
22s A

(1)
26 Ā

(1)
26s A

(2)
12 Ā

(2)
22s A

(2)
26 Ā

(2)
26s 0 0

Ā
(1)
16ϕ A

(1)
26 Ā

(1)
66ϕ A

(1)
66 Ā

(2)
16ϕ A

(2)
26 Ā

(2)
66ϕ A

(2)
66 0 0

A
(1)
16 Ā

(1)
26s A

(1)
66 Ā

(1)
66s A

(2)
16 Ā

(2)
26s A

(2)
66 Ā

(2)
66s 0 0

0 0 0 0 0 0 0 0 κ11Ā
(0)
44ϕ κ12A

(0)
45

0 0 0 0 0 0 0 0 κ12A
(0)
45 κ22Ā

(0)
55s

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0
ϕ

ε0
s

γ 0
ϕ

γ 0
s

χ0
ϕ

χ0
s

ω0
ϕ

ω0
s

γ 0
ϕn

γ 0
sn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The elastic engineering stiffnesses depending on
curvatures are defined as follows:

Ā
(q)
ijm

∼= A
(q)
ij +

(
1

Rs

− 1

Rϕ

) r∑

p=1

(−1)p+m
A

(q+p)
ij

R
p
m

=
l∑

k=1

(∫ ζk+1

ζk

Q̄
(k)
ij ζ qdζ +

(
1

Rs

− 1

Rϕ

)

×
r∑

p=1

(−1)p+m

R
p
m

∫ ζk+1

ζk

Q̄
(k)
ij ζ q+pdζ

)

m = ϕ, s, q = 0,1,2, r = 1,2,3

(5)

where the curvature radius Rs for a shell of revolution
is defined as:

Rs = R0

sinϕ
(6)

The elastic constants Q̄ij can be found in Tornabene
[70] and in Tornabene et al. [73], in which all the con-
stants above introduced are explicitly defined for lam-
inated composite and functionally graded shells and
panels of revolution. κ is the shear correction fac-

tor, which is usually taken as κ = 5/6, such as in the
present work. In particular, the determination of shear
correction factors for composite laminated structures
is still an unresolved issue, because these factors de-
pend on various parameters [23–25].

In Eqs. (4), the four components Nϕ , Ns,Nϕs , Nsϕ

are the in-plane meridian, circumferential and shear-
ing force resultants, and Mϕ , Ms , Mϕs , Msϕ are the
analogous couples, while Tϕ , Ts are the transverse
shear force resultants. In the above definitions (4) the
symmetry of shearing force resultants Nϕs , Nsϕ and
torsional couples Mϕs , Msϕ is not assumed as a fur-
ther hypothesis, as done in Reissner-Mindlin theory.
This hypothesis is satisfied only in the case of spher-
ical shells and flat plates. The assumption under dis-
cussion is derived from the consideration that the ra-
tios ζ/Rϕ , ζ/Rs cannot be neglected with respect to
unity.

Following the virtual work principle and the Gauss-
Codazzi relations [50] for shells of revolution, five
equations of equilibrium in terms of internal actions
can be written for the present revolution shell element:
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1

Rϕ

∂Nϕ

∂ϕ
+ ∂Nsϕ

∂s
+ (Nϕ − Ns)

cosϕ

R0
+ 1

Rϕ

(
1

Rϕ

∂Mϕ

∂ϕ
+ ∂Msϕ

∂s
+ (Mϕ − Ms)

cosϕ

R0

)
+ qϕ = 0

1

Rϕ

∂Nϕs

∂ϕ
+ ∂Ns

∂s
+ (Nϕs + Nsϕ)

cosϕ

R0
+ sinϕ

R0

(
1

Rϕ

∂Mϕs

∂ϕ
+ ∂Ms

∂s
+ (Mϕs + Msϕ)

cosϕ

R0

)
+ qs = 0

1

Rϕ

∂Tϕ

∂ϕ
+ ∂Ts

∂s
+ Tϕ

cosϕ

R0
− Nϕ

Rϕ

− Ns

sinϕ

R0
+ qn = 0

1

Rϕ

∂Mϕ

∂ϕ
+ ∂Msϕ

∂s
+ (Mϕ − Ms)

cosϕ

R0
− Tϕ + mϕ = 0

1

Rϕ

∂Mϕs

∂ϕ
+ ∂Ms

∂s
+ (Mϕs + Msϕ)

cosϕ

R0
− Ts + ms = 0

(7)

The first three equations in (7) represent transla-
tional equilibriums along meridian ϕ, circumferential
s and normal ζ directions, while the last two are rota-
tional equilibrium equations about the s and ϕ direc-
tions, respectively. Furthermore, the generalized ex-
ternal actions qϕ , qs , qn, mϕ , ms due to the exter-
nal forces acting on the top q+

ϕ , q+
s , q+

n and bottom
q−
ϕ , q−

s , q−
n surfaces of the shell can be evaluated us-

ing the static equivalence principle and can be written
on the reference surface of the doubly-curved shell as:

qϕ = q+
ϕ

(
1 + h

2Rϕ

)2(
1 + h sinϕ

2R0

)

+ q−
ϕ

(
1 − h

2Rϕ

)2(
1 − h sinϕ

2R0

)

qs = q+
s

(
1 + h

2Rϕ

)2(
1 + h sinϕ

2R0

)

+ q−
s

(
1 − h

2Rϕ

)2(
1 − h sinϕ

2R0

)

qn = q+
n

(
1 + h

2Rϕ

)(
1 + h sinϕ

2R0

)

+ q−
n

(
1 − h

2Rϕ

)(
1 − h sinϕ

2R0

)

mϕ = q+
ϕ

h

2

(
1 + h

2Rϕ

)(
1 + h sinϕ

2R0

)

− q−
ϕ

h

2

(
1 − h

2Rϕ

)(
1 − h sinϕ

2R0

)

ms = q+
s

h

2

(
1 + h

2Rϕ

)(
1 + h sinϕ

2R0

)

− q−
s

h

2

(
1 − h

2Rϕ

)(
1 − h sinϕ

2R0

)

(8)

where q+
ϕ , q−

ϕ , q+
s , q−

s , q+
n , q−

n are the external forces
in the three principal directions ϕ, s, ζ .

