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Abstract The presence of undercut at the tooth root,
non-equal addendum on pinion and wheel, non-stan-
dard tooth height or non-standard center distance may
have decisive influence on the load distribution along
the line of contact of spur and helical gear teeth. The
curve of variation of the meshing stiffness along the
path of contact, quite symmetric respect the midpoint
of the interval of contact, loses its symmetry for non-
standard geometries and operating conditions. As a
consequence, the critical contact points for bending
and wear calculations may be shifted from their loca-
tions for standard gears. In this paper, a non-uniform
model of load distribution along the line of contact of
standard spur and helical gears, obtained from the min-
imum elastic potential criterion, has been enhanced to
fit with the meshing conditions of the above mentioned
non-standard cylindrical gear pairs. The same analyt-
ical formulation of the initial model may be used for
the non-standard gears by considering appropriate val-
ues of a virtual contact ratio, which are also presented
in the paper.
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Abbreviations
b Face width, mm
C Operating center distance, mm
dα Fractional part of εα

dβ Fractional part of εβ

E Modulus of elasticity, MPa
e Tooth chordal thickness, mm
F Load, N
f Load per unit of length, N/mm
G Transverse modulus of elasticity, MPa
ha Addendum coefficient
ha0 Tool addendum coefficient
mn Normal module, mm
R Load sharing ratio
rb Base radius, mm
rC Contact point radius, mm
ro Outside radius, mm
rp Standard pitch radius, mm
U Elastic potential, N mm
u Unitary potential, mm2/N
v Inverse unitary potential, N/mm2

x Rack shift coefficient
y Coordinate along the tooth centerline from the

gear rotation center, mm
z Number of teeth
αC Load angle
αn Standard normal pressure angle
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α′
t Operating transverse pressure angle (pressure

angle at the pitch cylinder)
β Standard helix angle
βb Base helix angle
εα Transverse contact ratio
ε′
α Fictitious transverse contact ratio

εβ Axial contact ratio (overlap ratio)
ξ Involute profile parameter

1 Introduction

Calculation methods of spur and helical gears avail-
able in technical literature [1–3] use simple models of
the theory of elasticity to evaluate the stress, assuming
the load to be uniformly distributed along the line of
contact. However, it is known that the load distribution
depends on the meshing stiffness of the pair of teeth,
which is different at any contact point, which means
that the load per unit of length is also different at any
point of the line of contact. For this reason, several in-
fluence factors for load distribution are introduced to
correct the calculated values of the bending and con-
tact stresses [1, 4].

Some studies on the load distribution along the line
of contact can be found in technical literature [5–16],
but all of them provide results obtained by numerical
techniques or Finite Element Methods, presenting the
problem of no generality of the obtained results: all of
them allow to obtain some conclusions regarding the
considered gear pairs, but make very difficult to extract
general conclusions, valid for any gear pair.

In previous works [17, 18], the authors developed a
new load distribution model from the minimum elas-
tic potential energy criterion. The elastic potential en-
ergy of a pair of teeth was calculated and expressed as
a function of the contact point and the normal load.
The load sharing among several pairs of contacting
teeth in spur gears was obtained by solving the vari-
ational problem of minimize the total potential energy
(equal to the addition of the potential energy of each
pair at its respective contact point) regarding the re-
striction of the total load to be equal to the sum of
the load at each pair. The same approach was used for
helical gear teeth by dividing each helical pair in in-
finite slices, perpendicular to the gear axis, assuming
each slice to be equivalent to a spur gear with differ-
ential face width, and extending the integrals to the
complete line of contact. This approach allowed the

value of the load per unit of length to be known at any
point of the line of contact and at any position of the
meshing cycle. Initially, numerical results obtained by
the numerical integration of the equations of the elas-
ticity were provided [17]. More recently, an analytic,
approximate equation for the inverse unitary potential
was presented [18], allowing to compute the load per
unit of length at any point of the line of contact and
at any position of the meshing cycle from the inverse
unitary potential and its integral along the complete
line of contact, which can be easily computed as the
inverse unitary potential has now analytic expression.
Undercut teeth were also considered [18]. From this
model, some general studies on the load carrying ca-
pacity [19–21] and efficiency [22–24], were developed
allowing to make new proposals for calculation meth-
ods, suitable for preliminary designs or standardiza-
tion purposes.

An important conclusion of these studies was that
the load distribution is very slightly affected by geo-
metrical parameters as the number of teeth, the rack
shift coefficients, the pressure angle, the tool tip ra-
dius or the helix angle. This allowed to express the
inverse unitary potential (the inverse of elastic poten-
tial of the tooth pair for unit load and face width) as
a function of only one parameter: the transverse con-
tact ratio [18]. On the contrary, the load distribution is
heavily affected by all the parameters having influence
on the length of contact, as the tooth height, the operat-
ing center distance or the presence of vacuum gearing
(reduction of the effective outside diameter due to the
existence of undercut at the root of the meshing tooth).

In this paper, the same load distribution model of
minimum elastic potential is extended to these cases of
non-standard spur and helical gears, with non-standard
values of the tooth height (including different values
for pinion and wheel) or center distance. Addition-
ally, the same formulation of the analytic, approximate
equation for the inverse unitary potential is adjusted to
fit to these non-standard gears by considering appro-
priate values of a fictitious transverse contact ratio.

