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Abstract In this article stability and parametrically
excited oscillations of a two stage micro-shaft lo-
cated in a Newtonian fluid with arrayed electrostatic
actuation system is investigated. The static stability
of the system is studied and the fixed points of the
micro-shaft are determined and the global stability
of the fixed points is studied by plotting the micro-
shaft phase diagrams for different initial conditions.
Subsequently the governing equation of motion is lin-
earized about static equilibrium situation using cal-
culus of variation theory and discretized using the
Galerkin’s method. Then the system is modeled as a
single-degree-of-freedom model and a Mathieu type
equation is obtained. The Variational Iteration Method
(VIM) is used as an asymptotic analytical method to
obtain approximate solutions for parametric equation
and the stable and unstable regions are evaluated. The
results show that using a parametric excitation with an
appropriate frequency and amplitude the system can
be stabilized in the vicinity of the pitch fork bifur-
cation point. The time history and phase diagrams of
the system are plotted for certain values of initial con-
ditions and parameter values. Asymptotic analytically
obtained results are verified by using direct numerical
integration method.
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1 Introduction

Parametric excitation is a class of oscillation problems
in which one parameter of the system varies alter-
natively by time. First time Faraday (1831) observed
this phenomenon while studying the vibration of fluid
filled container [1]. Then Rayleigh [2] studied a sys-
tematic mathematical analysis and provided a theoret-
ical basis for these observations. The differential equa-
tions of motion for these systems are linear second-
order ones with periodically time-varying coefficients.
There are many techniques in the literature that have
been proposed for obtaining approximate solutions to
these equations and defining regions of stability and
instability in certain parameter range. For example,
Hsu [3–5] solved the Mathieus equation with differ-
ent boundary conditions analytically and obtained the
instability regions.

Boston [6] investigated the response of a nonlin-
ear form of the Mathieu equation with cubic nonlin-
earity in the first unstable region using the method
of harmonic balance. Zavodney et al. [7] studied the
response of a single-degree-of-freedom system with
quadratic and cubic nonlinearities to a principal para-
metric resonance. They used the method of multiple
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scales to determine the fixed points and their stabil-
ity. Szamplinska-Stupnicka et al. [8] investigated Pe-
riod doubling and chaos in un-symmetric structures
under parametric excitation. They modeled a shal-
low arch or buckled mechanism by a single-degree-
of-freedom and studied nonlinear oscillations of the
parametrically-excited system with quadratic and cu-
bic nonlinearities. El-Dib [9] studied nonlinear Math-
ieu equation and coupled resonance mechanism utiliz-
ing the method of multiple-scales to determine a third-
order solution for a cubic nonlinear Mathieu equa-
tion. Zounes and Rand [10] used Lie transform per-
turbation theory and elliptic functions to study sub-
harmonic resonances in the nonlinear Mathieu equa-
tion. Ng and Rand [11, 12] used a combination of the
averaging and perturbation methods to investigate the
classical form of the Mathieu equation with the cu-
bic nonlinearities. Insperger and Stepan [13] studied
on the stability of the damped Mathieu equation with
time delay using Hill’s infinite determinant method.
Jazar [14] determined stability chart of parametric vi-
brating systems using energy-rate method. Younesian
et al. [15] studied the nonlinear generalized Mathieu
equation, with cubic and quadratic nonlinearities us-
ing the two-dimensional Lindstedt–Poincaré method.
Morrison and Rand [16] investigated resonance in the
delayed nonlinear Mathieu equation with a general de-
lay period using the averaging method to determine
stability charts and find the associated bifurcations.
Younesian et al. [17] obtained asymptotic solutions for
the generalized form of the non-homogeneous Math-
ieu equation using the strained parameter technique
and determined transition curves using the multiple
scales method. Cveticanin and Kovacic [18] studied
the parametrically excited vibrations of an oscillator
with strong cubic negative nonlinearity using the two-
dimensional Lindstedt–Poincare perturbation method.
Gogu [19] studied bifurcation in constraint singular-
ities in connection with structural parameters of par-
allel mechanisms and demonstrated the relation be-
tween these singularities and the structural parameters
of the parallel robots. Amer and Hegazy [20] inves-
tigated the nonlinear behavior of a string-beam cou-
pled system subjected to parametric excitation using
the method of multiple scales. Zhang et al. [21] stud-
ied the nonlinear oscillations and chaotic dynamics of
a simply supported rectangular plate made of function-
ally graded materials (FGMs) subjected to a through-
thickness temperature field together with parametric

and external excitations using the asymptotic pertur-
bation method based on the Fourier expansion and the
temporal rescaling.