The three basic sets of equations, namely the kine-
matic (3), constitutive (4) and equilibrium (7) equa-
tions may be combined to give the fundamental sys-
tem of equations, also known as the governing sys-
tem of equations. By replacing the kinematic equa-
tions (3) into the constitutive equations (4) and the re-
sult of this substitution into the equilibrium equations
(7), the complete equations of equilibrium in terms of
displacement and rotational components can be writ-
ten as:
⎡

⎢⎢⎢⎢⎣

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

uϕ

us

w

βϕ

βs

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

qϕ

qs

qn

mϕ

ms

⎤

⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦
(9)

where Lij , i, j = 1, . . . ,5 are the equilibrium opera-
tors. Three kinds of boundary conditions are consid-
ered, namely the fully clamped edge boundary condi-
tion (C), the soft simply supported edge boundary con-
dition (S) and the free edge boundary condition (F).
The equations describing the boundary conditions can
be written as follows:

Clamped edge boundary conditions (C)

uϕ = us = w = 0, βϕ = βs = 0

at ϕ = ϕ0 or ϕ = ϕ1, 0 ≤ s ≤ s0
(10)

uϕ = us = w = 0, βϕ = βs = 0

at s = 0 or s = s0, ϕ0 ≤ ϕ ≤ ϕ1
(11)
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Soft simply supported edge boundary conditions (S)

us = w = 0, βs = 0, Nϕ + Mϕ

Rϕ

= 0,

Mϕ = 0 at ϕ = ϕ0 or ϕ = ϕ1, 0 ≤ s ≤ s0

(12)

uϕ = w = 0, βϕ = 0, Ns + Ms

Rs

= 0,

Ms = 0 at s = 0 or s = s0, ϕ0 ≤ ϕ ≤ ϕ1

(13)

Free edge boundary conditions (F)

Nϕ + Mϕ

Rϕ

= 0, Nϕs + Mϕs

Rs

= 0, Tϕ = 0,

Mϕ = Mϕs = 0 at ϕ = ϕ0 or ϕ = ϕ1,

0 ≤ s ≤ s0

(14)

Ns + Ms

Rs

= Nsϕ + Msϕ

Rϕ

= 0, Ts = 0,

Ms = Msϕ = 0 at s = 0 or s = s0,

ϕ0 ≤ ϕ ≤ ϕ1

(15)

3 Discretized equations and numerical
implementation for static analysis

The Generalized Differential Quadrature method will
be used to discretize the derivatives in the govern-
ing equations in terms of generalized displacements as
well as the boundary conditions (see Tornabene [56]
for a brief review).

Throughout the paper, the Chebyshev-Gauss-Lo-
batto (C-G-L) grid distribution is assumed and the co-
ordinates of grid points (ϕi, sj ) along the reference
surface are:

ϕi =
(

1 − cos

(
i − 1

N − 1
π

))
(ϕ1 − ϕ0)

2
+ ϕ0,

i = 1,2, . . . ,N, for ϕ ∈ [ϕ0, ϕ1]

sj =
(

1 − cos

(
j − 1

M − 1
π

))
s0

2
, j = 1,2, . . . ,M,

for s ∈ [0, s0] (with s ≤ ϑR0)

(16)

In Eqs. (16) N , M are the total number of sam-
pling points used to discretize the domain in ϕ and s

directions of the doubly-curved shell, respectively. It
has been proved that, for the Lagrange interpolating
polynomials, the Chebyshev-Gauss-Lobatto sampling
points rule guarantees convergence and efficiency to
the GDQ technique [50–52, 54].

The GDQ procedure enables one to write the equa-
tions of equilibrium in discrete form, transforming

each space derivative into a weighted sum of node val-
ues of independent variables. Each approximate equa-
tion is valid in every sampling point. Thus, the whole
system of differential equations can be discretized and
the global assembling leads to the following set of lin-
ear algebraic equations:
[

Kbb Kbd

Kdb Kdd

][
δb

δd

]
=

[
fb

fd

]
(17)

In the equation’s system (17), the partitioning of
matrices and vectors is set forth by subscripts b and d ,
which refer to the system degrees of freedom and stand
for boundary and domain, respectively. In this sense,
b-equations represent the discrete boundary condi-
tions, which are valid only for the points lying on con-
strained edges of the shell; while d-equations are the
equilibrium equations assigned on interior nodes. In
particular, the explicit definition of the boundary de-
grees of freedom δb and the domain degrees of free-
dom δd are reported below:

δb︸︷︷︸
5(2M+2(N−2))

= [uϕb usb wb βϕb βsb ]T

δd︸︷︷︸
5(N−2)(M−2)

= [uϕd usd wd βϕd βsd ]T (18)

For each degree of freedom, the vectors are arranged
for the boundary points as follows:

uϕb︸︷︷︸
2M+2(N−2)

= [
uϕ11 · · · uϕ1M

∣∣ uϕ21 uϕ2M

∣∣ · · ·
∣∣ uϕ(N−1)1 uϕ(N−1)M∣∣ uϕN1 · · · uϕNM

]T

usb︸︷︷︸
2M+2(N−2)

= [
us11 · · · us1M

∣∣ us21 us2M

∣∣ · · ·
∣∣ us(N−1)1 us(N−1)M∣∣ usN1 · · · usNM

]T

wsb︸︷︷︸
2M+2(N−2)

= [
w11 · · · w1M

∣∣ w21 w2M

∣∣ · · ·
∣∣ w(N−1)1 w(N−1)M∣∣ wN1 · · · wNM

]T

βϕb︸︷︷︸
2M+2(N−2)

= [
βϕ11 · · · βϕ1M

∣∣ βϕ21 βϕ2M

∣∣ · · ·
∣∣ βϕ(N−1)1 βϕ(N−1)M∣∣ βϕN1 · · · βϕNM

]T

βsb︸︷︷︸
2M+2(N−2)

= [
βs11 · · · βs1M

∣∣ βs21 βs2M

∣∣ · · ·
∣∣ βs(N−1)1 βs(N−1)M∣∣ βsN1 · · ·βsNM

]T

(19)
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and in the following way for the domain points:

uϕd︸︷︷︸
(N−2)(M−2)

= [
uϕ22 · · · uϕ2(M−1)

∣∣ uϕ32 · · ·
uϕ3(M−1)

∣∣ · · · ∣∣ uϕ(N−1)2 · · ·
uϕ(N−1)(M−1)

]T

usd︸︷︷︸
(N−2)(M−2)

= [
us22 · · · us2(M−1)

∣∣ us32 · · ·
us3(M−1)

∣∣ · · · ∣∣ us(N−1)2 · · ·
us(N−1)(M−1)

]T

wsd︸︷︷︸
(N−2)(M−2)

= [
w22 · · · w2(M−1)

∣∣ w32 · · ·
w3(M−1)

∣∣ · · · ∣∣ w(N−1)2 · · ·
w(N−1)(M−1)

]T

βϕd︸︷︷︸
(N−2)(M−2)

= [
βϕ22 · · · βϕ2(M−1)

∣∣ βϕ32 · · ·
βϕ3(M−1)

∣∣ · · · ∣∣ βϕ(N−1)2 · · ·
βϕ(N−1)(M−1)

]T

βsd︸︷︷︸
(N−2)(M−2)

= [
βs22 · · · βs2(M−1)

∣∣ βs32 · · ·
βs3(M−1)

∣∣ · · · ∣∣ βs(N−1)2 · · ·
βs(N−1)(M−1)

]T

(20)

The external forces fb and fd are arranged in analo-
gous way as reported in (18)–(20). Furthermore, the
external forces fb acting on the boundaries are as-
sumed to be equal to zero (fb = 0). Finally, the con-
struction of the matrices Kdb,Kdd can be obtained
starting from the system written in discrete form in
each domain point by using the differential quadrature
rule:

dnf (x)

dxn

∣∣∣∣
x=xi

=
N∑

j=1

ς
(n)
ij f (xj ), i = 1,2, . . . ,N

(21)

and following the scheme defined by the relations
(18)–(20). On the contrary, the matrices Kbb,Kdb can
be obtained starting from the definition of the bound-
ary conditions (10)–(15) written in discrete form in
each boundary point using the differential quadrature
rule (21) and following the scheme defined by the re-
lations (18)–(20). For a better comprehension of the
numerical scheme illustrated above one can refer to
the works [48–54, 56–59, 67], in which all the steps
previously exposed are reported extensively.