2 Load distribution model

Reference [18] presents in detail the model of load
distribution of minimum elastic potential energy. It
is based on the assumption that the load distribution
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Fig. 1 Geometrical parameters of involute tooth

along the line of contact provides a minimum elas-
tic potential energy. It has been obtained by comput-
ing the total elastic potential energy, considering all
the pairs of teeth in simultaneous contact, with an un-
known fraction of the load acting on each one, and
minimizing its value by means of variational tech-
niques. In this section, the model will be briefly de-
scribed.

2.1 Background

The elastic potential energy of a spur tooth U can be
expressed as the sum of the bending component Ux ,
the compressive component Un and the shear compo-
nent Us :

U = Ux + Un + Us (1)

All the components can be computed from the equa-
tions of the theory of elasticity and some geometrical
parameters of the tooth which have been represented
in Fig. 1. The application of those equations to the ge-
ometry of the involute teeth results in:

Ux = 6
F 2 cos2 αC

Eb

∫ yC

yp

(yC − y)2

e3(y)
dy

Un = 1

2

F 2 sin2 αC

Eb

∫ yC

yp

dy

e(y)

Us = C
1

2

F 2 cos2 αC

Gb

∫ yC

yp

dy

e(y)

(2)

where F is the normal load between both teeth, αC

the load angle, b the face width, E the modulus of
elasticity of the material, G the transverse modulus
of elasticity, and e(y) the tooth chordal thickness at
the section described by y, being y the coordinate
along the tooth centerline from the gear rotation center.

yp and yC are the values of coordinate y correspond-
ing to the encastred section (defined by the points of
both sides of the profile at the root circle) and to the
load section (defined by the intersection of the line of
action of the load—i.e., the normal to the profile at
the contact point—and the tooth centerline), respec-
tively. Finally, C is the shear potential correction fac-
tor, which accounts the non-uniform distribution of the
shear stresses on the section, according to the Col-
ignon’s theorem. For rectangular section, this factor
takes the value C = 1.5 [25].

To describe the contact point, the profile parameter
ξ is defined as [17, 18]:

ξ = z

2π

√
r2
C

r2
b

− 1 (3)

where z is the number of teeth, rC the radius of the
contact point and rb the base radius. Note that the dif-
ference of ξ parameters corresponding to contact at the
outer point of contact and at the inner point of contact
is equal to the transverse contact ratio εα . Similarly,
the difference of ξ parameters corresponding to two
contiguous teeth in simultaneous contact is equal to 1.

According to this, the elastic potential energy of a
tooth can be expressed as a function of the profile pa-
rameter of its load point (or contact point), U = U(ξ).
Of course, this is valid both for the pinion tooth and
for the wheel tooth, so that:

U1 = U1(ξ)

U2 = U2(ξ2)
(4)

where subscripts 1 and 2 denote the pinion and the
wheel, respectively (for simplicity, the pinion profile
parameter will be denoted by ξ , without subscript).
The sum of the curvature radii of both transverse pro-
files at the respective contact points is constant along
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Fig. 2 Example of unitary potential u and inverse unitary po-
tential v for spur gears (obtained by numerical integration)

the line of action, and equal to the distance between
the tangency points of the operating pressure line and
both base circles of pinion and wheel, which provides
a relation between pinion and wheel profile parame-
ters:

ξ + ξ2 = λ = z1 + z2

2π
tanα′

t (5)

where α′
t is the operating transverse pressure angle

(the pressure angle at the pitch cylinder) and λ the
distance between both tangency points divided by the
base radius and the angular pitch of the pinion. The
potential energy of a pair of teeth in contact Up will
be the sum of those of the pinion and the wheel, which
according to Eq. (5), may be expressed as a function
of the pinion profile parameter ξ :

Up = U1 + U2 = Up(ξ) (6)

Finally, two more parameters are defined [17, 18]: the
unitary potential u, which is the elastic potential for
unit load and face width, and the inverse unitary po-
tential v, which is the inverse of u:

u(ξ) = b

F 2
Up(ξ)

v(ξ) = 1

u(ξ)

(7)

being F the load carried by the pair of teeth.
Both the unitary potential and the inverse unitary

potential of a determined pair of teeth can be computed
from the above equations by numerical techniques of
integration. The result for standard teeth is always a
function of ξ similar to that in Fig. 2.

2.2 Load distribution for spur gears

For spur gears, the elastic potential energy is computed
considering all the pairs of teeth in simultaneous con-
tact, with an unknown fraction of the load acting on
each one, and minimizing its value by means of vari-
ational techniques (Lagrange’s method). The load at
each pair results in [18]:

Fi(ξi) = vi(ξi)∑z1−1
j=0 vj (ξj )

F (8)

where Fi(ξi) and vi(ξi) are the load and the inverse
unitary potential of tooth i when contact occurs at the
point corresponding to ξi,F is the total transmitted
load, and it is assumed vi(ξi) = 0 outside the interval
of contact ξinn ≤ ξ ≤ ξinn + εα , where ξinn is the pro-
file parameter corresponding to the inner contact point
of the pinion. According to this, the load sharing ra-
tio R(ξ) (or the fraction of the load supported by the
considered pair of teeth) is given by:

Ri(ξi) = Fi(ξi)

F

= vi(ξi)∑z1−1
j=0 vj (ξj )

