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Abstract The ability to numerically simulate the ef-
fects of different loading conditions on the strength
adaptation of a bone can be a valuable tool in un-
derstanding the relationship between the strength of a
bone and its mechanical environment. Because signif-
icant strength changes may result from alterations in
the profile of the surface of cortical bone, many com-
putational models of bone strength adaptation have
been developed to predict load-induced shape modi-
fications. To gain insight into the effects of the mod-
eling methods used for these predictions, the result-
ing changes to the surface profile of an initially circu-
lar cylinder were compared for a number of computa-
tional modeling methods. Models based on strain ten-
sor, von Mises stress, and strain energy density were
examined under various loading conditions including
axial, bending, torsional, and surface forces as well as
combinations of these basic loading modes. The dif-
ferences between the use of a singular reference value
and the use of a range of reference values to drive
the magnitude of the local shape changes were inves-
tigated. Trends in the strain distributions were ana-
lyzed. The comparisons performed indicated that, de-
spite the high sensitivity to the values of the model pa-
rameters used under the applied loading modes, with
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the proper selection of these parameters, the diverse
methods studied yielded quite similar predictions of
the bone’s shape changes, and thus, strength adapta-
tions.

Keywords Cortical bone · Strength adaptation ·
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List of symbols

Vectors
�Fi Dimensionless force vector at node i in

“spring-based” smoothing method,
Eq. (2a)

�xi Location of node i, Eq. (2b)
��xi Displacement at node i in spring

smoothing method, Eq. (2a)
��xj Displacement at node j in spring

smoothing method, Eq. (2a)
kij Effective spring constant for element edge

connecting nodes i and j in spring
smoothing method. Dimensions of 1/[L],
Eq. (2a)

Scalars
dij Distance between nodes i and j , Eq. (4)
diff i Difference between strain at node i and

reference strain for node i, Eq. (3a)
DINFL Characteristic distance between nodes

over which the effect of the growth at one
node on the growth at other nodes is
scaled by 1/e, Eq. (4)
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Gi Growth at node i, Eq. (3a)
NW Circumferential smoothing weighting

factor, Eq. (4)
Waxial Axial smoothing weighting factor, Eq. (6)
Wrate Rate factor that scales the growth per load

application iteration, Eq. (3a)
i, j, k, n indices

Greek
εi(n) nth strain tensor component for node i.

Strain tensor defined as engineering strain
transformed into the local cylindrical
coordinates for each node i

εref max(n) Max value of reference range for nth
strain tensor component

εref min(n) Min value of reference range for nth
strain tensor component

σ iAVG
VM Numerical average of the nodal von Mises

stresses of the nodes located on the same
surface (inner or outer) as node i that have
the same local z-coordinate as node i,
Eq. (6)

σmidAVG
VM Numerical average of the nodal von Mises

stresses of nodes located on same surface
as node i (inner or outer) and at the
midplane (local z-coordinate of this set of
nodes = local zmax − local zmin) of the
cylindrical geometry studied, Eq. (6)

1 Introduction

As a living tissue, bone has the ability to adapt its
strength to suit its mechanical environment. This is
done through modifications of both its intensive and
extensive properties. Intensive property changes in a
bone are related to the mineral content of the mate-
rial comprising the bone or “bone density”. Extensive
property changes are related to alterations in the bone
geometry: the size or shape of the overall volume of
the bone.

While these changes occur in all types of bones,
the adaptations in long bones are of significant impor-
tance, as long bones support the largest forces and are
key to most activities. In adults, the adaptation of the
extensive properties of long bones occurs through ac-
cretion or removal of material on the periosteal (outer)
and endosteal (inner) surfaces of the diaphyseal (mid-
shaft) region of cortical tissue located near the surface

of the bones. Adaptation of the intensive properties oc-
curs mainly through modifications in the concentration
of the minerals that are stored in the cancellous bone
tissue at the interior of the ends of long bones [1].

Both intensive and extensive property modifica-
tions in a bone can impact its mechanical strength
through changes in material properties and shape, re-
spectively. However, strength of materials relations
show that modifications to the cross-sectional shape
have the potential to result in larger improvements in
the mechanical strength of the region of change than
an equal amount of change in material density at this
local region. This concept is employed naturally by
living tissues, including bone, when strength modifi-
cations are necessary. For example, a fracture callus,
which is a large bulbous structure made of a weaker
material than standard cortical bone tissue, quickly
forms around the outer surface of a broken region of
bone, increasing the local cross-sectional area. This
fracture callus stabilizes the fracture while the more
intensive long-term fracture healing and remineraliza-
tion processes occur [1]. Additionally, the inner and
outer diameters of the long bones in the diaphyseal
region naturally increase to improve the regional me-
chanical strength, countering the typical loss of mate-
rial strength associated with decreased bone mineral-
ization, and thus density, that occurs with age [2].

While changes in intensive material properties in
local bone density are chemically motivated transient
phenomena that are related to the bone’s role as a
reservoir for minerals that are used by a number of
other systems [1, 3], the extensive property (geomet-
ric) changes in the local shape may result in more
substantial and stable changes in bone strength. Thus,
the ability to predict the extensive property (shape)
changes in long bones as a function of local loading
conditions can be a valuable tool in improving the
understanding of bone strength adaptation. Computa-
tional methods offer the additional advantage of allow-
ing for more quantitative comparisons of the effects of
environmental parameters under more controlled con-
ditions with greater efficiency than experimental or
clinical studies.

The goal of this work is to examine the effects
of the method of modeling cortical bone adaptation
on the prediction of changes to the shape of an ini-
tially circular three-dimensional cylinder under vari-
ous basic axial, bending and torsional loading modes
and combinations of these modes. Because strength
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changes are directly related to shape changes, this will
lead to the development of a computational modeling
technique that may be used to directly compare the ef-
fects of different loading conditions on the changes in
the strength of a long bone.

2 Related work

Numerous computational models have been developed
over the past forty years to predict the shape changes in
long bones as a result of alterations in the mechanical
environment.

Most of these computational models share a fun-
damental simulation method [4–11] which follows the
general format of:

Growthi ∝ (Measurei − Measurereference) (1)

In these methods, measures of the local mechani-
cal state are calculated either through finite element or
boundary element methods. These local measures are
a function of the stress and/or strain at surface nodes,
elements, or keypoints. The local measures are then
compared to reference values. These reference val-
ues can be local, regional or global and represent a
“steady state” or “equilibrium state” at which no shape
changes occur. The reference values are related to the
“typical” loading conditions encountered by the bone.
To simulate the bone material apposition or resorption,
the locations of the local points in the computational
model defining the boundary surfaces are then moved
in proportion to the difference between the local mea-
sure and the reference value. This process is repeated
until convergence or another like goal is attained. Be-
cause bone adaptation in adults is considered in this
study, only cross-sectional shape changes, and no lon-
gitudinal or axial changes, are considered.