In order to make the computation more efficient,
static condensation of boundary degrees of freedom is
performed:

(Kdd − KdbK−1
bb Kbd)δd = fd − KdbK−1

bb fb (22)

The deflection of the structures considered can be de-
termined by solving the linear algebraic problem (22).
In particular, the solution procedure by means of the
GDQ technique has been implemented in a MATLAB
code.

With the present approach, differently from the fi-
nite element method, no integration occurs prior to the
global assembly of the linear system, and this results
in a further computational cost saving in favor of the
Differential Quadrature technique.

4 Stress recovery from 3D elasticity equilibrium
equations

The initial 2D problem (9) to be solved derives from
the 3D Elasticity and it is simplified by using the well-
defined hypotheses of the FSDT. Under the limit of
FSDT, the numerical approximated solution captures
well the real behavior of shells. Since the 3D Elasticity
equations are always valid for the problem under con-
sideration, it is possible to use the 2D approximated
solution to evaluate some quantities such as in-plane
stresses and their derivatives and to infer others quan-
tities of interest (such as shear and normal stresses) by
solving the 3D equilibrium equations [72, 74, 75, 77].
Thus, starting from the 3D Elasticity in orthogonal co-
ordinates for a general doubly-curved shell [12], the
3D equilibrium equations for shells of revolution can
be written as follows:

∂τϕn

∂ζ
+ τϕn

(
2

Rϕ + ζ
+ sinϕ

R0 + ζ sinϕ

)

= − 1

Rϕ + ζ

∂σϕ

∂ϕ
+ cosϕ

R0 + ζ sinϕ
(σs − σϕ)

− R0

R0 + ζ sinϕ

∂τϕs

∂s

∂τsn

∂ζ
+ τsn

(
1

Rϕ + ζ
+ 2 sinϕ

R0 + ζ sinϕ

)

= − 1

Rϕ + ζ

∂τϕs

∂ϕ
− 2 cosϕ

R0 + ζ sinϕ
τϕs (23)

− R0

R0 + ζ sinϕ

∂σs

∂s

∂σn

∂ζ
+ σn

(
1

Rϕ + ζ
+ sinϕ

R0 + ζ sinϕ

)
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= − 1

Rϕ + ζ

∂τϕn

∂ϕ
− cosϕ

R0 + ζ sinϕ
τϕn

− R0

R0 + ζ sinϕ

∂τsn

∂s
+ σϕ

Rϕ + ζ

+ sinϕ

R0 + ζ sinϕ
σs

It appears that, if the stresses σϕ , σs , τϕs and their
derivatives σϕ,ϕ , σs,s , τϕs,ϕ , τϕs,s are known in all the
points of the 3D solid shell, the above three differen-
tial equations can be seen as three independent differ-
ential equations of the first order that can be solved
via the GDQ method along the thickness direction ζ .
It is worth noting that the third equation can be eval-
uated after the numerical computation of the first two
unknowns τϕn, τsn and their derivatives τϕn,ϕ , τsn,s . In
order to determine the unknowns at the right side of
Eqs. (23), it is possible to start from the static solution
in terms of the displacements obtained in the previous
paragraph. Thus, after solving the static problem (22),
all the displacements in the 3D solid shell can be writ-
ten in discrete form using the kinematical model (2):

Uϕ(ijm) =
(

1 + ζm

Rϕi

)
uϕ(ij) + ζmβϕ(ij)

Us(ijm) =
(

1 + ζm sinϕi

R0i

)
us(ij) + ζmβs(ij)

W(ijm) = w(ij)

for i = 1, . . . ,N, j = 1, . . . ,M, m = 1, . . . , T

(24)

where T is the total number of sampling points used to
discretize the domain in ζ direction. The Chebyshev-
Gauss-Lobatto (C-G-L) grid distribution is assumed
for the coordinate of grid points ζm along the shell
thickness direction ζ :

ζm =
(

1 − cos

(
m − 1

T − 1
π

))
h

2
− h

2
,

m = 1,2, . . . , T , for ζ ∈
[
−h

2
,
h

2

] (25)

By using the Differential Quadrature rule [32], an ap-
proximation of the kinematic relations (3) can be ob-
tained in discrete form:

ε0
ϕ(ij)

∼= 1

Rϕi

N∑

k=1

ς
ϕ(1)
ik uϕ(kj) + w(ij)

Rϕi

ε0
s(ij)

∼=
M∑

k=1

ς
s(1)
jk us(ik) + uϕ(ij) cosϕi

R0i

+ w(ij) sinϕi

R0i

γ 0
ϕ(ij)

∼= 1

Rϕi

N∑

k=1

ς
ϕ(1)
ik us(kj)

γ 0
s(ij)

∼=
M∑

k=1

ς
s(1)
jk uϕ(ik) − us(ij) cosϕi

R0i

χ0
ϕ(ij)

∼= 1

R2
ϕi

N∑

k=1

ς
ϕ(1)
ik uϕ(kj) − uϕ(kj)

R3
ϕi

∂Rϕ

∂ϕ

∣∣∣∣
i

+ 1

Rϕi

N∑

k=1

ς
ϕ(1)
ik βϕ(kj)

χ0
s(ij)

∼= uϕ(ij) cosϕi

R0iRϕi

+ sinϕi

R0i

M∑

k=1

ς
s(1)
jk us(ik) (26)

+ βϕ(ij) cosϕi

R0i

+
M∑

k=1

ς
s(1)
jk βs(ik)

ω0
ϕ(ij)

∼= sinϕi

R0iRϕi

N∑

k=1

ς
ϕ(1)
ik us(kj) + us(ij) cosϕi

R0iRϕi

− us(ij) cosϕi sinϕi

R2
0i

+ 1

Rϕi

N∑

k=1

ς
ϕ(1)
ik βs(kj)

ω0
s(ij)

∼= 1

Rϕi

M∑

k=1

ς
s(1)
jk uϕ(ik) − us(ij) cosϕi sinϕi

R2
0i

+
M∑

k=1

ς
s(1)
jk βϕ(ik) − βs(ij) cosϕi

R0i

Since the kinematic relation εϕ, εs, εϕs of the 3D
shell medium are the following:

εϕ(ijm) = 1

1 + ζm/Rϕi

(
ε0
ϕ(ij) + ζmχ0

ϕ(ij)

)

εs(ijm) = 1

1 + ζm sinϕi/R0i

(
ε0
s(ij) + ζmχ0

s(ij)

)

γϕs(ijm) = 1

1 + ζm/Rϕi

(
γ 0
ϕ(ij) + ζmω0

ϕ(ij)

)

+ 1

1 + ζm sinϕi/R0i

(
γ 0
s(ij) + ζmω0

s(ij)

)

(27)

by using the well-known Hooke law [18]:

σϕ(ijm) = Q̄
(m)
11 εϕ(ijm) + Q̄

(m)
12 εs(ijm) + Q̄

(m)
16 γϕs(ijm)

σs(ijm) = Q̄
(m)
12 εϕ(ijm) + Q̄

(m)
22 εs(ijm) + Q̄

(m)
26 γϕs(ijm)

τϕs(ijm) = Q̄
(m)
16 εϕ(ijm) + Q̄

(m)
26 εs(ijm) + Q̄

(m)
66 γϕs(ijm)