There are many physical systems in which para-
metric oscillations are observed. These systems are:
columns made of nonlinear elastic material [22],
beams with a harmonically variable length [23], flexi-
ble disk rotating at periodically varying angular speed
[24] parametrically excited two degrees of freedom
vibrating systems [25], axially moving belts [26, 27],
parametrically excited pendulums [28, 29], floating
offshore structures [30], and so on.

Parametrically excited vibrations in micro-electro-
mechanical systems (MEMS) were demonstrated in
[31], and recently it has become an active area of re-
search and extensively has been utilized in MEMS de-
vices, for example, Hu et al. [32] presented an an-
alytical approach to the static, dynamic, and stabil-
ity analysis of the microstructures subjected to elec-
trostatic forces and they analyzed an electrically ac-
tuated micro-cantilever beam as a case study using
the analytical approach. Krylov et al. [33] investi-
gated the stabilization of electrostatically actuated mi-
crostructures using parametric excitation. Gallacher et
al. [34] used combined parametric excitation and har-
monic forcing to excite a MEMS electrostatic reso-
nant gyroscope in order to improve its rate resolu-
tion performance. Rhoads et al. [35] studied the non-
linear response of resonant micro-beam systems with
purely-parametric electrostatic actuation. Zhang and
Meng [36] studied nonlinear responses and dynam-
ics of the electrostatically actuated MEMS resonant
sensors under two-frequency parametric and external
excitations. Harish et al. [37] investigated the sim-
ple parametric resonance in an electrostatically actu-
ated micro-electromechanical gyroscope theoretically
and experimentally. Krylov et al. [38] reported an ap-
proach which allows the efficient parametric excita-
tion of large-amplitude stable oscillations of a mi-
crostructure operated by a parallel-plate electrode.
Hu et al. [39] performed an experimental study of
high gain parametric amplification in an electrostati-
cally actuated and sensed gyroscopic resonant MEMS
sensor. Recently Rezazadeh et al. [40] investigated
parametric oscillation of an electrostatically actuated
micro-beam which suspended between two conductive
micro-plates and subjected to a same actuation volt-
age, Azizi et al. [41] studied mechanical behavior of
a parametrically actuated functionally graded piezo-
electric (FGP) clamped–clamped micro-beam and Fu
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Fig. 1 Schematic view of the system

et al. [42] used the energy balance method to study
a nonlinear oscillator arising in the microbeam-based
micro-electromechanical system. The literature inter-
ested reader is referred to the existing review articles
[43–45]. It can be expressed that the electrostatic ac-
tuation is one of the common methods of excitation
because of the position-dependent nature of electro-
static forces and extensively is used in MEMS de-
vices. MEMS devices can be implemented as a sen-
sor to measure different properties of materials. As
fluids have inertial and dissipative effects on vibra-
tions, Rezazadeh et al. used a piezoelectrically actu-
ated micro-sensor for simultaneous measurement of
fluids viscosity and density [46].

In this paper, the stability of a two step micro-shaft
suspended between arrayed electrostatic actuators and
located in a Newtonian fluid is studied. The device can
be used as a fluid viscosity sensor. The static stabil-
ity of the system is studied and the fixed points of the
micro-shaft are determined. Consequently the stabil-
ity of the fixed points is studied by plotting the micro-
shaft phase diagrams for different initial conditions.
Subsequently it is shown that the dynamic behavior of
the first mode of system is described by Mathieu–Hill
equation. The corresponding transition curves and the
solution of the governing equation are determined by
utilizing variation iteration method. Finally obtained
solutions from iteration method are examined by us-
ing the fourth-order Runge–Kutta method.