The differences in modeling methods are mainly re-
lated to the choice of the local measure used to drive
the adaptation simulation. These local measures are
used to describe the local mechanical state on the sur-
face of the geometry of interest. Some modeling meth-
ods are based on the stress or strain tensors [4, 12–15]
or their gradients [16, 17]. These methods allow for
the separation of the effects of individual tensor com-
ponents (normal and shear) and can account for the
effects of loading direction. Therefore, each compo-
nent of the stress or strain tensor may have a different
effect on the local shape changes through the selec-
tion of individual model parameters. Other modeling

methods consider the combined effects of these tensor
components through the use of averaged stress and/or
strain measures. These models are driven by measures
such as strain energy density (SED), von Mises stress,
principal strains or stresses or gradients of these values
[7, 8, 11, 18, 19]. While these methods cannot control
the growth effects separately for each individual tensor
component, they are often easier to implement because
they eliminate both the need to track directionality and
the need to determine reference values for each tensor
component, since averaged values can be more readily
estimated.

Despite the abundance of models developed, their
application to the study of actual systems has been lim-
ited. Some model validations to experimental results
have been published [5, 9, 10, 20, 21]. Additionally,
studies have been performed to explore the effects of
variations in model parameters such as the specified
reference values and growth rates [5, 7, 13, 14, 20, 22].
Few, however, have proceeded to apply these models
to study or compare the effects of specific loading con-
ditions.

The present work will analyze the effects of two
basic features common to these computational bone
shape adaptation methods: the description of the mea-
sure reference driving the amount of change and the
choice of the driving measure itself, on the predic-
tion of the shape changes under various loading con-
ditions. Shape changes considered in this model will
only consider the cortical region of the mid-shaft of a
long bone.

In the first phase of this study, comparisons will
be made between the use of a singular point refer-
ence value and a reference that spans a range of val-
ues. A simple hollow cylindrical volume, as shown
in Fig. 1, will be used to carry out the study with an
applied bending load. For the single point reference
value, there is a single threshold value above which
local material accretion is simulated and below which
local material removal is simulated [11, 12]. If the lo-
cal measure is equal to the threshold value, no changes
occur. When the reference spans a range of values,
no changes occur while the local driving measure is
within this reference range. Material removal (decay)
occurs only when the measure is less than the lower
limit of this range and accretion (growth) occurs only
when the local measure is greater than the upper limit
of this reference range. The range of reference values
has been called a “Lazy Zone” or “Equilibrium Zone”
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Fig. 1 Geometry and loading cases studied: (a) Axial,
(b) Bending, (c) Torque, (d) Axial + bending, (e) Axial + bend-
ing + torque, (f) Bending + torque + surface force

and has been used in previously developed models to
represent the range of loading conditions that occur
during activities of daily living [8, 23, 24]. As a re-
sult, in these reference range-type models, the thresh-
old value that triggers regional material removal or de-
cay is different from the one that triggers the regional
addition of bone material or growth.

In the second phase of this study, the influence
of the driving measure is analyzed. A strain tensor
based driver measure [12–14] is used in the devel-

oped model and comparisons are made to published
results for models using various reference measures
and reference types. The system in these investiga-
tions is an initially circular three-dimensional cylin-
der under axial, bending, torsional, and surface loads
as well as combinations of these basic loading modes.
The resulting changes to this geometry under the stud-
ied loads are compared to published changes of a three
dimensional geometry using a von Mises stress based
model with a point reference value [11] and of a two-
dimensional geometry using a strain energy density
based model with a reference spanning a range of
values [23]. While these reference publications depict
the effect of loading mode on bone growth using von
Mises stress and strain energy density based models
respectively, little similar published data was found
for a strain tensor based growth driver model. Thus,
such a model was developed in this current study as
a means to compare the three basic driver measures
used in many cortical bone adaptation models. Com-
parisons of the resulting geometries are also made to
published representations of typical cross sectional ge-
ometries of actual bones [25, 26].

The insight gained through these two phases of
study will allow for a better understanding of the ef-
fects of the selection of modeling methods and param-
eters on the prediction of the shape adaptation as well
as the effects of basic loading modes on the strength
changes of the cortical mid-shaft region of long bones.

3 Methods

To carry out these investigations, a finite element anal-
ysis method was implemented. All analyses were per-
formed using ANSYS 11.0 [27]. User defined sub-
routines were written in Fortran to apply the shape
adaptation model and to perform node smoothing as
the shape is altered. The application of the model pa-
rameters, the execution of the analyses, and the con-
trol of the iterative load application and analyses were
handled through the creation of an executable script
written in the ANSYS Parametric Design Language
(APDL). The application of the load, solution of the
static finite element analysis, adaptation of the bound-
ary surface shape, and subsequent node smoothing
were performed iteratively for a prescribed number of
cycles or until a convergence measure was achieved.
Details are provided below.
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3.1 Geometry and basic finite element model

A three-dimensional initially circular hollow cylinder
was created with an inner diameter of 15 mm, an outer
diameter of 30 mm, and a length of 160 mm (Fig. 1).
It was assigned linear elastic isotropic material proper-
ties with an elastic modulus of 20 GPa and a Poisson’s
ratio of 0.3. The geometry was meshed with 8-node
hexahedral elements. This allowed for the creation of
a regular mesh with a uniform radial, circumferential
and axial element sizes throughout the geometry. No
midside nodes were used so that the inner and outer
radial surfaces could be moved freely, solely by chang-
ing the positions of the corner nodes. As with the ge-
ometric dimensions and material properties, the ele-
ment sizes were chosen based on the published arti-
cles used for comparison [11, 23]. By eliminating the
variations between geometry, material properties and
mesh among the models compared, the effects of the
shape adaptation model used can be more easily iden-
tified.

Figure 1 shows the initial meshed hollow cylindri-
cal geometry used for this study and the loading condi-
tions investigated. The element sizes used match those
in [11]. The bottom surface (Z = 0 m) was completely
constrained in all degrees of freedom. All other sur-
faces were free. The loads were applied to the top
surface (Z = 0.160 m) through the use of surface el-
ements or a contacting centroidally located pilot node.
For the case with the applied surface forces, simulat-
ing the pull of a muscle on the bone, forces were dis-
tributed over small regions on the outer surface of the
cylindrical geometry that were sized to represent ten-
don attachment areas. A simple circular cylindrical ge-
ometry was chosen as the initial shape in these studies
because it allowed for ease of comparison and because
this simplification is widely used to represent the mid-
shaft region of long bones [11, 23, 28–30].

The shape adaptations resulting from the local load-
ing conditions were simulated through the movement
of the inner and outer surface nodes in a local ra-
dial direction (normal to the surface at each node). To
maintain the integrity of the mesh, two types of nodal
smoothing were devised. The first type of smoothing
was of the nodes on the interior of the volume of the
geometry. The interior smoothing was done to main-
tain consistent element sizes between the interior ele-
ments and the exterior elements, where growth or de-
cay occurs, in order to prevent element distortion. The

second type of smoothing was performed on the ex-
terior surface nodes. This smoothing reduces the po-
tential for element distortion in areas of high stress
concentrations and the resulting isolated areas of large
amounts of growth.