(28)

and the Differential Quadrature rule [32], the deriva-
tives of the stress components σϕ,ϕ , σs,s , τϕs,ϕ , τϕs,s

can be approximated as follows:
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∂σϕ

∂ϕ

∣∣∣∣
(ijm)

∼=
N∑

k=1

ς
ϕ(1)
ik σϕ(kjm)

∂σs

∂s

∣∣∣∣
(ijm)

∼=
M∑

k=1

ς
s(1)
jk σs(ikm)

∂τϕs

∂ϕ

∣∣∣∣
(ijm)

∼=
N∑

k=1

ς
ϕ(1)
ik τϕs(kjm)

∂τϕs

∂s

∣∣∣∣
(ijm)

∼=
M∑

k=1

ς
s(1)
jk τϕs(ikm)

(29)

By considering the boundary conditions at the bottom
surface of the shell, the first two 3D equilibrium equa-
tions (23) in terms of shear stresses τϕn, τsn can be
directly and independently solved at each reference
surface point (ϕi, sj ). The following linear algebraic
system of equations obtained via the GDQ method is
used:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

τϕn(ij1) = q−
ϕ(ij) (Boundary condition at the bottom surface of the shell)

T∑

k=1

ς
ζ(1)
mk τϕn(ijk) + τϕn(ijm)

(
2

Rϕi + ζm

+ sinϕi

R0i + ζm sinϕi

)

= − 1

Rϕi + ζm

∂σϕ

∂ϕ

∣∣∣∣
(ijm)

+ cosϕi

R0i + ζm sinϕi

(σs(ijm) − σϕ(ijm)) − R0i

R0i + ζm sinϕi

∂τϕs

∂s

∣∣∣∣
(ijm)

for m = 2, . . . , T⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

τsn(ij1) = q−
s(ij)

(Boundary condition at the bottom surface of the shell)
T∑

k=1

ς
ζ(1)
mk τsn(ijk) + τsn(ijm)

(
1

Rϕi + ζm

+ 2 sinϕi

R0i + ζm sinϕi

)

= − 1

Rϕi + ζm

∂τϕs

∂ϕ

∣∣∣∣
(ijm)

− 2 cosϕi

R0i + ζm sinϕi

τϕs(ijm) − R0i

R0i + ζm sinϕi

∂σs

∂s

∣∣∣∣
(ijm)

for m = 2, . . . , T

(30)

In order to satisfy the second boundary condition
at the top surface of the shell, τϕn(ijT ) = q+

ϕ(ij) and

τsn(ijT ) = q+
s(ij) , respectively, the corrected profiles

of the shear stresses can be defined in the following
manner:

τ̄ϕn(ijm) = τϕn(ijm) + q+
ϕ(ij) − τϕn(ijT )

h

(
ζm + h

2

)

τ̄sn(ijm) = τsn(ijm) + q+
s(ij) − τsn(ijT )

h

(
ζm + h

2

)
(31)

for m = 1, . . . , T

Finally, the last 3D equilibrium equation (23) can
be written in discrete form and solved via the GDQ
method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σn(ij1) = q−
n(ij)

(Boundary condition at the bottom surface of the shell)

T∑

k=1

ς
ζ(1)
mk σn(ijk) + σn(ijm)

(
1

Rϕi + ζm

+ sinϕi

R0i + ζm sinϕi

)

= − 1

Rϕi + ζm

∂τ̄ϕn

∂ϕ

∣∣∣∣
(ijm)

− cosϕi

R0i + ζm sinϕi

τ̄ϕn(ijm) − R0i

R0i + ζm sinϕi

∂τ̄sn

∂s

∣∣∣∣
(ijm)

+ σϕ(ijm)

Rϕi + ζm

+ sinϕi

R0i + ζm sinϕi

σs(ijm)

for m = 2, . . . , T

(32)
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where the derivatives τ̄ϕn,ϕ , τ̄sn,s of the shear stresses
τ̄ϕn, τ̄sn can be approximated using the Differential
Quadrature rule [32]:

∂τ̄ϕn

∂ϕ

∣∣∣∣
(ijm)

∼=
N∑

k=1

ς
ϕ(1)
ik τ̄ϕn(kjm)

∂τ̄sn

∂s

∣∣∣∣
(ijm)

∼=
M∑

k=1

ς
s(1)
jk τ̄sn(ikm)

(33)

In order to satisfy the second boundary condition at the
top surface of the shell σn(ijT ) = q+

n(ij), the correction
profile of the normal stress can be defined as:

σ̄n(ijm) = σn(ijm) + q+
n(ij) − σn(ijT )

h

(
ζm + h

2

)

for m = 1, . . . , T

(34)

Furthermore, it is possible to use the generalized
Hooke law [18] to evaluate the deformations γϕn,

γsn, εn:

γϕn(ijm) = C̄
(m)
55 τϕn(ijm) − C̄

(m)
45 τsn(ijm)

C̄
(m)
55 C̄

(m)
44 − (C̄

(m)
45 )2

γsn(ijm) = C̄
(m)
44 τsn(ijm) − C̄

(m)
45 τϕn(ijm)

C̄
(m)
55 C̄

(m)
44 − (C̄

(m)
45 )2

εn(ijm) = σn(ijm) − C̄
(m)
13 εϕ(ijm) − C̄

(m)
23 εs(ijm) − C̄

(m)
36 γϕs(ijm)

C̄
(m)
33

(35)

It is worth noting that the relations (35) do not guar-
antee the strain compatibility. In fact, some discon-
tinuities can arise. However, the solution obtained in
this way can be used as a good approximation of some
quantities that are considered a priori fixed or negligi-
ble, when the 2D First-order Shear Deformation The-
ory is used. Finally, the stresses σϕ , σs , τϕs can be cor-
rected taking into account the contribution of the ap-
proximated deformation εn using the following gener-
alized Hooke expressions:

σ̄ϕ(ijm) = C̄
(m)
11 εϕ(ijm) + C̄

(m)
12 εs(ijm) + C̄

(m)
16 γϕs(ijm)

+ C̄
(m)
13 εn(ijm)

σ̄s(ijm) = C̄
(m)
12 εϕ(ijm) + C̄

(m)
22 εs(ijm) + C̄

(m)
26 γϕs(ijm)

+ C̄
(m)
23 εn(ijm)

τ̄ϕs(ijm) = C̄
(m)
16 εϕ(ijm) + C̄

(m)
26 εs(ijm) + C̄

(m)
66 γϕs(ijm)

+ C̄
(m)
36 εn(ijm)

(36)

In the end, all the stress components σ̄ϕ , σ̄s , τ̄ϕs , τ̄ϕn,
τ̄sn, σ̄n of the 3D shell medium are numerically com-
puted using the relations (31), (34) and (36).

It should be noted that, the simple efficient method
for accurate evaluation of the through-the-thickness
distribution of shear and normal stresses in composite
laminated shells presented above can be easily applied
to different generalized displacement field solutions
obtained with other numerical methods and with more
sophisticated kinematical models. In fact, no restric-
tion has been assumed about the methodology used to
perform the pre-processing static analysis.