2 Mathematical modeling

As shown in Fig. 1 the model is a two step clamped-
free shaft subjected to an electrostatic excitation at the
end of the first step, the second step of the shaft is lo-
cated in a concentric stationary cylinder and the dis-
tance is filled with a Newtonian fluid. The system is

modeled with isothermal, incompressible and steady
state flow assumptions for fluid. The velocity profile
for flow of a Newtonian fluid between two concentric
cylinders assumed to be as [47]

uθ (r, t) = c1r + c2

r
(1)

where c1 and c2 are constant coefficients calculated
satisfying boundary conditions uθ (r2, t) = r2θ̇ (L1, t)

and uθ (r3, t) = 0. Hence the velocity profile of Eq. (1)
gives

uθ (r, t) =
(

r2
2

r2
3 − r2

2

)(
r2

3

r
− r

)
∂θ(L1, t)

∂t
(2)

The shear stress for the Newtonian fluid can be written
as

τrθ = μr
∂

∂r

(
uθ

r

)
(3)

The electrostatic excitation is produced by using plate
capacitors placed at end of the first step of the shaft
and the outer cylinder, which are parallel to the radial
and axial directions of the shaft. The stored energy in
a parallel-plate capacitor is given as [48]

W = −1

2
CV 2 = −1

2

εAV 2

g
(4)

where C is the charge of the capacitor, V is the volt-
age applied to its terminals, A is the plate area, g is
the separation distance between the plates and ε is the
permittivity of free space. The produced electric force
between the plates caused by the applied voltage is ob-
tained by differentiating W with respect to g as

F = dW

dg
= 1

2

εAV 2

g2
(5)

As shown in Fig. 2 for a differential element of area
(dA = bdr) in the plate (a), the distance between two
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Fig. 2 Schematic view of a set of capacitor plates

surfaces on plates (a) and (b) can be expressed as g =
r(θ0 − θ), where θ0 is the initial angular gap between
plates and θ is the rotation angle of the shaft at the end
of first step. The electric force of a differential element
obtains as

dF = bεV 2

2r2(θ0 − θ)2
dr (6)

The electrostatic torque between plates (a) and (b) is
derived integrating contributions of all the plate ele-
ments as

Tab =
∫ r1+h

r1

rdF = bεV 2

2(θ0 − θ)2
ln

(
r1 + h

r1

)
(7)

In the same manner the electrostatic torque between
plates (b) and (c) can be obtained substituting g =
r(θ0 − θ) in Eq. (6) and repeating above operation.
Hence the total electrostatic torque due to the rotation
from the static equilibrium state can be obtained as

T = Tab − Tbc

= bεV 2

2
ln

(
r1 + h

r1

)(
1

(θ0 − θ)2
− 1

(θ0 + θ)2

)
(8)

In order to improve the performance of the actuation
capacitors, arrays of micro-plates consist of a multi-
tude of coupled elements are used where their collec-
tive behavior enables a prominent improvement that
is not achievable with the individual element perfor-
mance. It is assumed the effects of the sets are gath-
ered together and the effects of the sets on each other
are neglected. Hence the total electrostatic torque can
be expressed as

Te = nbεV 2

2
ln

(
r1 + h

r1

)

×
(

1

(θ0 − θ)2
− 1

(θ0 + θ)2

)
(9)

where n is the number of sets and θ0 = π/n. Equation
of vibration of the shaft can be written as

D
∂2θ

∂z2
= I

∂2θ

∂t2
(10)

where D = 2π
∫ r1

0 Gr3dr and I = 2π
∫ r1

0 ρr3dr are
the torsional rigidity and moment of inertia of the first
step of the shaft, G is the modulus of rigidity and ρ

is the density of the shaft. The boundary conditions of
the shaft can be expressed as

θ(0, t) = 0

D

(
∂θ

∂z

)∣∣∣∣
z=L1

= Te − 2πr2
2 L2τ

∣∣
r=r2

− I2
∂2θ

∂t2

∣∣∣∣
z=L1

(11)

Homogenizing boundary conditions of the differential
equation of vibration yields [46]

D
∂2θ

∂z2
+ 2πr2

2L2τ
∣∣
r=r2

δ(z − L1) − Teδ(z − L1)

= (
I + I2δ(z − L1)

)∂2θ

∂t2
(12)

Substituting Eq. (2) and Eq. (3) into Eq. (12) yields

D
∂2θ

∂z2
− 4πμr2

2L2

(
r2

3

r2
3 − r2

2

)
∂θ

∂t
δ(z − L1)

− Teδ(z − L1) = (
I + I2δ(z − L1)

)∂2θ

∂t2
(13)

By expanding the total electrostatic torque using Cal-
culus of Variation Theory and Taylor expansion about
the static equilibrium position up to second order, total
electrostatic torque is obtained as