= v(ξi)∑z1−1
j=0 v(ξi + (j − i))

(9)

while the load per unit of length f (ξ), for spur gears,
can be expressed as:

fi(ξi) = F

b
Ri(ξi) (10)

2.3 Load distribution for helical gears

The same approach may be used for helical gears by
dividing the helical tooth in infinite slices, perpendic-
ular to the gear axis. Each slice is equivalent to a spur
gear with differential face width. In this case, the dif-
ference between the ξ parameters of two slices sepa-
rated a distance dδ along the gear axis (or dl along the
line of contact) is [18]:

dξ = εβ

b
dδ = εβ cosβb

b
dl (11)

where εβ is the axial contact ratio (also known as over-
lap ratio [4]) and βb the base helix angle. By following
a similar method than that described for spur gears, the
load per unit of length of a helical gear at a point of



Meccanica (2013) 48:527–543 531

Fig. 3 Typical shape of the graph of inverse unitary potential
v(ξ)

the line of contact described by ξ , at the meshing po-
sition corresponding to a reference transverse section
contacting at point described by ξ0, results in [18]:

f (ξ, ξ0) = εβ cosβb

b

v(ξ)

Iv(ξ0)
F (12)

where function Iv(ξ0) is given by:

Iv(ξ0) =
∫

lc

v(ξ)dξ =
z1−1∑
j=0

∫ ξ0+j

ξ0+j−εβ

v(ξ)dξ (13)

The reference transverse section can be any arbitrary
transverse section of the helical tooth, however the ex-
pression for Iv(ξ0) depends on the chosen section. The
reference transverse section corresponding to Eq. (13)
is the end section of the tooth with higher contact point
on pinion.

2.4 Analytical approach

The inverse unitary potential v(ξ) is described very ac-
curately by the following approximate equation [18]:

v(ξ) = cos
[
b0(ξ − ξm)

]
(14)

where:

ξm = ξinn + εα

2

b0 =
[

1

2

(
1 + εα

2

)2

− 1

]−1/2 (15)

Figure 3 shows the typical aspect of function v(ξ)

for standard teeth. Note that, according to Eqs. (9),
(12) and (13), the amplitude of v(ξ) has no influence
on the load distribution, so a normalized function v(ξ),
with a maximum value equal to 1, may be considered

Fig. 4 Load sharing ratio for non-undercut spur gears (trans-
verse contact ratio between 1 and 2)

for calculations, as one given by Eq. (14) and repre-
sented in Fig. 3. According to this, the load sharing ra-
tio for spur gears can be obtained by replacing Eq. (14)
in Eq. (9), which yields the following result for trans-
verse contact ratio εα between 1 and 2:

R(ξ) = cos[b0(ξ − ξm)]
cos[b0(ξ − ξm)] + cos[b0(ξ + 1 − ξm)]

for ξinn ≤ ξ ≤ ξinn + εα − 1

R(ξ) = 1

for ξinn + εα − 1 ≤ ξ ≤ ξinn + 1

R(ξ) = cos[b0(ξ − ξm)]
cos[b0(ξ − 1 − ξm)] + cos[b0(ξ − ξm)]

for ξinn + 1 ≤ ξ ≤ ξinn + εα

(16)

which has been represented in Fig. 4. The ordinates of
singular points are always very close to 0.33 and 0.67,
so that the load sharing ratio given by Eq. (16) can be
also computed from:

R(ξ) = 1

3

(
1 + ξ − ξinn

εα − 1

)

for ξinn ≤ ξ ≤ ξinn + εα − 1

R(ξ) = 1

for ξinn + εα − 1 ≤ ξ ≤ ξinn + 1

R(ξ) = 1

3

(
1 + ξinn + εα − ξ

εa − 1

)

for ξinn + 1 ≤ ξ ≤ ξinn + εα

(17)

For helical gears, the load per unit of length at any
contact point (described by ξ ) at any meshing posi-
tion (described by ξ0) is given by Eq. (12), in which
v(ξ) and Iv(ξ0) are given by Eqs. (14) and (13), re-
spectively. Another equation for Iv(ξ0) more explicit
than Eq. (13) can be found in [18]. Function Iv(ξ0)
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(a) (b)

Fig. 5 Typical shapes of the graphs of function Iv(ξ0): (a) dα + dβ < 1; (b) dα + dβ > 1

takes different shapes depending on whether the sum
of the fractional parts of both transverse and axial con-
tact ratios (dα and dβ , respectively) is less than 1 or
not, as represented in Fig. 5.

3 Non-standard gears

As concluded in [18], neither the geometrical parame-
ters (as the numbers of teeth, the rack shift coefficients,
the pressure angle, the helix angle, etc.) nor the operat-
ing parameters (as the operating pressure angle or the
operating center distance) have significant influence
on the load distribution. In fact, according to Eq. (17)
and Fig. 4, the load sharing ratio of spur gears only
depends on the contact ratio εα and the pinion profile
parameter at the inner point of contact ξinn. This made
possible to express the inverse unitary potential v(ξ)

as a function of the same two parameters, as shown
in Eqs. (14) and (15). However, in all the cases con-
sidered in the developed study of accuracy [18], the
tooth addendum was kept equal to the normal module
mn, the tooth dedendum 1.25mn and the outside diam-
eter taken according to the operating center distance in
such a way that the distance between the outside circle
of one gear and the root circle of the mating gear was
equal to 0.25mn.