5 Numerical applications and results

In the present section, some results and considera-
tions about the static analysis problem of laminated
composite and four parameter functionally graded
panels are presented. The analysis has been carried
out by means of the numerical procedures discussed
above. One of the aims is to compare results ob-
tained through the GDQ method with the ones ob-
tained with semi-analytical methods and through finite
element techniques. In order to verify the accuracy
of the present methodology, some comparisons have
been performed. The solution procedure by means
of the GDQ technique has been implemented in a
MATLAB code. As illustrated below, the shear and
normal stresses evaluated a posteriori by the present
methodology are in good agreement with the results
obtained with semi-analytical formulations and with
finite element methods. The geometrical boundary
conditions for a panel are identified by the same con-
vention presented in the works [70–73].

For all the GDQ results presented below, the
Chebyshev-Gauss-Lobatto grid distributions (16) with
N = M = 31 along the reference surface and (25) with
T = 101 along the shell thickness direction have been
assumed.

In order to validate the GDQ numerical solu-
tion, comparisons with exact solutions of Kirchhoff-
Love plates and cylindrical shell and Reissner-Mindlin
cylindrical and spherical panels are shown in Table 1
and in Fig. 2. For an isotropic rectangular plate simply
supported at all the edges and subjected to a sinusoidal
distributed load, the well-known exact classical solu-
tion [1, 18, 74, 75] is considered:

w(x, s) = 12(1 − ν2)qnm

π2Eh3(( n
a
)2 + (m

b
)2)2

sin

(
nπx

a

)

× sin

(
mπs

b

)
(37)
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Table 1 Static deflection for a (SSSS) square plate at the point A = (0.5a,0.5a), for a (FS) annular plate at the point A = (Ri,0),
for a (SSSS) cylindrical panel at the point A = (0.5L,0.5�ϑ) = (0.5L,0.5(ϑ1 − ϑ0)), for a (SSSS) spherical panel at the point
A = (0.5�ϕ,0.5�ϑ) = (0.5(ϕ1 − ϕ0),0.5(ϑ1 − ϑ0)), for (CF) and (SF) cylindrical shells at the point A = (L,0) using a 31 × 31
Chebyshev-Gauss-Lobatto (C-G-L) grid distribution

h/a h/a = 0.2 h/a = 0.1 h/a = 0.01 h/a = 0.001 h/a = 0.0001 h/a = 0.00005

Square plate [74, 75] with a = b = 1 m and with a sinusoidal load q0 = −10000 Pa, m = n = 1

wexact(0.5a,0.5a) −1.6682E–07 −1.3346E–06 −1.3346E–03 −1.3346 −1.3346E+03 −1.0677E+04

wGDQ(0.5a,0.5a) −2.0446E–07 −1.4098E–06 −1.3353E–03 −1.3346 −1.3346E+03 −1.0677E+04

Annular plate [74, 75] with Ri = 0.5 m, Re = 1.5 m, a = Re − Ri = 1 m and with a uniformly distributed load q0 = −10000 Pa

wexact(Ri,0) −2.5090E–05 −1.9911E–04 −1.9857E–01 −1.9857E+02 −1.9856E+05 −1.5885E+06

wGDQ(Ri,0) −2.4821E–05 −1.9857E–04 −1.9857E–01 −1.9857E+02 −1.9856E+05 −1.5885E+06

Cylindrical panel [75] with R = 10 m, L = 10 m, ϑ ∈ [−30◦,30◦] and with a sinusoidal load q0 = 10000 Pa, m = n = 1

wexact(0.5L,0.5s0) 5.8702E–06 2.5832E–05 4.9754E–04 5.0089E–03 5.0075E–02 1.0015E–01

wGDQ(0.5L,0.5s0) 6.5284E–06 2.6659E–05 4.9764E–04 5.0093E–03 5.0075E–02 1.0015E–01

Spherical panel with R = 10 m, ϕ ∈ [60◦,120◦], ϑ ∈ [−30◦,30◦] and with a sinusoidal load q0 = 10000 Pa, m = n = 1

wexact(0.5�ϕ,0.5�ϑ) 4.4340E–06 1.2215E–05 1.4250E–04 1.4187E–03 1.4171E–02 2.8318E–02

wGDQ(0.5�ϕ,0.5�ϑ) 4.7890E–06 1.2460E–05 1.4268E–04 1.4187E–03 1.4171E–02 2.8318E–02

Cylindrical shell (CF) with R = 10 m, L = 10 m, ϑ ∈ [0◦,360◦] and with an internal pressure load q0 = 10000 Pa

wexact(L,0) 7.1201E–06 1.4028E–05 1.3699E–04 1.3699E–03 1.3699E–02 2.7397E–02

wGDQ(L,0) 6.1066E–06 1.3376E–05 1.3618E–04 1.3699E–03 1.3699E–02 2.7397E–02

Cylindrical shell (SF) with R = 10 m, L = 10 m, ϑ ∈ [0◦,360◦] and with an internal pressure load q0 = 10000 Pa

wexact(L,0) 7.2223E–06 1.3840E–05 1.3699E–04 1.3699E–03 1.3699E–02 2.7397E–02

wGDQ(L,0) 6.8446E–06 1.3531E–05 1.3618E–04 1.3691E–03 1.3699E–02 2.7397E–02

where qnm is the maximum distributed load associated
with the wave number n,m and a, b are the length
of the edges of the plate, respectively. The results
are obtained considering n = m = 1 and q0 = q11 =
−10000 Pa for a square plate (a = b = 1 m) made
of isotropic material with E = 2.1 · 1011 Pa, ν = 0.3,
ρ = 7800 kg/m3.

For an isotropic annular plate with a = Re −
Ri = 1.5 − 0.5 = 1 m, simply supported at the outer
edge (x = Re), free at the inner edge (x = Ri)

and subjected to a uniformly distributed load q0 =
−10000 Pa, the well-known classical exact solution
[1, 18, 74, 75] is used:

w(x, s) = w(x) = 3(1 − ν2)q0x
4
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The annular plate is made of isotropic material with
E = 2.1 ·1011 Pa, ν = 0.3, ρ = 7800 kg/m3, as above.

For an isotropic cylindrical shell clamped at the top
edge and free at the bottom edge and subjected to a
uniformly distributed pressure load, the well-known
exact classical solution [1] can be written as:

w(x, s) = w(x) = q0R
2

Eh
− q0R

2
√

2

Eh
e
−x

√√
3(1−ν2)
Rh

× sin

(
x

√√
3(1 − ν2)

Rh
+ π

4

)

(39)

where q0 is the internal pressure load and R,h are the
radius and the thickness of the cylinder, respectively.
When an isotropic cylindrical shell simply supported
at the top edge and free at the bottom edge and sub-
jected to a uniformly distributed pressure load is con-
sidered, the well-known exact classical solution [1] as-
sumes the following form:

w(x, s) = w(x) = q0R
2

Eh
− q0R

2

Eh
e
−x

√√
3(1−ν2)
Rh

× sin

(
x

√√
3(1 − ν2)

Rh
+ π

2

)
(40)

The results for the last two cases are obtained con-
sidering q0 = 10000 Pa for cylinders (R = L = 10 m,
ϑ ∈ [0◦,360◦]) made of isotropic material with E =
0.73 · 1011 Pa, ν = 0.3, ρ = 2700 kg/m3.