Te(V, θ) = Te(Vdc,0) + ∂Te

∂V

∣∣∣∣
Vdc,0

δV

+ ∂Te

∂θ

∣∣∣∣
Vdc,0

δθ + ∂2Te

∂θ∂V

∣∣∣∣
Vdc,0

δV δθ

+ O
(
δθ2) (14)

where δV is the time varying alternating voltage
having an amplitude Vac and a frequency Ω , δV =
Vac cos(Ωt), and Vdc is the constant bias or tuning
voltage. Substituting the total electrostatic torque from
Eq. (14) into Eq. (13) takes the following form

D
∂2θ

∂z2
− 4πμr2

2L2

(
r2

3

r2
3 − r2

2

)
∂θ

∂t
δ(z − L1)

− 2nbε

θ3
0

ln

(
r1 + h

r1

)
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× (
V 2

dc + 2VdcVac cos(Ωt)
)
θδ(z − L1)

= (
I + I2δ(z − L1)

)∂2θ

∂t2
(15)

Introducing non-dimensional variables as z̃ = z
L1

,

t̃ = t
t∗ , θ̃ = θ

θ0
and substituting into Eq. (15) gives

∂2θ̃

∂z̃2
− c̃

∂θ̃

∂ t̃
δ(z̃ − 1)

− b̃
(
V 2

dc + 2VdcVac cos(Ω̃ t̃)
)
θ̃ δ(z̃ − 1)

= (
1 + ãδ(z̃ − 1)

)∂2θ̃

∂ t̃2
(16)

where b̃ = 2nbεL2
1

Dθ3
0

ln( r1+h
r1

), c̃ = 4πμ
L2

1L2
Dt∗ (

r2
2 r2

3
r2
3 −r2

2
),

Ω̃ = Ωt∗, ã = I2
I

and t∗ =
√

IL2
1/D.

3 Numerical solution

In order to solve Eq. (16) by using the Galerkin’s
Weighted Residual Method, the solution approximated
to be a product of functions of the independent vari-
ables

θ̃ (z̃, t̃ ) =
n∑

j=1

∅j (z̃)qj (t̃) (17)

Substituting Eq. (17) into Eq. (16) and multiplying
the obtained residual by ∅k(z̃) as a weight function
in Galerkin method and integrating the outcome from
z̃ = 0 to 1 gives

n∑
j=1

Mij q̈j (t̃) +
n∑

j=1

Cij q̇j (t̃) +
n∑

j=1

Kijqj (t̃)

+
n∑

j=1

Fij qj (t̃)
(
V 2

dc + 2VdcVac cos(Ω̃ t̃)
) = 0 (18)

where the equivalent mass, viscous damping factor,
mechanical stiffness and electrical stiffness matrices
respectively are given by:

Mij = ã

∫ 1

0
∅i (z̃)∅j (z̃)δ(z̃ − 1)dz̃ +

∫ 1

0
∅i (z̃)∅j (z̃)dz̃

Cij = c̃

∫ 1

0
∅i (z̃)∅j (z̃)δ(z̃ − 1)dz̃

Kij = −
∫ 1

0
∅i (z̃)

∂2∅j (z̃)

∂z̃2
dz̃

Fij = b̃

∫ 1

0
∅i (z̃)∅j (z̃)δ(z̃ − 1)dz̃

(19)

In order to obtain an approximate solution with as-
sumption of one degree-of-freedom model n is con-
sidered to be one (n = 1). Hence Eq. (18) yields

M11
d2q1

dt̃2
+ C11

dq1

dt̃
+ K11q1

+ F11
(
V 2

dc + 2VdcVac cos(Ω̃ t̃)
)
q1 = 0 (20)

By applying the transformation τ = Ω̃t̃
2 to Eq. (20) a

classic damped Mathieu type equation with time vary-
ing periodic coefficients is obtained as following

d2q1

dτ 2
+ 2ξωn

dq1

dτ
+ (

γ + 2ε cos(2τ)
)
q1 = 0 (21)

where γ = 4K11+4F11V
2
dc

M11Ω̃
2 , ε = 4F11VdcVac

M11Ω̃
2 and ξωn =

C11

M11Ω̃
are constant coefficients. By defining new vari-

able q1 = ψe−ξωnτ an un-damped form of Mathieu
equation is obtained from Eq. (21) as

ψ̈ + (
δ + 2ε cos(2τ)

)
ψ = 0 (22)

where δ = γ − (ξωn)
2.