Smoothing on the boundary surface was handled in
two separate directions to distribute the local nodal
shape change effects to neighboring nodes. These
smoothing methods were incorporated directly into the
shape adaptation model at each load application itera-
tion and are further discussed in Sect. 3.2.

Interior node smoothing was performed using an
equivalent “spring-based” method [31]. In this method,
the mesh system of connected nodes is represented as a
system of connected linear springs. At the initial nodal
positions, before any surface shape adaptation occurs
for the load application iteration, the spring system is
in equilibrium. As the adaptation simulation moves the
surface nodes, dimensionless “spring forces” propor-
tional to the displacement along the imaginary springs
connected to the surface nodes are generated following
a dimensionless form of Hooke’s law. The forces are
propagated through the interior connections as shown
in Eq. (2a).

�Fi =
ni∑

j

kij (��xj − ��xi ) (2a)

where ni = number of neighboring nodes connected
to node i.

The effective spring constant is defined as:

kij = 1√
(�xi − �xj ) · (�xi − �xj )

(2b)

Thus, the effective spring constant is inversely propor-
tional to the magnitude of the pre-smoothed distance
between neighboring nodes i and j before the surface
nodes were moved by the shape adaptation model in
the given iteration.

With the displacement of the outer nodes known
from the shape adaptation model, the displacements
of the interior nodes required to create more uniform
element sizes are calculated through a system of equa-
tions patterned after force equilibrium equations for a
system of connected linear springs between connected
nodes. In this way, the interior nodes are moved in
a manner proportional to the shape adaptation model
predicted changes in the positions of the inner and
outer surface nodes, denoted ��x1 and ��xN , respec-
tively.
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Because of the regular hexahedral mesh and the as-
sumption of no axial bone growth in this model, the
shape adaptation simulation causes only local radial
changes in the positions of the surface nodes. Thus,
the movement of each surface node only affects the
interior nodes along radial lines and so the system be-
comes a one-dimensional set of springs. Thus, in ap-
plying Eq. (2a) to the mesh in this study, ni = 2 for
interior nodes and ni = 1 for surface nodes. The coef-
ficient matrix in the system of force equilibrium equa-
tions in (2a) is reduced to a simple band matrix.

Since the application of the interior node smooth-
ing method over the entire volume studied can be com-
putationally intensive, especially for finer meshes, and
because small amounts of change to surface node posi-
tions at the majority of the surface nodes typically oc-
cur with each load application iteration, this smooth-
ing was performed only once every five load applica-
tion/boundary surface shape modification iterations.

3.2 Developed shape adaptation model

While three basic model driver measures: strain tensor,
von Mises stress and strain energy density, were com-
pared in the second phase of this work, only one, the
strain tensor, was chosen for the numerical model de-
veloped in this work for the current investigation and
used in the first phase study of the effect of reference
type. This developed model will be described in detail.
Details on the other shape adaptation modeling meth-
ods used for comparison can be found in [11, 23].

The use of the nodal strain tensor component val-
ues to modify the nodal positions on the outer and in-
ner surface boundaries has been widely used [12–14].
In this type of model, the strain tensor components at
each node are found and individually compared to ref-
erence values. The individual effects of these compo-
nents are summed for each node to determine the total
amount of change in the position of that node.

Two major modifications to this basic model were
made in the current work. First, the nature of the strain
tensor component based models requires a method to
eliminate the effect of the direction of the torsional
loads on the direction of growth. (For example, be-
cause strain tensor based models compare magnitudes
as well as directions of the nodal measures to those
of selected references, a positive torque might cre-
ate growth while a negative torque might cause de-
cay. Thus, the models prediction of shape change

would artificially be affected by the arbitrary selec-
tion of the direction of torque application.) Early mod-
els handled this by squaring shear strain components,
thereby making all shear strains produce material ad-
dition/growth. This squaring also resulted in a reduc-
tion of the order of the effect of torsional loads, as
it was thought that typical torsional loads were much
smaller than typical bending loads in long bones [14].
However, because long bones, such as the femur, ac-
tually can carry a significant torsional load [32–36],
in the model developed in the current work, their im-
portance related to the amount of shape change was
weighted the same as that of normal loads. This is
shown by the use of the same order for all strain ten-
sor component comparisons in the growth model (3a).
The elimination of the effect of torsional direction was
accomplished through the use of the absolute value of
the difference between the nodal shear strain values
and shear strain reference values. The direction of the
growth was then assigned based on the comparison of
the magnitude of the nodal shear strain component to
the magnitude of the shear strain component reference.
This method allowed small torsional loads compared
to the chosen reference threshold values to produce de-
cay, just as those in the normal directions.

The basic model for growth, G, at node i used in
the developed model is shown in (3a).

Gi = Wrate

6∑

n=1

diffi (n) (3a)

where

diffi (n) = εi(n) − εref (n) (3b)

(Note: Gi > 0 → growth, Gi < 0 → decay.)
Depending on the user’s preference, Wrate can rep-

resent a particular rate of growth related to the load
application iteration at a particular location or can be
arbitrarily chosen to efficiently achieve convergence.

The term diffi (n) in (3a) is the driving mechanism
behind the shape adaptation model. The six local engi-
neering strain component values εi(n) that are used in
the six terms of the sum in Eq. (3a) allow each strain
component to have a different corresponding reference
value. The variable diffi (n) was determined from the
following constraints for cases where the minimum
and maximum threshold values of a range reference
are of the same sign.
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IF

[
[|εi(n)| > |εref max(n)|] and

[sign(εref max(n)) = sign(εi(n))]

]

diffi (n) = εi(n) − εref max(n)

resulting in a positive value for diffi (n) so that strain
component contributes to growth.

IF

[
[|εi(n)| < |εref min(n)|] and

[sign(εref min(n)) = sign(εi(n))]

]

diffi (n) = εi(n) − εref min(n)

resulting in a negative value for diffi (n) so that strain
component contributes to decay.

IF
[∣∣εref min(n)

∣∣ ≤ ∣∣εi(n)
∣∣ ≤ ∣∣εref max(n)

∣∣]

diffi (n) = 0.0

resulting in neither growth or decay.
Similar logic would follow to determine expres-

sions for diffi (n) if the minimum and maximum
threshold values of the reference range are of differ-
ent signs. Likewise, the computations needed to find
diffi (n) can be reduced if the minimum and maximum
reference threshold values are equal, resulting in a sin-
gular point reference, as was done in Phase 1 of this
study.

The second major modification to the basic strain
tensor based model involves the inclusion of surface
smoothing. Surface node smoothing was added di-
rectly within the basic model described in (3a) through
the inclusion of two weighting factors so that the
calculated local nodal growth at each load applica-
tion iteration was directly related to the growth at
surrounding nodes, allowing for more gradual transi-
tions in amounts of growth between regions of vary-
ing strain. Two surface node smoothing methods were
employed: circumferential smoothing and longitudinal
(axial) smoothing. The development and implementa-
tion of each is now described in detail.