Furthermore, for isotropic cylindrical and spherical
panels simply supported at all the edges and subjected
to a sinusoidal distributed load the exact benchmark
solutions have been obtained by Brischetto and Car-
rera using the Carrera’s Unified Formulation (CUF)
[19–21]. The maximum distributed load qnm associ-
ated to the wave number n = m = 1 is q0 = q11 =
10000 Pa for a cylindrical panel (R = L = 10 m,
ϑ ∈ [−30◦,30◦]) and for a spherical panel R = 10 m,
ϕ ∈ [60◦,120◦], ϑ ∈ [−30◦,30◦]. Both of these two

Fig. 2 Convergence of the GDQ solution with decreasing thicknesses for a (SSSS) square plate, a (FS) annular plate, a (SSSS)
cylindrical panel, a (SSSS) spherical panel, (CF) and (SF) cylindrical shells
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Table 2 Dimensionless deflection for laminated spherical and cylindrical panels

R/a a/h Theory (0/90/0) (0/90/0/90) (0/90/0/90/0)

Spherical panel b/a = 1

1 5 HSDT1 [89] 1.2080 1.1790 1.1510

HSDT2 [89] 1.0790 1.0540 1.0250

FSDT [21] 1.1343 1.0733 1.0626

FSDT-GDQ [75] 1.1285 1.0695 1.0503

10 HSDT1 [89] 0.3761 0.3748 0.3615

HSDT2 [89] 0.3475 0.3467 0.3328

FSDT [21] 0.3605 0.3618 0.3502

FSDT-GDQ [75] 0.3586 0.3645 0.3481

2 5 Elasticity [89] 1.482 1.434 1.376

HSDT1 [89] 1.482 1.433 1.379

HSDT2 [89] 1.422 1.376 1.324

HSDT3 [89] 1.420 1.228 1.217

FSDT [21] 1.3226 1.2175 1.2002

FSDT-GDQ [75] 1.3246 1.2172 1.1991

10 Elasticity [89] 0.6087 0.6128 0.5671

HSDT1 [89] 0.6090 0.6085 0.5670

HSDT2 [89] 0.5877 0.5875 0.5468

HSDT3 [89] 0.5840 0.5673 0.5344

FSDT [21] 0.5578 0.5640 0.5306

FSDT-GDQ [75] 0.5588 0.5661 0.5312

5 5 Elasticity [89] 1.549 1.495 1.417

HSDT1 [89] 1.546 1.488 1.425

HSDT2 [89] 1.534 1.478 1.414

HSDT4 [89] 1.461 1.240 1.228

FSDT [21] 1.3530 1.2326 1.2132

FSDT-GDQ [75] 1.3535 1.2324 1.2131

10 Elasticity [89] 0.7325 0.7408 0.6707

HSDT1 [89] 0.7340 0.7345 0.6708

HSDT2 [89] 0.7287 0.7293 0.6660

HSDT4 [89] 0.6905 0.6664 0.6182

FSDT [21] 0.6554 0.6655 0.6164

FSDT-GDQ [75] 0.6558 0.6658 0.6166

Cylindrical panel b/a = 3

1 5 Elasticity [89] 2.716 3.707 2.818

HSDT1 [89] 2.699 3.775 2.824

HSDT2 [89] 2.195 3.101 2.302

HSDT3 [89] 2.525 3.109 2.458

FSDT-GDQ 2.2516 3.0133 2.4389

10 Elasticity [89] 1.153 1.851 1.242

HSDT1 [89] 1.145 1.844 1.235

HSDT2 [89] 0.934 1.539 1.009

HSDT3 [89] 1.077 1.685 1.144

FSDT-GDQ 1.0044 1.6557 1.1367
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Table 2 (Continued)

R/a a/h Theory (0/90/0) (0/90/0/90) (0/90/0/90/0)

4 5 Elasticity [89] 2.118 3.042 2.205

HSDT1 [89] 2.108 3.018 2.214

HSDT2 [89] 2.081 2.981 2.187

HSDT3 [89] 1.944 2.494 1.896

FSDT-GDQ 1.7589 2.4630 1.9142

10 Elasticity [89] 0.9396 1.609 1.020

HSDT1 [89] 0.9409 1.594 1.021

HSDT2 [89] 0.9292 1.579 1.008

HSDT3 [89] 0.8712 1.441 0.931

FSDT-GDQ 0.8218 1.4359 0.9375

structures are made of isotropic material with E =
0.73 · 1011 Pa, ν = 0.3, ρ = 2700 kg/m3.

5.1 Laminated composite shells and panels

Table 1 and Fig. 2 illustrate the convergence of the
GDQ FSDT numerical solutions to the exact ones by
decreasing the thickness of the structures. By plotting
the ratio between the GDQ FSDT numerical solution
wgdq and exact solution wexact versus the ratio h/a,
well-converging results are shown and no oscillations
are arisen. Thus, it is possible to conclude that the
present methodology is locking-free. Finally, Table 2
shows results of the present FSDT GDQ solution com-
pared with the higher-order solutions obtained by Shu
[89] and the FSDT exact solution obtained by Carrera
and Brischetto using CUF approach. The details re-
garding the geometry of the structures and the mate-
rial mechanical properties are reported in [89]. As it
appears from Table 2, GDQ results are in good agree-
ment with the ones presented in literature for lami-
nated shell panels.

In order to assess the effectiveness of the fore-
going computational procedure for the evaluation of
through-the-thickness stresses, Fig. 3 presents all the
stress components σx , σy , τxy , τxn, τyn, σn at the point
C = (0.25a,0.25b) obtained using the GDQ method
compared with the semi-analytical results obtained by
Reddy [18] for a (90/0/90/0/90) completely simply
supported square plate (a = b = 1 m) with a con-
stant thickness (h = 0.1 m) and subjected to a uni-
formly distributed load (q+

n = −10000 Pa) on the top
surface of the plate. The unrecovered evaluations ob-
tained using Eqs. (28) and the recovered evaluations

derived from Eqs. (36) are reported for stresses σx ,
σy , τxy in Fig. 3. The material properties of each
lamina made of composite material are the follow-
ing: E11 = 137.9 GPa, E22 = E33 = 8.96 GPa, G12 =
G13 = 7.1 GPa, G23 = 6.21 GPa, ν12 = ν13 = 0.3,
ν23 = 0.49, ρ = 1450 kg/m3. As appears from Fig. 3,
the discrepancy between semi-analytical and numeri-
cal results closes to zero.

Figures 4, 5 and 6 show the GDQ recovered and 3D
FEM displacements, strains and stresses σx , σy , τxy ,
τxn, τyn, σn for a (0/45/65) completely clamped
square plate (a = b = 1 m) with a constant thick-
ness (h = 0.1 m) subjected to uniformly distributed
loads in the two directions x, ζ (q+

x = 10000 Pa,
q+
n = −10000 Pa) on the top surface of the plate. The

material properties of each lamina are the same as the
previous cases of Fig. 3. The unrecovered evaluations
obtained using Eqs. (28) and the recovered evaluations
derived from Eqs. (36) are reported for stresses σx , σy ,
τxy . As can be seen using the corrected stresses (36),
the accuracy of the stress profiles is better than the one
obtained with relations (28), even though the evalua-
tion has been obtained using strains (35) that do not
satisfy the compatibility conditions. For the three lam-
inated plate the thickness of the middle lamina is equal
to h2 = 0.04 m, while the bottom and top laminae
have the same thickness h1 = h3 = 0.03 m. Further-
more, the 3D FEM results are obtained using 16000
brick elements with 20 nodes in Straus (or Strand) pro-
gram. The FEM mesh is obtained using 10 elements
through the thickness direction and 40 elements along
both edges of the plate. The two solutions GDQ and
3D FEM are always in good agreement for all the ex-
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Fig. 3 Through-the-thickness variation of stress components [Pa] for a (SSSS) square plate at the point C = (0.25a,0.25a) with a
(90/0/90/0/90) lamination scheme, when a uniformly distributed load q+

n = −10000 Pa at the top surface is applied

amples and the quantities considered. In all the figures

illustrated above, the three displacements and the six

strain and stress components recovered by the GDQ

method have been compared with the 3D FEM results.