4 Stability analysis

In this section the stability of the micro-shaft near and
beyond the static pull-in voltage (pitch fork bifurcation
point) is studied by imposing an AC voltage to DC
one.

4.1 Static stability

The equilibrium between the applied electrostatic
torque Te(V, θ) and the mechanical elastic torque is
the static stability condition of the micro-shaft there-
fore at the equilibrium position the following relation-
ship must be satisfied

keq θ(L1) = bεrεV
2

2
ln

(
r1 + h

r1

)

×
(

1

(θ0 − θ(L1))2
− 1

(θ0 + θ(L1))2

)

(23)

where keq = D
L1

is equivalent torsional stiffness of the
micro-shaft. The tip rotation angle of the micro-shaft
can be obtained by solving the nonlinear Equation (23)
at a given applied DC voltage.



264 Meccanica (2013) 48:259–274

4.2 Dynamic stability related to parametric
excitations

In order to obtain the transition curves which are
the boundaries of the stable and unstable regions, the
strained parameter technique is used. It is assumed that
δ represented by an expansion having the form

δ = δ0 + εδ1 + ε2δ2 + ε3δ3 + O
(
ε4) (24)

where δi are constants that should be determined such
that the secular terms are not appeared in results.

Substituting Eq. (24) into Eq. (22) gives the follow-
ing equation

ψ̈ + δ0ψ + f (ψ, τ) = 0

f (ψ, τ) = (
εδ1 + ε2δ2 + ε3δ3 + O

(
ε4)

+ 2ε cos(2τ)
)
ψ

(25)

For the values of δ0 = k2 where k is a nonnegative
integer and small values of ε solution of Eq. (25) is
stable.

4.2.1 Let δ0 be zero

The iteration formula for solving Eq. (25) using VIM
[49], while δ0 is equal to zero, caned be written as{

u′′ + f
(
u,u′, u′′) = 0

un+1(t) = u0(t) + ∫ t

0 (s − t)f
(
un(s), u

′
n(s)

)
ds

(26)

In the first step, ψ0(τ ) = α is obtained as solution of
Eq. (25) considering δ0 = 0 and ε = 0, where α is a
constant belong to arbitrary initial conditions. In the
second step, in order to attain the first-order approx-
imate solution, it is assumed that δ is reduced to the
first-order power expansion. The first-order approxi-
mate solution of Eq. (25), considering iteration for-
mula of Eq. (26) can be written as

ψ1(τ ) = α + α

∫ τ

0
(s − τ)

(
εδ1 + 2ε cos(2s)

)
ds (27)

Simplifying Eq. (27) gives the first-order approximate
solution as

ψ1(τ ) = α − α

(
1

2
ε + 1

2
εδ1τ

2 − 1

2
ε cos(2τ)

)
(28)

In order to prevent secular term δ1 must be equal to
zero, hence Eq. (28) yields

ψ1(τ ) = 1

2
αε cos(2τ) + α − 1

2
αε (29)

With the aim of achieving the second-order approxi-
mate solution, Eq. (29) and the second-order reduced
power expansion of δ is used in iteration procedure.

ψ2(τ ) = ψ0(τ ) +
∫ τ

0
(s − τ)

(
εδ1 + ε2δ2

+ 2ε cos(2s)
)
ψ1(s)ds (30)

Simplifying Eq. (30) and eliminating the higher orders
of ε gives

ψ2(τ ) =
(

−1

4
αε2 − 1

2
αε2δ2

)
τ 2

− 1

4
αε2 cos(2τ) + 1

16
αε2 cos2(2τ)

+
(

α − 1

2
αε2δ2 + 3

16
αε2

)
(31)

Setting δ2 = − 1
2 , eliminates the secular term in ap-

proximate solution. Therefore the second-order ap-
proximate solution can be obtained as

ψ2(τ ) = −1

4
αε2 cos(2τ) + 1

16
αε2 cos2(2τ)

+
(

α + 7

16
αε2

)
(32)

Hence the equation of transition curve which com-
mences from δ = 0 can be written as

δ = −1

2
ε2 + O

(
ε3) (33)

4.2.2 Let δ0 be one

The iteration formula for solving Eq. (25) using VIM
[48] considering δ0 = 1 can be written as⎧⎪⎪⎨
⎪⎪⎩

u′′ + λ2u + f
(
u,u′, u′′) = 0

un+1(t)