The circumferential surface nodal smoothing meth-
od simulated the communication between mechanore-
ceptor cells in the cortical bone and was based on a
model developed for a similar communication in can-
cellous bone [37]. These cells communicate through
fixed channels (cannaliculi) in the bone material. In
this model, the changes at each node affect the changes
at nearby nodes by an exponentially decreasing re-
lation to the distance between the nodes. Thus, the
growth at a node is the sum of the effects of all other

nodes multiplied by a weighting factor, NWj , defined
in (4):

NWj = e−(dij /DINFL) (4)

where node i is the node for which growth is being cal-
culated and node j is the nearby node. In preliminary
studies using the currently developed model, the rela-
tionship between nodal growth and the chosen value
of the range of influence, DINFL, in (4) was cubic,
with the inflection point at a value of DINFL equal
to approximately twice the average distance between
nodes. Thus, the reference distance DINFL in the cir-
cumferential smoothing method was given a value of
twice the average distance between nodes in the stud-
ies described here.

Published studies have found that most of the
“communication channels” are oriented in the cross-
sectional plane of the long bone and few are ori-
ented axially [38–40]. Therefore, the circumferential
smoothing in this model considered only the nodes in
the same axial plane that are on the same surface (inner
or outer). Thus, the modified model becomes (5):

Gi = Wrate

[
k∑

j=1

NWj

(
6∑

n=1

diffi (n)

)

j

]
(5)

where k is equal to the number of nodes on the same
surface as node i that have the same local axial (z)
coordinate value as node i (are coplanar).

The axial (longitudinal) surface nodal smoothing
model was developed to address the effects of the
boundary conditions on local stress/strain concentra-
tions near the loaded and constrained surfaces. Be-
cause the amount of nodal growth (or decay) is directly
related to the nodal strain tensor, locally high strains
related to the boundary conditions could create abnor-
mally large amounts of nodal growth or decay. The
influence of the boundary conditions on the amounts
of growth or decay diminishes with distance from the
loaded or constrained surfaces. Therefore, the growth
at each node was further modified by an axial smooth-
ing factor for each node, (Waxial)i , given in (6):

(Waxial)i =
(

σ MidAVG
VM

σ iAVG
VM

)2

(6)

This quadratic factor scales the growth of node i in
proportion to the ratio between the stresses at the mid-
plane of the cylinder, a location away from loading
surfaces, σmidAVG

VM , and the stresses in the vicinity of
node i, σ iAVG

VM , thus reducing the amount of growth that
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would occur due to the high stresses resulting from the
boundary effects.

Therefore, the final strain tensor driven shape adap-
tation model which directly includes surface node
smoothing is given by (7):

Gi = Wrate(Waxial)i

[
k∑

j=1

NWj

(
6∑

n=1

diffi (n)

)

j

]
(7)

3.3 Model analysis phase 1: point vs. range reference

The first phase of the analysis considered the effect
of the type of reference used in the shape adaptation
model. The effect of a single point reference value ver-
sus a reference that spanned a range of values (“lazy
zone” or “equilibrium zone”) was compared for the
system loading case shown in Fig. 1b. The analysis
was performed using the author-developed model de-
scribed in Sect. 3.2 for the same geometric and bend-
ing load conditions as studied in [11], which used a
point reference and a von Mises stress driven model.
Depictions of the relationships between the amount
of growth and strain tensor component value used for
the point reference and the reference range are shown
in Figs. 2a and 2b, respectively. The slopes of these
“growth curves” are equal to Wrate in (7) and can vary
based on location and/or direction of shape change
(growth or decay) or can be held constant, as in this
model.

The loading values were chosen to match those in
[11] with a bending moment of 100 N mm. The thresh-
old values matched those of [11] with a 0.02 MPa ref-
erence von Mises stress. Because the current model
used strain tensor components, it was not possible to
find corresponding reference values for all the strain
tensor components. Therefore, the strain correspond-
ing to the 0.02 MPa stress for the material properties
chosen, or ±1.0με, was used as the reference for each
strain tensor component for the point reference value.
For the reference range, the threshold limits were ar-
bitrarily chosen to be ±50 % of the point reference
values so that the growth thresholds (εref max) were
(±1.5με) and the decay thresholds (εref min) were
(±0.5με).

Models were run for an arbitrary number of itera-
tions until growth at the midplane appeared to reach
a constant value or until the wall thickness reached
a cutoff value, chosen to prevent element collapse.
Quantitative comparisons of each of the strain tensor

Fig. 2 Relationship between growth and strain for (a) Point ref-
erence model, (b) Range reference model

values at the midplane for the inner and outer surface
at angular coordinates of 0°, 45°, and 90° were made
between the models with these two types of references.
Qualitative comparisons were made between the re-
sulting cross sectional geometries and von Mises strain
distributions.

3.4 Model analysis phase 2: comparison of model
driver measures

In the second phase of this analysis, the effect of the
growth driver was investigated and compared to pub-
lished results for various loading conditions. The de-
veloped strain tensor driven model was used to predict
shape changes under the six loading conditions listed
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Table 1 Comparison of geometry and finite element models used

Current Model (Strain Tensor
Based)

von Mises Stress Based Model
[11]

SED Based Model [23]

Dimensions 3-D 3-D 2-D

Initial ID 15 mm 15 mm 18 mm

Initial OD 30 mm 30 mm 30 mm

Length 160 mm 160 mm Infinite

Material Model Isotropic Isotropic Transversely Isotropic

Method of Shape
Modification

Move surface nodes by
calculating radial change

Move surface nodes by
calculating simulated
volumetric swelling strain

Move surface nodes by
calculating radial change. Fit
new cubic spline to boundaries

Stopping Criteria Constant, near constant or zero
amount of change in nodal
position per iteration

Number of iterations or a
certain % reduction in max von
Mises Stress

Constant, near constant, or zero
amount of change in nodal
position per iteration

Method of Mesh
Smoothing

Interior node smoothing every
5 iterations; surface smoothing
every iteration

Interior node smoothing only
every iteration

Complete remesh every
iteration

Mesh Type Mapped uniform Hexahedral
Elements

Mapped uniform Hexahedral
Elements

Graded Mapped Quadrilateral
Elements—smaller elements
near Outer Diameter (OD)

in Fig. 1. Reference [11] provided the predicted shape
changes for a von Mises stress driven model used for
comparison in this study. Those for the strain energy
density driven model in [23] were likewise used for
comparison. Additional qualitative comparisons were
made to published images of cross sectional geome-
tries of transverse slices through actual femur bones
[11, 25, 26]. While the basic geometric and loading
characteristics were the same for each model com-
pared, specific differences are shown in Tables 1 and 2.