The same study [18] revealed that the existence of
undercut has no influence on the load distribution, ex-
cept if the undercut area is big enough to cause the
outer points of the wheel profile not to find active pro-
file on pinion to mesh with, as represented in Fig. 6.
This is what is called vacuum gearing.

Fig. 6 Vacuum gearing

If vacuum gearing exists, the effective outside di-
ameter of the wheel is smaller than the real one, but
according to Eqs. (2) and Fig. 1, the integrals to com-
pute the elastic potential are exactly the same, with the
only difference that contact does not exist between the
inner point of contact ξinn and the fictitious inner point
of contact ξ ′

inn (the fictitious point of the pinion profile
that would mesh with the real outer point of the wheel,
which can be obtained from Eq. (5)). This means that
the values of the inverse unitary potential v(ξ) of the
undercut gear pair will be the same as those for the
fictitious non-undercut gear pair, except in the interval
[ξ ′

inn, ξinn], as represented in Figs. 7(a) and 7(b).

3.1 Reduced tooth height

It is obvious that the existence of vacuum gearing at
the pinion root has the same effect on the load distri-
bution as a reduction of the addendum on the wheel



Meccanica (2013) 48:527–543 533

(a) (b)

(c)

Fig. 7 Vacuum gearing transmissions: (a) inverse unitary potential by numerical integration of the equations of elasticity; (b) inverse
unitary potential by truncated approximate cosine function; (c) load sharing ratio

tooth, as shown in Fig. 6. The integrals (2) are ex-
actly the same, and the domain of contact is exactly
the same too. Consequently, both for vacuum gear-
ing at pinion root or reduced addendum on the wheel,
the inverse unitary potential, represented in Figs. 7(a)
and 7(b), is described by:

v(ξ) = cos
[
b′

0

(
ξ − ξ ′

m

)]
for ξinn ≤ ξ ≤ ξinn + εα

v(ξ) = 0

for ξ < ξinn or ξ > ξinn + εα

(18)

where:

ξ ′
m = ξ ′

inn + ε′
α

2

b′
0 =

[
1

2

(
1 + ε′

α

2

)2

− 1

]−1/2

ε′
α = εα + (	εα)inn = εα + (

ξinn − ξ ′
inn

)
(19)

ε′
α is the fictitious transverse contact ratio, and corre-

sponds to the fictitious standard gear pair with non-
reduced effective addendum.

For spur gears, the load sharing ratio for reduced
effective addendum on the wheel is represented in
Fig. 7(c). Its values can be computed from Eqs. (9),
(18) and (19), but good approximations can be also
obtained from:

R(ξ) = 1

3

(
1 + ξ − ξ ′

inn

ε′
α − 1

)

for ξinn ≤ ξ ≤ ξinn + εα − 1

R(ξ) = 1

for ξinn + εα − 1 ≤ ξ ≤ ξinn + 1

R(ξ) = 1

3

(
1 + ξ ′

inn + ε′
α − ξ

ε′
a − 1

)

for ξinn + 1 ≤ ξ ≤ ξinn + εα

(20)
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(a) (b)

Fig. 8 Reduced effective addendum on pinion: (a) inverse unitary potential; (b) load sharing ratio

For helical gears, the load per unit of length may

be computed form Eqs. (12), (13), (18) and (19).

As for standard gears, function Iv(ξ0) takes different

shapes depending on whether the sum of the frac-

tional parts of both transverse and axial contact ra-

tios is less than 1 or not, and its graphic representa-

tions are equal to those in Fig. 5. Another equation for

Iv(ξ0) more explicit than Eq. (13) for gears with re-

duced effective addendum on the wheel can be found

in [21].

Equation (18) remains valid for reduced effective

addendum on the pinion, but in this case, according to

Fig. 8(a):

ξ ′
m = ξinn + ε′

α

2

b′
0 =

[
1

2

(
1 + ε′

α

2

)2

− 1

]−1/2

ε′
α = εα + (	εα)out = εα + (

ξ ′
out − ξout

)
(21)

where ξ ′
out is the profile parameter of the fictitious

outer point of contact of the pinion (corresponding to

the non-reduced outer point of the pinion profile) and

ξout the profile parameter of the actual outer point of

contact of the pinion (considering addendum reduction

or vacuum gearing at wheel tooth root).

For spur gears, the load sharing ratio for reduced ef-

fective addendum on the pinion can be computed from

Eqs. (9), (18) and (21). Also in this case, a good ap-

proximation can be obtained from:

R(ξ) = 1

3

(
1 + ξ − ξinn

ε′
α − 1

)

for ξinn ≤ ξ ≤ ξinn + εα − 1

R(ξ) = 1

for ξinn + εα − 1 ≤ ξ ≤ ξinn + 1

R(ξ) = 1

3

(
1 + ξinn + ε′

α − ξ

ε′
a − 1

)

for ξinn + 1 ≤ ξ ≤ ξinn + εα

(22)

Figure 8(b) represents the load sharing ratio for re-
duced effective addendum on the pinion.

Once again, for helical gears, the load per unit of
length may be computed form Eqs. (12), (13), (18)
and (21), and function Iv(ξ0) takes the same different
shapes depending on whether the sum of the fractional
parts of both transverse and axial contact ratios is less
than 1 or not.