= u0(t) + 1

λ

∫ t

0
sinλ(s − t)f

(
un(s), u

′
n(s)

)
ds

(34)

Beginning with ψ0(τ ) = β sin(τ ) and using iteration
formula of Eq. (34) and first-order reduction of δ the
first-order approximate solution can be obtained as

ψ1(τ ) = β

(
1 − 3

8
ε

)
sin(τ ) + β

8
ε sin(3τ)

+ βε

(
δ1 − 1

2

)
τ cos(τ ) (35)

Eliminating secular term in Eq. (35) by taking (δ1 = 1)

and utilizing second-order reduction of δ in iteration
procedure the second-order approximate solution can
be obtained as
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ψ2(τ ) = β

(
1

2
ε2δ2 + 1

16
ε2

)
τ cos(τ )

+ β

(
1 + 1

192
ε2 − 1

2
ε2δ2 − 3

8
ε

)
sin(τ )

+ β

(
1

8
ε − 1

32
ε2

)
sin(3τ)

+ β

192
ε2 cos(5τ) (36)

It should be taken δ2 = − 1
8 in order to eliminate the

secular term in Eq. (36). Hence the equation of transi-
tion curve which commences from δ = 1 can be writ-
ten as

δ = 1 + ε − ε2

8
+ O

(
ε3) (37)

Simply can be shown that by beginning with ψ0(τ ) =
α cos(τ ) and using iteration formula of Eq. (34), the
second transition curve which commences from δ = 1
can be obtained as

δ = 1 − ε − ε2

8
+ O

(
ε3) (38)

So it can be shown that by beginning with ψ0(τ ) =
β sin(2τ) and ψ0(τ ) = α cos(2τ) respectively transi-
tion curves which commence from δ = 4 can be ob-
tained as

δ = 4 − ε2

12
+ O

(
ε3)

δ = 4 + 5

12
ε2 + O

(
ε3) (39)

As a verification the obtained transition curves using
variational method coincides with those obtained by
perturbation method [50].

5 Solution of equation

Beginning with ψ0(τ ) = α cos(ωτ) + β sin(ωτ) and
using iteration formula of Eq. (34), the first approxi-
mate solution of Eq. (22) can be obtained as

ψ1(τ ) = α(2ω2 − 2 + ε)

2(ω2 − 1)
cos(ωτ)

− αε

4(ω − 1)
cos(ωτ − 2τ)

+ αε

4(ω + 1)
cos(ωτ + 2τ)

+ β(2ω2 − 2 − ε)

2(ω2 − 1)
sin(ωτ)

− βε

4(ω − 1)
sin(ωτ − 2τ)

+ βε

4(ω + 1)
sin(ωτ + 2τ) (40)

where ω = √
δ, α = ψ(0) and β = ψ̇(0)/ω. Using

Eq. (40) in iteration procedure, the second approxi-
mate solution can be expressed as

ψ2(τ ) = a1 cosωτ + a2 cos(ωτ + 2τ)

+ a3 cos(ωτ − 2τ) + a4 cos(ωτ + 4τ)

+ a5 cos(ωτ − 4τ) + a6τ cos(ωτ)

+ a7 sinωτ + a8 sin(ωτ + 2τ)

+ a9 sin(ωτ − 2τ) + a10 sin(ωτ + 4τ)

+ a11 sin(ωτ − 4τ) + a12τ sin(ωτ) (41)

where

a1 = α(−96ω4 + 144ω2 + 16ω6 − 64 + 8εω4 − 40εω2)

16(ω2 − 1)2(ω2 − 4)
+ α(32ε − ε2ω4 + 3ε2ω2 − 14ε2)

16(ω2 − 1)2(ω2 − 4)

a2 = αε(2ω2 − 2 + ε)

8(ω + 1)(ω2 − 1)
, a3 = − αε(2ω2 − 2 + ε)

8(ω − 1)(ω2 − 1)

a4 = αε2

32(ω + 2)(ω + 1)
, a5 = αε2

32(ω − 2)(ω − 1)
, a6 = − βε2

4ω(ω2 − 1)

a7 = β(40εω4 − 32εω2 − 32ε2ω2 − ε2ω6 + 16ε2 + 144ω4 − 96ω6)

16ω2(ω2 − 1)2(ω2 − 4)
+ β(16ω8 + 19ε2ω4 − 64ω2 + 8εω6)

16ω2(ω2 − 1)2(ω2 − 4)

a8 = βε(2ω2 − 2 − ε)