Although the relative axial, bending and torsional
loads typically applied to a femoral bone, the structure
simulated in this investigation, were used as a guide
in the selection of the loading values in these stud-
ies, the investigation was not intended to represent any
specific activity or condition. While the main mode of
loading in the human femoral bone results from bend-
ing, axial compression and torsion also play significant
roles, as the stresses due to axial compression, bending
and torsional loads typically occur at a ratio of 1:8:2
[32–36]. Additionally, because muscles produce some
of the largest forces exerted on a bone [3], the study of
the muscle force influence is warranted and simulated

through the addition of the surface force loading case
depicted in Fig. 1f.

Loading conditions were selected to match those
in the publications used for comparison of shape
changes for the different model drivers. The loading
values in all of the cases studied using the developed
strain tensor based model were based on those used in
Ref. [11], the von Mises stress based model, because
this reference was chosen as a basis for the three-
dimensional geometry and applied material properties
used in the developed model. The loading values used
by Ref. [23], the strain energy density based model,
were generally two to three orders of magnitude more
than those used in Ref. [11], and the authors of the
SED study selected the loads to be twice the value at
the midpoint of a constant range reference. Especially
with the differences in the loading values between the
studies compared, care was taken in selecting the pa-
rameters in the current study to ensure that the relative
amounts of stress on the bone volume resulting from
each of the basic loading modes, as well as ratios be-
tween the reference threshold values and applied load-
ing values, were similar to the published papers used
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Table 2 Comparison of load application methods used for the loading modes studied

Current Model (Strain Tensor
Based)

von Mises Stress Based Model
[11]

SED Based Model [23]

Axial

Method of Load
Application

Pressure applied to elements on
top surface

Axial force on top surface Centroidally applied force at a
point

Reference Threshold
Applied Load % 25–75 % 100 % 30–70 %

Bending

Method of Load
Application

Moment on pilot node in contact
with top surface elements

Moment applied to top surface Seven equal magnitude moments
about axes equally distributed over
90° sector

Reference Threshold
Applied Load % 50–500 % 50 % 30–70 %

Torsion

Method of Load
Application

Moment on pilot node in contact
with top surface elements

Moment about cylindrical axis Centroidally applied torque

Reference Threshold
Applied Load % 100–1000 % 100 % 30–70 %

Axial + Bending

Method of Load
Application

Combination of above Combination of above Seven equal magnitude offset axial
loads equally distributed over 90°
sector

Stress Ratio A:B = 1:2 A:B = 1:2 A:B = 1:4.6
Reference Threshold

Applied Load % 33–333 % 33–100 % Unknown: “[load] greater than
twice mid-reference range”

Axial + Bending + Torsion

Method of Load
Application

Combination of above Combination of above Seven equal magnitude offset axial
loads equally distributed over 90°
sector + centroidally applied
torsion

Stress Ratio A:B:T = 1:2:1 A:B:T = 1:2:1 A:B:T = 1:4.6:1.2
Reference Threshold

Applied Load % 33–333 % 33–100 % Unknown: “produced an initial
average periosteal stimulus greater
than twice mid-reference range”

Bending + Torsion + Surface Force

Method of Load
Application

Combination of above + Graded
Force distributed over small area
on outer surface

Combination of above + Force
on single node of outer surface

N/A

Moment Ratio B:T:SF = 2:1:2.75 B:T:SF = 2:1:2.75 N/A
Reference Threshold

Applied Load % 25–500 % ∼300 % N/A

for comparison. These ratios are reported in the model
comparison in Table 2.

The choice of the threshold limits of the reference
range used in the current developed model was made,
in part, by trial and error during preliminary studies in
order to match the basic trends in shape changes that
were reported by Refs. [11] and [23]. The published
papers used for comparison had different methods for

selecting the magnitudes of their reference threshold
values. The von Mises based model in Ref. [11] used
the applied axial compression load as the singular
point reference value for all cases studied. Thus, the
reference value for that study was based on the cho-
sen loading values. The strain energy density based
model of Ref. [23] used the same ratio between refer-
ence range threshold limits and initial loading condi-
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tions for all loading-type cases investigated. Thus, in
that study, loads were based on the chosen reference
values. In reality, however, the reference values likely
are independent of the specific loading conditions and
magnitudes, and so the use of constant reference val-
ues for all loading cases studied was desired in the de-
veloped current model. Yet, because the strain tensor
based driver used sums of the effects of each individ-
ual tensor component, slightly different reference val-
ues were required for different tensor components un-
der different loading modes to achieve shape changes
comparable to these published works.

Quantitative comparisons of the strain tensor val-
ues, growth (or decay) per load application, and ra-
dius values were made on the midplane at discrete lo-
cations along outer surface every 45° for the loading
cases studied with the current developed model. These
comparisons aid in understanding the effect of each of
these basic loading modes on the shape changes pre-
dicted using a strain–tensor based model.

Using the model developed in the present study,
load application and shape change were iteratively re-
peated until the surface profile closely resembled that
of the same loading type in the published studies used
for comparison. Often, a constant amount of growth
per load application iteration was also approached.

4 Results

4.1 Phase 1: point vs range reference

For the applied bending load studied (Fig. 1b), the
strain tensor driven shape adaptation model in the cur-
rent work using the point and range reference values
chosen for this investigation produced similar general
trends in the altering of the surface profile of an ini-
tially circular cylinder as shown in Fig. 3. The re-
gions near the maximum strain, at the 90° location
on the outer surface, showed the greatest amount of
growth. Regions near the bending (neutral) axis where
strains are near zero, at the 0° location, showed the
most decay. These trends were consistent with the pub-
lished von Mises stress based model with a point ref-
erence [11] as well as the strain energy density based
model with a range reference [23]. The circumferen-
tial smoothing method applied to the current model
created the gradual transition between these two re-
gional extremes resulting in the egg-shaped geometry
shown in Fig. 3. This figure also depicts the similar

Fig. 3 Midplane profiles and von Mises strain distributions
for (a) Initial, (b) Final-point reference, (c) Final-range refer-
ence

Table 3 Trends in change of radius for different reference types

Location Inner Surface Outer Surface

Point Ref. Range Ref. Point Ref. Range Ref.

0° −43 % −49 % −19 % −22 %

45° −34 % −48 % −6 % −5 %

90° −27 % −42 % 3 % 11 %

changes to the von Mises strain distributions from
the initially circular cylinder for the two reference
types studied and clearly shows the greatest amount
of growth near the highest strains. Table 3 shows the
change between the initial and final radius values at
the 0°, 45° and 90° locations on both the inner and the
outer surfaces. Because of the symmetrical geometry
and loading about the x and y axes, these trends also
represent the changes at the corresponding locations
in the other three quadrants along the boundaries of
the geometry studied.

For both the reference point and reference range
cases, all model parameters were identical except the
values of the reference thresholds. To reach the final
shape used for comparison, the point reference model
took half the number of iterations of the range refer-
ence model. It should be noted that no specific con-
vergence criterion was used to stop these models. The
stopping point selected for this comparison for each
reference type was simply selected based on visual
similarities of resulting shapes.