The same approach can be used for reduced effec-
tive addendum in both gears, even for different reduc-
tions on pinion and wheel. According to Fig. 9(a), the
inverse unitary potential will be given by Eq. (18),
with:

ξ ′
m = ξ ′

inn + ε′
α

2

b′
0 =

[
1

2

(
1 + ε′

α

2

)2

− 1

]−1/2

ε′
α = εα + (	εα)inn + (	εα)out

= εα + (
ξinn − ξ ′

inn

) + (
ξ ′
out − ξout

)
(23)

The load sharing ratio for spur gears will be:
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(a) (b)

Fig. 9 Reduced effective addendum on pinion and wheel: (a) inverse unitary potential; (b) load sharing ratio

R(ξ) = 1

3

(
1 + ξ − ξ ′

inn

ε′
α − 1

)

for ξinn ≤ ξ ≤ ξinn + εα − 1

R(ξ) = 1

for ξinn + εα − 1 ≤ ξ ≤ ξinn + 1

R(ξ) = 1

3

(
1 + ξ ′

inn + ε′
α − ξ

ε′
a − 1

)

for ξinn + 1 ≤ ξ ≤ ξinn + εα

(24)

while for helical gears, the load per unit of length may
be computed form Eqs. (12), (13), (18) and (23), as
in the previous cases. Function R(ξ) has been repre-
sented in Fig. 9(b).

Reduced dedendum on pinion or wheel has very
small influence on the load distribution, as well as the
influence of the tool tip radius is very small too. This is
due to dedendum modifications have no influence nei-
ther on the inner point of contact parameter ξinn nor
on the transverse contact ratio εα . Obviously, the in-
terference restriction should be regarded.

3.2 Enlarged tooth height

Enlarged addendum can be also taken into account in
a similar way. Equations (18) and (23) remain valid,
with the only difference that (	εα)inn and (	εα)out

are now negative, as seen in Figs. 6 and 10. Of course,
Eq. (24) for spur gears and Eqs. (12) and (13) for heli-
cal gears, remain valid too.

Similarly, gear pairs with enlarged addendum in
one gear and reduced addendum in the other gear can
be studied with the same equations, considering one
(	εα) positive, and negative the other one. Figure 11

Fig. 10 Inverse unitary potential for enlarged effective adden-
dum on pinion and wheel

Fig. 11 Load sharing ratio for enlarged addendum on pinion
and reduced addendum on wheel

shows the load sharing ratio of a spur gear pair with
enlarged addendum on the pinion and reduced deden-
dum on the wheel.
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(a) (b)

Fig. 12 Increased operating center distance: (a) inverse unitary potential; (b) load sharing ratio

3.3 Center distance modifications

To keep the radial clearance for non-standard center
distance, the outside radii should be computed from:

ro1 = C − rp2 − mnx2 + mnha

ro2 = C − rp1 − mnx1 + mnha

(25)

where ro is the outside radius, C the operating cen-
ter distance, rp the standard pitch radius, x the rack
shift coefficient and ha the addendum coefficient. With
these outside radii, the center distance has a slight in-
fluence on the transverse contact ratio, and Eqs. (14)
and (15)—also Eq. (17) for spur gears—are valid if ha

is equal to 1.
Nevertheless, center distance modifications have

strong influence on the transverse contact ratio if the
outside radii are kept unalterable. In this case, these
variations of the transverse contact ratio have influence
on the load distribution in a similar way as tooth height
modifications have.

An increase on the center distance means a de-
crease on the transverse contact ratio, which will be
denoted by (	εα)c. Since each addendum circles are
moved away from the root circle of the mating gear,
the effect of the increase on the center distance is
equivalent to a reduction on both addendum circles.
Consequently, the curve of the inverse unitary poten-
tial v(ξ) should be truncated at both sides an amount
of 0.5 · (	εα)c . However, the profile parameter of the
outer point of the pinion ξo does not change, because
it depends on the outside radius but not on the cen-
ter distance, as shown in Eq. (3). So that, the function
v(ξ) should be shifted to the right the same amount

of 0.5·(	εα)c, to get its final form as represented in
Fig. 12(a). According to this, the inverse unitary po-
tential will be described once again by:

v(ξ) = cos
[
b′

0(ξ − ξm)
]

for ξinn ≤ ξ ≤ ξinn + εα

v(ξ) = 0

for ξ < ξinn or ξ > ξinn + εα

(26)

with:

ξm = ξinn + εα

2

b′
0 =

[
1

2

(
1 + ε′

α

2

)2

− 1

]−1/2

ε′
α = εα + (	εα)c

(27)

For spur gears, the load sharing ratio is given by:

R(ξ) = 1

3

(
1 + ξ − ξinn + 0.5(	εα)c

ε′
α − 1

)

for ξinn ≤ ξ ≤ ξinn + εα − 1

R(ξ) = 1

for ξinn + εα − 1 ≤ ξ ≤ ξinn + 1

R(ξ) = 1

3

(
1 + ξ ′

inn + εα + 0.5(	εα)c − ξ

ε′
a − 1

)

for ξinn + 1 ≤ ξ ≤ ξinn + εα

(28)

which has been represented in Fig. 12(b). For helical
gears, the load per unit of length can be computed from
Eqs. (12), (13), (26) and (27).