8(ω + 1)(ω2 − 1)
, a9 = βε(−2ω2 + 2 + ε)

8(ω − 1)(ω2 − 1)
, a10 = βε2

32(ω + 2)(ω + 1)

a11 = βε2

32(ω − 2)(ω − 1)
, a12 = αε2

4ω(ω2 − 1)

(42)
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Using Eq. (41) in iteration procedure, the third approximate solution can be obtained as

ψ3(τ ) = (
b1 cos(ωτ) + b2 cos(ωτ + 2τ) + b3 cos(ωτ − 2τ) + b4 sin(ωτ) + b5 sin(ωτ + 2τ)

+ b6 sin(ωτ − 2τ)
)
τ + b7 cos(ωτ) + b8 cos(ωτ + 2τ) + b9 cos(ωτ − 2τ)

+ b10 cos(ωτ + 4τ) + b11 cos(ωτ − 4τ) + b12 cos(ωτ + 6τ)

+ b13 cos(ωτ − 6τ) + b14 sin(ωτ) + b15 sin(ωτ + 2τ) + b16 sin(ωτ − 2τ)

+ b17 sin(ωτ + 4τ) + b18 sin(ωτ − 4τ) + b19 sin(ωτ + 6τ) + b20 sin(ωτ − 6τ) (43)

where

b1 = βε2(2 + ε − 2ω2)

8ω(ω2 − 1)2
, b2 = − βε3

16ω(ω2 − 1)(ω + 1)
, b3 = βε3

16ω(ω2 − 1)(ω − 1)

b4 = αε2(2ω2 − 2 + ε)

8ω(ω2 − 1)2
, b5 = αε3

16ω(ω2 − 1)(ω + 1)
, b6 = − αε3

16ω(ω2 − 1)(ω − 1)

b7 = α(32ω10 + 16εω8 − 2ε2ω8 − 512ω8 + 26ε2ω6 − ε3ω6 + 2496ω6 − 240εω6)

32(ω2 − 1)3(ω2 − 4)(ω2 − 9)

+ α(−4736ω4 + 1008εω4 − 106ε2ω4 + 32ε3ω4 + 3872ω2 − 1360εω2 − 173ε3ω2)

32(ω2 − 1)3(ω2 − 4)(ω2 − 9)

+ α(334ε2ω2 + 576ε − 1152 − 252ε2 + 334ε3)

32(ω2 − 1)3(ω2 − 4)(ω2 − 9)

b8 = αε(32ω6 − 64ω5 − ε2ω4 + 16εω4 − 64ω4 + 3ε2ω3 + 128ω3 − 32εω3)

128ω(ω − 1)2(ω + 1)3(ω − 2)

+ αε(32ω2 + 5ε2ω2 − 16εω2 − 31ε2ω − 64ω + 32εω + 16ε2)

128ω(ω − 1)2(ω + 1)3(ω − 2)

b9 = αε(−32ω6 − 64ω5 + ε2ω4 − 16εω4 + 64ω4 + 3ε2ω3 + 128ω3 − 32εω3)

128ω(ω + 1)2(ω − 1)3(ω + 2)

+ αε(−32ω2 − 5ε2ω2 + 16εω2 − 31ε2ω − 64ω + 32εω − 16ε2)

128ω(ω + 1)2(ω − 1)3(ω + 2)

b10 = αε2(2ω2 − 2 + ε)

64(ω2 − 1)(ω + 1)(ω + 2)
, b11 = αε2(2ω2 − 2 + ε)

64(ω2 − 1)(ω − 1)(ω − 2)

b12 = αε3

384(ω + 1)(ω + 2)(ω + 3)
, b13 = − αε3

384(ω − 1)(ω − 2)(ω − 3)

b14 = β(32ω12 − 16εω10 − 2ε2ω10 − 512ω10 + 58ε2ω8 + ε3ω8 + 2496ω8 + 144ε3)

32ω2(ω2 − 1)3(ω2 − 4)(ω2 − 9)

+ β(240εω8 − 4736ω6 − 1008εω6 − 490ε2ω6 − 48ε3ω6 + 3872ω4 + 1360εω4)

32ω2(ω2 − 1)3(ω2 − 4)(ω2 − 9)

+ β(1294ε2ω4 + 349ε3ω4 − 576εω2 − 1152ω2 − 1148ε2ω2 − 638ε3ω2 + 288ε2)