While the final geometry and final changes in ra-
dius were similar for both reference types, the amount
of growth resulting from each load application itera-
tion was noticeably different, as represented through
the plots of growth per iteration at the 90° loca-
tion shown in Fig. 4a. At all nodal locations studied,
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Fig. 4 Comparison of (a) Growth normal to the inner and outer surfaces, (b) Radial strain, (c) Axial strain with increasing load
application iteration during the course of the study at a discrete point (Theta = 90°) for the two reference types examined

the point reference (left column of Fig. 4) showed a
smooth trend in growth/iteration with time, with the
rate of growth decreasing with iteration. The range
reference (right column of Fig. 4), however, showed
a discontinuity in the amount of growth per iteration,
changing from an increasing rate to a decreasing rate
of growth/decay, especially on the inner surface.

Strain tensor component values used in the calcu-
lation of the shape change at each iteration at dis-
crete points along the inner and outer surfaces were

also examined. Because of the bending load, the focus
of the comparison was on the normal strain compo-
nents. Radial and tangential normal strains for both
reference types at each of the three locations con-
sidered were nearly identical. Therefore, only radial
and axial strains are presented in Figs. 4b and 4c,
respectively. The threshold values are indicated by
dark, solid, horizontal lines. The direction of shape
change (grow, decay or no change) in each range of
strain values is noted and is consistent with the re-
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Fig. 5 Shape resulting from various loading modes using strain tensor model. (a) Axial, (b) Torsion, (c) Bending, (d) Axial + bending,
(e) Axial + bending + torsion, (f) Bending + torsion + surface force

gions depicted in Figs. 2a and 2b. For all strain ten-
sor components, strains on the outer surface were
greater than strains on the inner surface. However,
the axial strains differed more from inner to outer
surface than did the radial (and tangential) strains.
The strains at the 90° location approached a constant
strain value with increasing number of load applica-
tion iterations. Despite the noted differences in the
predicted growth, the two reference cases produced
nearly identical axial, normal and tangential strains for
each load application iteration at the surface locations
studied. Thus, the two reference types used converted
the same strain distributions into different amounts of
growth.

4.2 Phase 2: comparison of model driver measures

The shape changes resulting from individual and com-
binations of axial, torsional, bending, and surface
loads (Figs. 1a–1f) and predicted by the current strain
tensor based model with a range reference were quite
similar to those predicted by published works using
a von Mises based model and point reference [11],
and a strain energy density based model and a range
reference [23] despite differences in geometry, mesh,
boundary conditions and reference threshold values.
Because each of the models compared used arbi-
trary and different loading values, reference values,
and stopping criteria, quantitative comparisons be-
tween resulting geometries for the three model types
are difficult and unreliable. Instead, qualitative com-
parisons are presented based on visual observations

of the figures as well as the written descriptions re-
ported in the referenced works [11] and [23] and on
the geometries resulting from the current study. Fig-
ure 5 shows the initial and final shapes of the mid-
cylinder cross-sectional geometry under the loading
modes investigated using the developed strain tensor
based model.

4.2.1 Axial load

Strain tensor based model For the parameters cho-
sen in this study, a uniform compressive load (Fig. 1a)
applied along the cylindrical axis produced a uniform
amount of growth along both the outer surface and the
inner surface, resulting in an increased wall thickness,
as shown in Fig. 5a.

Strain energy density based model In the SED based
model study [23], the authors noted similar observa-
tions: “The axial loading history produced a uniform
stimulus throughout the cross-section, resulting in uni-
form apposition on both surfaces.”

von Mises stress based model For the parameters
chosen in the von Mises stress based model study [11],
the authors of that study also reported a “constant
stress distribution in any cross-section of the cylin-
der” and observed that this would result in a “con-
stant growth and bone apposition” on both inner and
outer surfaces. They further stated that either growth
or shrinkage could occur depending on the magnitude
of the reference value in relation to the magnitude of
the stress at the cross-section.
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4.2.2 Torsional load

Strain tensor based model Given the chosen model
parameters, a pure torsional load applied to an initially
circular cylinder (Fig. 1c) also produced a constant ef-
fect over the outer and inner surfaces of the cylinder
at each cross-section. In the case studied, the outer
surface grew and the inner surface decayed, both uni-
formly at each cross-section (Fig. 5b).

Strain energy density based model For the parame-
ters chosen in the SED based model study [23], “shear
stresses that increased linearly through the thickness”
were noted to cause “uniform periosteal apposition. . .

and uniform endosteal resorption”.

von Mises stress based model For the parameters
chosen in the von Mises stress based model study [11],
similar observations were also reported. Again, these
authors noted that the direction of the growth at each
surface was dependent upon the surface von Mises
stress value in relation to the reference von Mises
stress value. They noted that, depending on the relative
values, one of three cases would occur: (1) “signifi-
cant swelling at the outer wall and a lesser swelling on
the inner wall”, (2) “swelling . . .at the outer circum-
ference and shrinkage at the inner circumference”, or
(3) “shrinkage at the inner and outer wall”.

4.2.3 Bending load

Strain tensor based model Under pure bending
(Fig. 1b) for the parameters chosen in the current strain
tensor based model, a geometry symmetrical about the
two Cartesian planes normal to each cross-section was
produced with growth in the region of maximum stress
and decay along the neutral axis on both the inner and
outer surfaces, as shown in Fig. 5c. This is the load-
ing condition used in Phase 1 of this study concerning
reference type, the results of which were presented in
Sect. 4.1.

Strain energy density based model For the parame-
ters chosen in the SED based model study [23], the
authors of that study noted “bone material was con-
centrated in the regions subjected to the highest bend-
ing stresses, primarily through periosteal apposition.
The cortical thickness was reduced along the central,
least stimulated (or ‘most neutral’) axis, primarily due
to endosteal resorption.”

von Mises stress based model For the parameters
chosen in the von Mises stress based model study [11],
again, similar trends were noted. This model produced
growth both on the inner and outer surfaces at the re-
gion of highest stress and decay on both surfaces along
the neutral axis.

Combinations of these basic loading modes in
Figs. 1a–1c produced less symmetrical shapes. Be-
cause of the increased complexity and variation in the
application of the combined loading modes among the
models compared, greater variation in the final geome-
tries developed. However, as with the more basic load-
ing modes, all three models produced similar growth
trends.

4.2.4 Axial + bending loads

Strain tensor based model Under the combination
of axial compressive and bending loads (Fig. 1d), for
the model parameters chosen, the shape generated was
similar to that of the pure bending. However, more
growth occurred on the compressive side of the bend-
ing moment and less growth occurred on the tensile
side of the bending moment (Fig. 5d). The resulting
geometry was symmetrical with respect to only one of
the two planes indicated for pure bending, with one
region of the outer surface having a larger amount
of growth. The geometry produced is similar to the
shapes due to the growth observed in noted experi-
mental studies where animal bones were subjected to
combined compressive and bending loads [7, 41, 42].

Strain energy density based model For the parame-
ters chosen in the SED based model study [23], similar
shape changes were produced where “bone was added
on the more highly stressed ‘compressive side’ of the
cross section . . . and cortical thinning was produced
on the less stressed ‘tension side’.”

von Mises stress based model The von Mises stress
based model study [11], likewise, produced a similar
geometry. For the parameters chosen by those authors,
the shift of the neutral axis towards the “tension side”
is visible through a region of slightly increased decay
on the outer surface.