Obviously, Eqs. (26), (27) and (28) are also valid
for decreased center distance by taking negative values
of the variation of the transverse contact ratio (	εα)c .
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4 Accuracy of the method

To check the accuracy of the above equations a set of
studies has been carried out. Each study includes 20
different cases corresponding to the combination of 5
values of the pressure angle αn (17, 19, 21, 23 and
25 deg) with 4 values of the gear ratio u (1.1, 2, 3
and 4). The number of teeth on pinion is different for
each pressure angle (30 teeth for 17 and 19 deg pres-
sure angle, 25 teeth for 21 deg, 20 teeth for 23 deg and
18 teeth for 25 deg), while the helix angle β and the
rack shift coefficients x1 and x2 are all kept constant
and equal to 0.

For every one of the 20 cases of each study, func-
tions v(ξ) and R(ξ) computed by numerical integra-
tion of the equations of the elasticity have been com-
pared with the same functions computed from the
equations presented in Sect. 3. As normalized values
of v(ξ) have been used (vmax = 1) errors at points
close to the midpoint of the interval of contact will
be necessarily small, while errors at the limits of the
interval of contact, ξinn and ξout = ξinn + εα , will be
more significant. Table 1 presents, for each study, the
maximum relative error in the estimation of v(ξ) at
the limits of the interval of contact (corresponding to
the 20 cases of the considered study) as well as the
absolute maximum in the whole interval (the greater
maximum error of the 20 cases). The location of the
absolute maximum error in the interval of contact is
also given and described by:

δ = ξ − ξinn

ξout − ξinn

(29)

The adjusted R2-factor has been also computed for the
20 cases of each study; Table 1 presents the best one
and the worst. In all the cases, the data (pressure an-
gle and gear ratio) corresponding to each maximum or
minimum, are given.

Table 1 also presents the maximum relative error
in the estimation of R(ξ) at the limits of the interval
of contact, as well as the absolute maximum error and
its location in the contact interval. The load sharing
ratio, for spur gears with contact ratio between 1 and
2, is equal to 1 along the interval of one pair tooth
contact, at the middle of the interval of contact, so the
maximum relative error in the estimation of R(ξ) will
be located in or close to the contact interval limits. The
best and the worst R2-factors are also presented.

Study_0 is a reference study developed with stan-
dard transmissions, with addendum coefficient ha =

1.00, tool addendum coefficient ha0 = 1.25 and cen-
ter distance C = rp1 + rp2. This study does not pro-
vide new results with respect to the results presented
in [17] and [18], but it has been carried out with the
same 20 transmissions in order to compare the range
of deviations.

As seen in Table 1, the maximum error in the
estimation of the inverse unitary potential v(ξ) was
7.25 %, and it was obtained for the case with mini-
mum pressure angle (αn = 17°) and maximum gear
ratio (u = 4). This is also the case providing the worse
fit between the numerically computed function and the
approximate equation of v(ξ); however, the obtained
R2 factor of 0.9820 is good enough for calculations.
The best fit was obtained for maximum pressure angle
(αn = 25°) and minimum gear ratio (u = 1.1), with
R2 factor of 0.9995. Numerical and analytical func-
tions of v(ξ) for both best-fit and worst-fit cases have
been represented in Fig. 13.

Even better results are obtained in the estimation of
the load sharing ratio R(ξ). The maximum error was
4.40 % and was obtained for the same case of max-
imum error in v(ξ) but at a different contact point
(δ = 0.12 instead of 0.18). Smallest R2 factor was
also obtained for this case, but its value increased to
0.9910. Highest R2 factor corresponded to the same
case for v(ξ), but its value increased in this case up to
0.9999. Figure 14 represents the numerical and the an-
alytical functions of R(ξ) for these cases of maximum
and minimum R2 factor.

Study_1a and Study_1b consider reduced tooth
height on pinion, a 10 % reduction in the first one
(ha1 = 0.9) and a 20 % (ha1 = 0.8) in the second. As
shown in Table 1, variations of the maximum error of
v(ξ) are not significant. Variations of maximum error
of R(ξ) are very small as well. Moreover, errors at the
inner point of the interval of contact are even smaller,
which is expectable as divergences tend to increase as
the limit points are far from the midpoint of the inter-
val of contact. Maximum and minimum values of the
R2 factor of v(ξ) and R(ξ) curves are more or less
the same as those for standard transmissions, keeping
good enough fit levels, slightly better for the worst-fit
curve of the load sharing ratio even.

Study_1c and Study_1d, which consider 10 % and
20 % reduced addendum on wheel, show very sim-
ilar tendencies: very small variations of the maxi-
mum errors of v(ξ) and R(ξ)—around 7.25 % and
4.4 %, respectively—and similar values of the R2 fac-
tor, higher than 0.99 for all the cases. Errors decrease
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(a) (b)

Fig. 13 Fit between numerical (dashed) and analytical (solid) functions of v(ξ): (a) best fit; (b) worst fit

(a) (b)

Fig. 14 Numerical (dashed) and analytical (solid) functions of R(ξ): (a) best fit; (b) worst fit

at one of the limits of the interval of contact, but in
this case the opposite limit: the inner point of contact
of the pinion.