It appears that the GDQ results are in good agreement

with those obtained with 3D FEM. Furthermore, the

computational effort is remarkably small (few minutes

for the GDQ results vs. some hours for the 3D FEM

results) and the approximations obtained are very reli-
able.

It is worth noting that examples illustrated above
are related to moderately thick degenerate shells. The
well-known FSDT validity range is:

1

1000
< max

(
h

Rmin
,

h

Lmin

)
≤ 1

10
(41)

For all the examples the ratio h/a = 1/10 has been
chosen. The results are good even if a limit case of the
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Fig. 4 Through-the-thickness variation of displacements components [m] for a (CCCC) square plate at the point C = (0.25a,0.25a)

with a (0/45/65) lamination scheme, when uniformly distributed loads q+
x = 10000 Pa, q+

n = −10000 Pa at the top surface are applied
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Fig. 5 Through-the-thickness variation of strain components for a (CCCC) square plate at the point C = (0.25a,0.25a) with a
(0/45/65) lamination scheme, when uniformly distributed loads q+

x = 10000 Pa, q+
n = −10000 Pa at the top surface are applied

FSDT has been considered. Furthermore, it is possible
to demonstrate that results improve by decreasing the
plate thickness.

5.2 Functionally graded shells and panels

Typically, the functionally graded materials are made
of a mixture of two constituents. In this work, it is as-
sumed that the functionally graded material is made

of a mixture of ceramic and metal constituents: Zirco-
nia and Aluminum. Young’s modulus, Poisson’s ratio
and mass density for the Zirconia are EC = 168 GPa,
νC = 0.3, ρC = 5700 kg/m3, and for the Aluminum
are EM = 70 GPa, νM = 0.3, ρM = 2707 kg/ m3, re-
spectively. The material properties of the functionally
graded shell vary continuously and smoothly in the
thickness direction ζ and are functions of volume frac-
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Fig. 6 Through-the-thickness variation of stress components [Pa] for a (CCCC) square plate at the point C = (0.25a,0.25a) with a
(0/45/65) lamination scheme, when uniformly distributed loads q+

x = 10000 Pa, q+
n = −10000 Pa at the top surface are applied

tions of constituent materials. The Young’s modulus
E(ζ ), Poisson’s ratio ν(ζ ) and mass density ρ(ζ ) of
the functionally graded shell can be expressed as a lin-
ear combination:

ρ(ζ ) = (ρC − ρM)VC + ρM

E(ζ ) = (EC − EM)VC + EM

ν(ζ ) = (νC − νM)VC + νM

(42)

where ρC,EC, νC,VC and ρM,EM,νM,VM represent

mass density, Young’s modulus, Poisson’s ratio and

volume fraction of the ceramic and metal constituent

materials, respectively. In this paper, the ceramic vol-

ume fraction VC follows two simple four-parameter

power-law distributions [56–60, 73]:
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Fig. 7 Variations of the ceramic volume fraction VC through the thickness for different values of the three parameters a, b, c and
the power-law index p: (a) FGM1(a=1/b=0/c/p), (b) FGM2(a=1/b=0/c/p), (c) FGM1(a=1/b=1/c=2/p), (d) FGM2(a=1/b=1/c=2/p), (e)
FGM1(a=1/b=0.5/c=2/p), (f) FGM2(a=1/b=0.5/c=2/p)

FGM1(a/b/c/p):
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h
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(43)

where the volume fraction index p (0 ≤ p ≤ ∞) and
the parameters a, b, c dictate the material variation
profile through the functionally graded shell thickness.
It is worth noting that the volume fractions of all the
constituent materials should add up to unity:

VC + VM = 1 (44)

In order to choose the three parameters a, b, c suitably,
the relation (44) must be always satisfied for every
volume fraction index p. By considering the relations
(43), when the power-law exponent is set equal to zero
(p = 0) or equal to infinity (p = ∞), the homoge-
neous isotropic material is obtained as a special case of
functionally graded material. In fact, from Eqs. (44),
(43) and (42) it is possible to obtain:

p = 0 → VC = 1, VM = 0 → ρ(ζ ) = ρC,

E(ζ ) = EC, ν(ζ ) = νC

p = ∞ → VC = 0, VM = 1 → ρ(ζ ) = ρM,

E(ζ ) = EM, ν(ζ ) = νM

(45)
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Fig. 8 Through-the-thickness variation of stress components [Pa] for a functionally graded (CCCC) FGM1(a=0/−1≤b≤0/c=2/p=10)

cylindrical panel at the point C = (0.25L,10◦) when a uniformly distributed load q+
n = −10000 Pa at the top surface is applied

Some material profiles through the functionally graded

shell thickness are illustrated in Fig. 7.

Figures 8–13 present results for single-curved and

doubly curved functionally graded panels of revolu-

tion. Figures 8 and 9 illustrate the GDQ recovered

and 3D FEM stresses σx , σs , τxs , τxn, τsn, σn for

a completely clamped cylindrical panel (L = 1 m,

R = 2 m, ϑ ∈ [0◦,40◦]) with a constant thickness

(h = 0.06 m) subjected to a uniformly distributed load
(q+

n = −10000 Pa) on the top surface of the panel,
while Figs. 10, 11 and 12 show the same recovered
stresses σϕ , σs , τϕs , τϕn, τsn, σn for a completely
clamped spherical panel (Rϕ = Rs = 2.03 m, ϕ ∈
[50◦,90◦], ϑ ∈ [0◦,40◦]) with a constant thickness
(h = 0.06 m) subjected to a uniformly distributed load
(q+

n = −10000 Pa) on the top surface of the panel.
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Fig. 9 Through-the-thickness variation of stress components [Pa] for a functionally graded (CCCC) FGM1(a=1/b=1/1≤c≤15/p=10)

cylindrical panel at the point C = (0.25L,10◦) when a uniformly distributed load q+
n = −10000 Pa at the top surface is applied

Figure 8 presents results for a
FGM1(a=0/−1≤b≤0/c=2/p=10) cylindrical panel, while
Fig. 9 shows results for a FGM1(a=1/b=1/1≤c≤15/p=10)

cylindrical panel. Figures 8 and 9 show the recovered
stresses at the point C = (0.25L,10◦). It should be
noted that the corrected stresses σx , σs , τxs (36), which
also take into account the normal strain, are illustrated
in Figs. 8 and 9 as well as in all the remaining fig-

ures. All the six stress components recovered by the
GDQ method are compared with the 3D FEM results
obtained using 16000 brick elements with 20 nodes in
Straus (or Strand) code for the special isotropic panel
made of Zirconia. The FEM mesh is obtained using
10 elements through the thickness direction and 40 el-
ements along both edges of the cylindrical panel. As
it can be seen, in Fig. 8 the variation of the stress pro-
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Fig. 10 Through-the-thickness variation of stress components [Pa] for a functionally graded (CCCC) FGM1(a=1/b=0/c=2/0≤p≤∞)

spherical panel at the point C = (60◦,10◦) when a uniformly distributed load q+
n = −10000 Pa at the top surface is applied

files are illustrated for various values of the parameter
b ∈ [−1,0] maintaining the same value for the other
three parameters a, c, p, while Fig. 9 shows the vari-
ation of the stress profiles for different values of the
parameter c ∈ [1,15] maintaining the same value for
the other three parameters a, b, p.