4.2.5 Axial + bending + torsional loads

Strain tensor based model Including a torsional load
to the combination of axial compression and bending
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(Fig. 1e) resulted in the addition of a uniform growth
over the entire inner and outer surfaces, as shown in
Fig. 5e. This uniform growth added to the geometry
resulting from the axial + bending loads described
in Sect. 4.2.4 reduced the variation in wall thickness
within the cylindrical geometry that developed from
the axial and bending loads without torsion, for the
chosen model parameters.

Strain energy density based model The SED based
model study [23], noted that the inclusion of the tor-
sional load drove “irregular cross-sectional geometries
towards axisymmetry”. A “smoother endosteal con-
tour and less cortical thinning on the tensile side” was
observed.

von Mises stress based model The von Mises stress
based model study [11] concluded that the addition of
the torsional load to the combined axial and bending
loads results in a more “oval structure”, as was noted
for the strain-based and SED-based studies.

4.2.6 Bending + torsion + surface forces

The final case studied was based on a combination
of loading more representative of typical forces act-
ing on a bone, including those induced by the mus-
cles (Fig. 1f). Such loading was presented in only one
of the published references [11] used for comparison
to the current developed model. No axial compression
was considered. Instead, the bending and torsional
loads were combined with four localized surface loads
applied on the outer surface of the cylinder and cen-
tered about the neutral axis of the bending moment as
shown in Fig. 1f. Following [11] so that a direct com-
parison could be made, the positions of these localized
loads were evenly spaced along the length of the cylin-
der. While their locations are not based on anatomy,
the localization of surface loads simulate the forces of
individual muscles acting through tendons attached to
the bone. The regional surface forces resulted in local-
ized regions of significant growth as shown in Fig. 5f.
These localized regions of growth are easily visible
in the three-dimensional geometry resulting from this
combination of loading modes that is shown in Fig. 6.

While the model did not turn an initially circu-
lar cylinder to an anatomical three-dimensional bone
shape, this was not the intention of the study since the
loading and boundary conditions were not intended

Fig. 6 3-D final geometry: bending + torsion + surface force.
(a) X-Z view, (b) Y-Z view

to simulate specific physical activities. The resulting
geometry does show the ways in which the volume’s
shape would change to move the strains along the in-
ner and outer surfaces towards a predefined reference
value or range, thus reducing the strain variation over
the surface. The correlations between model-predicted
features and geometric features in actual bones may
indicate that a bone’s adaptive behavior may be driven
towards a similar goal.

At the midplane of the cylinder away from applied
loads, the combination of bending, torsion and the lo-
cal muscle surface forces produced an asymmetrical
geometry. This asymmetry is also noted when observ-
ing the cross-sectional geometry of actual femur bones
[25, 26]. It was not, however, predicted in the pub-
lished results of the von Mises stress based model
for the same loading conditions [11]. The von Mises
stress based study in [11] showed that the asymmet-
rical geometry about the neutral bending axis could
only be produced by the application of an asymmet-
ric surface force, offset from the longitudinal symme-
try plane (neutral bending axis). This is likely because
the von Mises stress based model averages the strain
tensor components to drive the shape changes, and,
therefore, cannot be influenced by the differences in
and variations of the individual component that drive
the strain-tensor based model.
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Fig. 7 Trends in amount of normal growth with load application iteration at discrete points on outer surface

Because this final combination of loading modes
produced the most unique changes in shape, further
analyses were performed to better understand how
these loading conditions produced the observed shape
changes under a strain tensor based model. Given in
Fig. 7 is the growth at each load application iteration
for discrete points on the outer surface at the cylindri-
cal mid-plane at 45° increments. Trends in amount of
growth with iteration were correlated to plots of the
strain tensor values at some of these nodes shown in
Fig. 8.

The applied regional surface forces were symmetri-
cally centered about the Theta = 180° location, given
that the x-axis corresponds to the Theta = 0° location
(refer to Fig. 1 for Cartesian coordinate directions).
The large radial-axial shear strains induced locally by
the surface force as shown in Fig. 8a resulted in a
large amount of growth at the 180° location, which
approached a steady state rate with load application
iteration, as shown in Fig. 7. The Theta = 135° and
Theta = 90° locations were the only other locations
to show growth, as indicated by their positive values
in Fig. 7. At these locations, axial normal strain from
the bending and radial-tangential shear strain from the
torsion dominate, as shown in Fig. 8b and c.

Decay (negative growth) was observed at the re-
mainder of the discrete locations studied on the outer
surface at the midplane of the cylinder. At some lo-
cations, such as at Theta = 225° in Fig. 8d, decay is

expected as all strain tensor components lie in the “de-
cay” range of strain values. In other locations, how-
ever, such as the 45° point in Fig. 8e, the net reduc-
tion in radius is not as obvious. In these locations,
some strain tensor components, such as the axial nor-
mal strain and the radial-tangential shear strain have
magnitudes which would contribute to local growth.
However, many of the other strain tensor components,
especially the axially directed shear strains, are near
zero and are, therefore, midway between the two de-
cay threshold values. Because the strain tensor based
model used in this study summed equally weighted ef-
fects of all six strain tensor components, even if the
component had near-zero values, these near-zero shear
strains had a greater difference from the chosen, non-
zero threshold values than did the non-zero strain ten-
sor components at these same locations. Thus, while
the net effect of the non-zero strains tensor com-
ponents induced by the applied loads was positive
growth, the total net effect of all the strain compo-
nents, including the near-zero shear strain values, was
negative and material removal occurred. It is the near-
zero shear strain component values that appeared to
be driving the decay at such locations for the loading
conditions and threshold values chosen in this model.

The effect of the circumferential smoothing on the
amount of growth per iteration shown in Fig. 7 was
also seen in the gradual transitions surrounding the re-
gion of high growth near the surface load (located at
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Fig. 8 Trends in strain tensor component with load application iteration at discrete points on outer surface at theta locations. (a) 180°,
(b) 90°, (c) 135°, (d) 225°, and (e) 45°

Theta = 180°) and its neighbors (located at Theta =
135° and Theta = 225°), despite the significant differ-
ences in the radial strain tensor component values at
these points as shown in Fig. 8a, c, and d.

5 Discussion

5.1 Phase 1: point vs range reference

Both point and range reference values in the strain ten-
sor driven model produce similar trends in relative re-

gions of growth and decay. These trends also correlate
well with those seen under the same boundary con-
ditions and geometry reported in the published von
Mises stress driven model with a point reference in
[11], which was used for comparison. Slight differ-
ences in the amounts of growth between the two refer-
ence type models may be due to a number of reasons.