Several cases have been considered with enlarged
addendum: on pinion (Study_2a and Study_2b), on
wheel (Study_2c and Study_2d) and on both gears
(Study_2e). In these cases, as curves are extended in
the extremes, far from the midpoint of the interval of
contact, errors increase a little. For enlarged addendum
on pinion error increases at the outer point of contact;
for enlarged addendum on wheel error increases at the
inner point of contact; for enlarged addendum on pin-
ion and wheel error increases at both limits of the in-

terval, as shown in Table 1. Maximum errors also in-
crease because points of maximum error are shifted to
the limits of the interval; however error levels remain
low enough, in particular for the load sharing ratio.
R2 factor keeps values between 0.9826 and 0.9995 for
the inverse unitary potential v(ξ) and between 0.9875
and 0,9999 for the load sharing ratio R(ξ).

Study_3a and Study_3b show how the tooth deden-
dum has very small influence on the load sharing ratio,
though its influence on the inverse unitary potential is
slightly greater.

Finally, Study_4 shows the influence of center dis-
tance modifications. In this case, as the center distance
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is enlarged, meaning a reduction of the effective con-
tact ratio, errors at the limits or the interval of contact
are smaller, while maximum errors are more or less
the same as those for standard center distance.

Example An example may illustrate the load calcula-
tion of non-standard gears. Consider a non-standard
spur gear pair with the following geometrical parame-
ters:

• Number of teeth on pinion: 16
• Gear ratio: 1.5
• Pressure angle: 19 deg
• Rack shift coefficient: 0 (both on pinion and wheel)
• Dedendum coefficient: 1.25
• Addendum coefficient: 1.1
• Operating center distance: rp1 + rp2 + 0.1mn

The corresponding standard spur gear pair will have
the same geometrical parameters, except de adden-
dum coefficient (1.0) and the operating center dis-
tance (rp1 + rp2).

Neglecting possible vacuum gearing effects, the fic-
titious transverse contact ratio of this standard gear is
ε′
α = 1.5859, and the fictitious inner point of contact,

is described by ξ ′
inn = 0.0559. From these values, the

middle and the outer point of the contact interval are
described by:

ξ ′
m = ξ ′

inn + ε′
α

2
= 0.8489

ξ ′
out = ξ ′

inn + ε′
α = 1.6418

(30)

while the coefficient b′
0 is given by:

b′
0 =

[
1

2

(
1 + ε′

α

2

)2

− 1

]−1/2

= 1.2832 (31)

The increase of the operating center distance results in
a reduction of the fictitious contact ratio of an amount
of (	εα)c = 0.1013. The new values of the profile pa-
rameters of the inner and middle points of the interval
of contact will be:

ξ ′′
inn = ξ ′

inn + (	εα)c = 0.1572

ξ ′′
m = ξ ′

m + (	εα)c

2
= 0.8996

(32)

The increase of the pinion addendum increases the
transverse contact ratio of an amount of 0.0613, or
what is the same, the reduction of the contact ratio is
(	εα)out = −0.0613. The new outer point of contact
is described by:

ξout = ξ ′
out − (	εα)out = 1.7031 (33)

The increase of the wheel addendum produces vacuum
gearing at the pinion root, so the inner point of con-
tact will be coincident with the start of involute, which
in this case is described by ξinn = 0.1113 [26]. The
variation of the transverse contact ratio is described
by (	εα)inn = −0.0459.

Summarizing the above results, the inverse unitary
potential of the studied non-standard spur gear will be
given by:

v(ξ) = cos
[
b′

0

(
ξ − ξ ′′

m

)]
for ξinn ≤ ξ ≤ ξinn + εα

v(ξ) = 0

for ξ < ξinn or ξ > ξinn + εα

(34)

Here, according to the calculations above, b′
0 =

1.12832, ξ ′′
m = 0.8996, ξinn = 0.1113 and the effec-

tive transverse contact ratio is:

εα = ε′
α − (	εα)c − (	εα)inn − (	εα)out

= 1.5918 (35)

The load sharing ratio can be easily computed with
Eqs. (9) and (34).

The inverse unitary potential and the load sharing
ratio have been also computed by numerical integra-
tion of Eqs. (2). Results are shown in Fig. 15. It can
be observed the very good fit between the numerical
calculations and the presented model. The maximum
relative error in the estimation of the inverse unitary
potential v(ξ) is 2.64 % (located at ξ = 0.1733), and
the R2-factor is 0.9975. For the load sharing ratio R(ξ)

the maximum relative error is 1.56 % (located at the
inner point of contact) while de R2-factor grows up to
0.9999.

5 Comparison with ISO rating method

Reference [20] presents a complete study on the dis-
crepancies between the ISO rating methods and calcu-
lations based on the new model of load distribution of
Minimum Elastic Potential (MEP). As ISO [3, 4] ne-
glects the load distribution and use some influence co-
efficients to correct the simplified calculations based
on an even load distribution along the line of con-
tact, comparisons were made throughout the values of
the critical contact stress. The results of this compar-
ative study for spur gears can be summarized as fol-
lows [20]:
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(a) (b)

Fig. 15 Comparison between numerical (dashed) and analytical (solid) calculations of the example: (a) inverse unitary potential;
(b) load sharing ratio

• The critical contact stress is usually located at the
inner point of single pair tooth contact, both for ISO
and MEP methods. However, results are not identi-
cal due to the virtual face with (or the contact ra-
tio factor [3]) considered by ISO. Discrepancies de-
pend on the values of the transverse contact ratio,
but typically the ISO contact stress is around 10 %
smaller than MEP contact stress.