In the same way, in Fig. 10 results for a
FGM1(a=1/b=0/c=2/0≤p≤∞) spherical panel are re-

ported, while in Fig. 11 and in Fig. 12 the
FGM1(a=1/0≤b≤1/c=2/p=10) and
FGM1(0.2≤a≤1.2/b=0.2/c=3/p=20) spherical panels are
considered, respectively. The corrected stresses σϕ , σs ,
τϕs (36) are represented. Figures 10, 11 and 12 show
the recovered stresses at the point C = (60◦,10◦). The
effect of the variation of the parameter p ∈ [0,∞] is il-
lustrated in Fig. 10, while in Fig. 11 and in Fig. 12 the
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Fig. 11 Through-the-thickness variation of stress components [Pa] for a functionally graded (CCCC) FGM1(a=1/0≤b≤1/c=2/p=10)

spherical panel at the point C = (60◦,10◦) when a uniformly distributed load q+
n = −10000 Pa at the top surface is applied

effect of the parameters b ∈ [0,1] and a ∈ [0.2,1.2]
are shown, respectively. All the six stress components

recovered by the GDQ method are compared with the

3D FEM results obtained using 16000 brick elements

with 20 nodes in Straus (or Strand) code for the spe-

cial isotropic panel made of Zirconia. The FEM mesh

is obtained using 10 elements through the thickness di-

rection and 40 elements along both edges of the spher-

ical panel.

As it can be seen from Figs. 8–12, when the func-

tionally graded material degenerates into the special

isotropic case of Zirconia or Aluminum, all the six

stress components recovered by the GDQ method are

in good agreement with those obtained with 3D FEM,
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Fig. 12 Through-the-thickness variation of stress components [Pa] for a functionally graded (CCCC) FGM1(0.2≤a≤1.2/b=0.2/c=3/p=20)

spherical panel at the point C = (60◦,10◦) when a uniformly distributed load q+
n = −10000 Pa at the top surface is applied

as expected. It is important to note that, when the
FGM2 power-law distribution is used, the results are
completely different. Thus, in order to prove this state-
ment new results regarding the doubly-curved free-
form shell panel of revolution are presented. Figure 13
illustrates the GDQ recovered stresses σϕ , σs , τϕs , τϕn,
τsn, σn for a FGM2(a=1/b=0/c=2/0≤p≤∞) completely
clamped free-form meridian panel. This structure has

a constant thickness (h = 0.06 m) and is subjected
to uniformly distributed load (q+

n = −10000 Pa) on
the top surface. The geometrical properties x̄1, x̄′

3, w,
Rb = 0 m, ϑ ∈ [0◦,120◦] for the free-form meridian
structure involved with Fig. 12 are illustrated in Ta-
ble 3 of the paper by Tornabene et al. [73]. The figure
under consideration presents the stresses recovered by
the GDQ method at the points C = (0.25(ϕ1 − ϕ0) +
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Fig. 13 Through-the-thickness variation of stress components [Pa] for a functionally graded (CCCC) FGM2(a=1/b=0/c=2/0≤p≤∞)

free-form meridian panel at the points C = (61.7004◦,30◦) when a uniformly distributed load q+
n = −10000 Pa at the top surface is

applied

ϕ0,0.25(ϑ1 − ϑ0)) for different values of the parame-
ter p ∈ [0,∞]. Comparing the results of Fig. 13 with
the ones of Fig. 10, the effect of the choice of one of
the two power-law distribution FGM1 and FGM2 can
be inferred.

As can be seen from Figs. 4, 5 and 6 and 8–12,
the GDQ numerical results show an excellent agree-
ment with those obtained with 3D FEM without us-

ing mixed formulations and higher order kinematical

models. The latter numerical procedure requires an in-

crease of the degrees of freedom. The previous consid-

erations are valid if all the theoretical hypotheses of

moderately thick shells and plates, presented above,

are satisfied. It should be noted that, increasing the

thickness of the shell over the interval (41), the defor-
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mation through the thickness could be not negligible
and thus the FSDT is not valid. In this case, the higher
order kinematical models are needed in order to catch
the real static behaviour of shells and plates, as shown
in literature [18–20, 23, 24, 26, 29, 31].

6 Conclusion remarks and summary

A Generalized Differential Quadrature method appli-
cation to the static analysis of functionally graded and
laminated composite shells and panels of revolution
has been presented to illustrate the versatility and the
accuracy of this methodology. The adopted shell the-
ory is the First-order Shear Deformation Theory. In
particular, the Toorani-Lakis theory has been used as
starting point to obtained the governing equations for
shells. The 2D equilibrium equations have been dis-
cretized with the GDQ method producing a standard
linear algebraic problem. After the solution of the fun-
damental system of equations, in terms of displace-
ments of points lying on the shell middle surface, the
generalized strains and stress resultants are evaluated
by applying the Differential Quadrature rule to the
generalized displacements. The transverse shear and
normal stress profiles through the thickness are re-
constructed a posteriori. The local three-dimensional
equilibrium equations are used. No preliminary re-
covery or regularization procedure on the extensional
and flexural strain fields is needed, when the Differen-
tial Quadrature technique is used. The examples pre-
sented show that the GDQ method can produce ac-
curate results by using a small number of sampling
points. Numerical solutions have been compared with
those presented in literature, such as semi-analytical
methods, and the 3D FEM elasticity ones obtained us-
ing commercial programs such as Straus (or Strand).
The comparisons conducted with semi-analytical and
FEM methods confirm that the GDQ simple numeri-
cal method provides accurate and computationally low
cost results for all the structures considered. Further-
more, discretizing and programming procedures are
quite easy. The GDQ results show precision and accu-
racy for all the cases treated, without using mixed for-
mulations and higher order kinematical models. Two
kinds of ceramic-metal graded shells of revolution,
each with a four parameter power-law distribution of
the volume fraction of the constituents in the thickness
direction, have been considered. Various material pro-
files through the functionally graded shell thickness

have been illustrated by varying the four parameters
of the two power-law distributions. The numerical re-
sults have shown the influence of the power-law expo-
nent, the power-law distribution choice and the choice
of the four parameters on the static response of func-
tionally graded shells considered. Within the limits of
the FSDT, the proposed procedure can be applied to
a huge number of engineering problems. Furthermore,
it is worth noting that the simple efficient method, for
accurate evaluation of the through-the-thickness dis-
tribution of shear and normal stresses in plates and
shells, can be easily applied to different generalized
displacement field solutions obtained with other nu-
merical methods and with more sophisticated kinemat-
ical models.
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