A likely cause is the choice of the selected ref-
erence threshold values. The difference between the
strain tensor component value and the reference thresh-
old value(s) is directly related to the amount of growth
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predicted at each load application iteration. In general,
the point reference showed a larger difference between
the nodal strain values (which were nearly the same re-
gardless of the reference type used) and the reference
values, as threshold values in the reference range case
were ±50 % those of the point reference case. This
typically resulted in the greater amount of growth ob-
served in the point reference case at each iteration at
the nodal locations compared. Because growth per it-
eration is then summed over the total number of iter-
ations run to create the final geometries, the resulting
images used for comparison in Fig. 3 were achieved in
fewer iterations for the point reference model, which
had a greater amount of growth per iteration. However,
because of this cumulative effect, and because neither
model reached a steady state growth at the compar-
ison point chosen by visual inspection of the shape
change, the total number of iterations performed also
affected the quantitative comparison of radial change
in Table 3.

The differences in local shape changes due to these
phenomena were then propagated away from each
node to neighboring nodes due to the cumulative ef-
fect of the surface smoothing performed, resulting in
more significant shape changes than what would be in-
dicated by nodal strain values alone. Surface smooth-
ing, however, was found to be beneficial and necessary
to ensure that locally high strains did not produce large
regional discontinuities in growth along each surface
and to ensure that the mesh integrity was intact during
the entire analysis.

Because the strain tensor based growth model used
in this phase of study sums the individual effects of the
strain tensor components, the influence of each strain
tensor component on the trends in growth can be iden-
tified. For example, the discontinuity in the trend of
the growth per iteration with iteration number on the
inner surface in the model using the reference range
(Fig. 4a) can be explained by the relative values of the
radial, tangential and axial strain and their respective
reference values. As seen in Fig. 4c axial strains do
not enter the “growth region” until the last 40 load ap-
plication iterations. At this same time, the radial and
tangential strain values driving the decay approach the
reference range threshold, and enter the “lazy zone”
or “equilibrium range”. Thus, the axial strains be-
gin to dominate the shape changes in this region, re-
sulting in the abrupt change in amount of growth at
the node examined. The point reference type model

does not experience these abrupt changes because this
model does not encounter a range of strains producing
no shape changes between designated growth-creating
and decay-creating strain values.

Despite the differences in the model function in-
herent in the choice of reference type that have been
discussed, this analysis showed that the reference type
used does affect the amount of the shape changes with
each load application and the number of load applica-
tions needed to achieve a certain amount of growth at a
particular location. The choice of reference type does
not, however, significantly affect the distribution of the
shape changes over the surfaces. Thus, a model with a
singular point reference type and a model with a refer-
ence range type whose threshold values are ±50 % of
the value used in the point reference type model, pro-
duce similar trends in shape change under the same
loading conditions. It is possible, however, that as the
span of the reference range deviates more from the
point reference value, such as through the selection of
different threshold values than what were used in this
study, the differences in amount of shape change with
location may increasingly vary from the point refer-
ence case and may result in more significant dissimi-
larities in shape.

5.2 Phase 2: comparison of model driver measures

With the proper selection of the relationships between
the applied load and references values, the strain ten-
sor based, von Mises stress based, and the strain en-
ergy density based models compared here all predicted
quite similar shape changes as a result of basic applied
loading modes and their combinations. This is despite
the significant differences in actual values of these pa-
rameters and methods of applying the loads, develop-
ing the finite element models, and executing the shape
prediction models. As has been noted by other authors
[13, 14, 43], it is clear that the magnitude and direction
of the surface change can be altered through variations
in the relationship between values of the applied load
and the reference threshold values.

The reasoning behind the choice of specific refer-
ence values varied for each model. In many numerical
shape adaptation models, the selection of the reference
values or reference range values, especially in relation
to the loading conditions, is arbitrary and chosen to
produce expected shapes, such as those observed ex-
perimentally [20, 30].
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In the simulations used in this comparison, the se-
lected reference values were related to the selected
loading values. The von Mises stress-based model in
[11] chose a reference value equal to the average von
Mises stress generated by the applied load for the ba-
sic loading modes. The strain energy density based
model in [23] chose the reference range to be 30–70 %
of the applied load for the basic loading modes. The
authors of that strain energy density based study ac-
knowledged that this relationship was not followed for
the mixed mode loading, though the exact alternative
relationship was not disclosed.

For the strain tensor based model developed for the
present investigation, a number of preliminary studies
were performed in order to determine appropriate ref-
erence threshold values. In this current model, equal
reference threshold values were preferred for each
strain tensor component in order to reduce the model’s
dependency on geometric orientation and strain ten-
sor component type. However, to achieve some of the
shapes presented here, this was not always possible,
as seen in the different reference ranges chosen for
the pure axial compression and the bending + tor-
sion + surface force loading cases listed in Table 2.
While the variations in reference threshold values with
loading mode seem to be arbitrary, it has been thought
that the actual reference threshold values of bone cells
may vary not only with loading mode (e.g. shear vs.
normal) but also with location along the surfaces of
the bone to correspond with variations in the “typical”
loads encountered along the surfaces of the bones [12].
The use of different reference ranges, however, may
create difficulty when applying these types of mod-
els to compare the effects of loading modes for which
there may be no experimental or reference shapes to
use for validation.

The use of a shape modification model based on in-
dividual strain tensor components allows for a better
understanding of the direct influence and contribution
of each strain tensor component on the resulting alter-
ations in the bone surface profile. This was illustrated
in the analysis of the contributions of the individual
components to the growth at discrete points along the
bone surfaces (Fig. 8) explained in Sect. 4.2. While
von Mises stress and strain energy density are aver-
aged measures that summarize the effects of the ap-
plied load at each surface point subjected to growth
or decay, the specific stress/strain components cannot
be deduced from the values of these averaged mea-
sures. Through a strain tensor based model, it is easy

to see which strain components are the main drivers of
the shape changes observed. However, the strain ten-
sor based model is dependent upon the orientation of
the coordinate systems used to obtain the tensor com-
ponents, and care must be taken to ensure that the ref-
erence threshold values refer to the same system def-
inition. This may reduce its ability to be used as a
generalized modeling and analysis tool, especially in
a multi-bone system.

6 Conclusions

Numerical models to predict cortical bone strength
adaptation through the modifications of bone shape
with variations in load, such as those developed and
analyzed in the current work, can provide insight into
the load-growth relationship that may be difficult to
obtain experimentally or clinically. A wide variety of
modeling methods and driving measures have been
used in predicting bone shape adaptation. This study
has shown that, with the proper selection of model pa-
rameter values, these significantly different numerical
models can produce quite similar shape predictions.
This knowledge might be useful in the development
of a model to predict shape changes under a single
loading mode that has been studied experimentally or
clinically in order to aid in the understanding of the
phenomena observed. However, to be able to use nu-
merical modeling and simulation tools to compare the
changes in bone strength resulting from various load-
ing modes, less sensitivity to the reference frame in the
calculation of model driver measures and to the selec-
tion of model parameters, such as the reference values,
might be necessary. Hence, further investigation into
the development of alternative approaches to model-
ing bone shape adaptation due to mechanical loading
is warranted.
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