• For small values of the pinion tooth number, the
MEP critical contact stress may be located at the
inner point of contact, while the ISO one remains at
the inner point of single pair tooth contact. In this
case, discrepancies increase up to 35 %, for gear ra-
tio greater than 3.

All these conclusions have been obtained by studying
spur gears with standard tooth proportions and stan-
dard center distances. ISO calculation methods may
not fit accurately to non-standard tooth height or cen-
ter distance. However, the same rating method can be
adapted to non-standard dimensions by considering
four possible determinant contact points: both limits of
the interval of contact and both limits of the interval of
single pair tooth contact (instead of the inner point of
contact and the inner point of single pair tooth contact,
exclusively [3]). From this assumption, the discrepan-
cies between the ISO rating method and the MEP cal-
culations for non-standard gear dimensions are similar
to those for standard gear dimensions, except for criti-
cal contact stress located at different contact points, in
which discrepancies are not higher than 20 %, much

smaller than 35 % corresponding with standard gears.
A new example may be illustrative.

Example One of the gears considered in Study_1c
was:

• Number of teeth on pinion: 25
• Gear ratio: 2.0
• Pressure angle: 25 deg
• Rack shift coefficient: 0 (both on pinion and wheel)
• Dedendum coefficient: 1.25
• Pinion addendum coefficient: 1.0
• Wheel addendum coefficient: 0.9
• Operating center distance: rp1 + rp2

The values of the fictitious contact ratio and the actual
contact ratio are:

ε′
α = 1.6385

εα = 1.5605
(36)

while the values of the profile parameter of the ficti-
tious and actual inner point of contact are:

ξ ′
inn = 0.6756

ξinn = 0.7536
(37)

According to Eq. (19),

ξ ′
m = ξ ′

inn + ε′
α

2
= 1.4769

b′
0 =

[
1

2

(
1 + ε′

α

2

)2

− 1

]−1/2

= 1.2358
(38)
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Fig. 16 Comparison between ISO and MEP critical contact
stresses

And finally, from Eq. (20), the load sharing ratio is
given by:

R(ξ) = −0.0194 + 0.5221ξ

for 0.7536 ≤ ξ ≤ 1.3114

R(ξ) = 1

for 1.3114 ≤ ξ ≤ 1.7536

R(ξ) = 1.5414 − 0.5221ξ

for 1.7536 ≤ ξ ≤ 2.3114

(39)

From this load distribution, the critical contact stress
provided by MEP method is 8.86 % greater than ISO
nominal contact stress, both of them computed as de-
scribed in [3] and [20]. In this case, both methods lo-
cate the critical contact stress at the inner point of sin-
gle pair tooth contact.

Figure 16 presents the discrepancies ISO and MEP
critical contact stresses for all the cases of all the stud-
ies presented in Table 1. Black points represent the
cases in which ISO and MEP critical stresses are both
located at the inner point of single pair tooth contact.
In these cases, discrepancies arise due to the ISO con-
tact ratio factor [3], and depend on the value of the
contact ratio, exclusively. Grey points represent all the
other cases, in which the source of the discrepancies
is not only the contact ratio factor but also the differ-
ent critical point—and relative curvature radius—and
the different fraction of the load considered by each
method.

6 Conclusions

In this paper, a non-uniform model of load distribu-
tion along the line of contact of standard spur and heli-
cal gears, obtained from the minimum elastic potential
criterion, has been enhanced to fit with the meshing
conditions of non-standard cylindrical gear pairs, with
non-standard values of the tooth height or the center
distance, or the presence of undercut at the pinion root.
The same analytical formulation of the initial model,
based on an approximate equation for the inverse uni-
tary potential, may be used for the non-standard gears
by considering appropriate values of the contact ratio
and the limits of the interval of contact.

For non-standard tooth height the expression of the
inverse unitary potential for the standard height remain
valid, except the limits of the interval, according to the
new values of the inner and outer points of contact.
This means that the curve is the same, with the same
equation, but truncated or enlarged at one or both ex-
tremes. The presence of vacuum gearing at the pin-
ion root can be considered as a reduction of the wheel
tooth height, which means the inverse unitary potential
should be truncated at the left side.

For non-standard center distance the equation is
also the same as that for standard center distance, but
in this case the curve should be truncated (or enlarged)
at both sides the same amount, and shifted to ensure
the upper limit of the interval of contact keeps its ini-
tial value, because the outer point of contact of the pin-
ion does not change.

Developed studies of accuracy reveal that approxi-
mate analytical equation of the inverse unitary poten-
tial fits very well with values obtained by numerical
calculation, also for non-standard gears considered in
this work. Typical values of the adjusted R2-factor are
higher than 0.99 and higher than 0.999 in more than
50 % of the studied cases, but errors are even smaller
for the load sharing ratio: adjusted R2-factor grows up
to 0.999 for more than 75 % of the studied cases, and
is always greater than 0.987. Discrepancies with ISO
rating method are similar to those for standard gears:
MEP contact stress is around 10 % greater than ISO
one, both for critical contact stress located at the same
contact point or not.
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