32ω2(ω2 − 1)3(ω2 − 4)(ω2 − 9)

b15 = βε(32ω8 − ε2ω6 − 16εω6 − 192ω6 + ε2ω5 + 43ε2ω4 + 80εω4 + 288ω4)

128ω2(ω − 1)2(ω + 1)3(ω2 − 4)

+ βε(−21ε2ω3 − 64εω2 − 110ε2ω2 − 128ω2 + 32ε2ω + 32ε2)

128ω2(ω − 1)2(ω + 1)3(ω2 − 4)
(44)
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b16 = βε(−32ω8 + ε2ω6 + 16εω6 + 192ω6 + ε2ω5 − 288ω4 − 80εω4 − 43ε2ω4)

128ω2(ω + 1)2(ω − 1)3(ω2 − 4)

+ βε(−21ε2ω3 + 64εω2 + 110ε2ω2 + 128ω2 + 32ε2ω − 32ε2)

128ω2(ω + 1)2(ω − 1)3(ω2 − 4)

b17 = βε2(2ω2 − 2 − ε)

64(ω2 − 1)(ω + 1)(ω + 2)
, b18 = βε2(2ω2 − 2 − ε)

64(ω2 − 1)(ω − 1)(ω − 2)

b19 = βε3

384(ω + 1)(ω + 2)(ω + 3)
, b20 = − βε3

384(ω − 1)(ω − 2)(ω − 3)

Table 1 Geometrical and material properties of the micro-shaft

Length of first stage (L1) 200 µm

Length of second stage (L2) 50 µm

Radius of first stage, r1 3 µm

Radius of second stage, r2 35 µm

Radius of the outer cylinder, r3 36 µm

Width of the capacitor plates, b 20 µm

Length of the capacitor plates, h 33 µm

Permittivity of air, ε 8.8542 × 10−12 F/m

Initial angular gap, θ0 (π/90) rad

Young’s modulus, E 165 GPa

Poisson’s ratio, v 0.29

Mass density, ρ 2331 kg/m3

Fluid dynamic viscosity, μ 0.2 kg/m s

Equation (43) gives a third approximate solution
using applying direct VIM, in which exist secular
terms, therefore the obtained results are valid only for
small time. Of course in the stable regions by com-
bining VIM with the method of strained parameter as
same as Lindstedt-Poincare method it is possible to
obtain periodic solutions.

6 Numerical results

In order to validate this approach, numerical results
are calculated for a two-stage micro-shaft which is
made of polycrystalline silicon and its characteristics
are shown in Table 1.

6.1 DC voltage excitation

Fixed points of the micro-shaft are obtained by solving
Eq. (23). The fixed points of the micro-shaft versus

Fig. 3 Micro-shaft tip dimensionless rotation angle versus ap-
plied DC voltage

applied DC voltage are depicted in Fig. 3. As shown
in Fig. 3 when the applied voltage is low, the system
has three fixed points which one of them is stable and
the others are unstable. As voltage crosses through the
Pitchfork bifurcation point, the pull-in phenomenon is
occurred and only one unstable fixed point is emerged.

In order to investigate the stability of fixed points,
the dynamic governing equation is solved by us-
ing fourth-order Runge–Kutta numerical integration
method for the DC excitation voltage. The results for
various initial conditions are depicted in phase dia-
grams.

There is only one stable center at θ̃ = 0 while no
voltage is applied (V = 0 V); as shown in Fig. 4a.
But when applied voltage is under static pull-in value
(Vsp) two other unstable saddle nodes are emerged, as
shown in Fig. 4b, There are a basin of attraction of
stable center which is bounded by a homoclinic orbit
and two basin of repulsion of unstable saddle nodes,
in this situation depending on the initial conditions,
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Fig. 4 Phase diagrams of the micro-shaft with different initial conditions and various excitation voltages V . (a) V = 0 V,
(b) V = 0.5 V, (c) Vsp = 0.684 V, (d) V = 1 V

the system can be stable or unstable. When the ap-
plied voltage approaches the static pull-in voltage, the
stable and unstable branches of the fixed points ap-
proach and meet each other in bifurcation diagram.
This point is known as pitchfork bifurcation point. The
basin of attraction of stable attractor is vanished when
the applied voltage approaches or crosses through the
pull-in value and the micro-shaft is unstable for any
set of initial conditions, Figs. 4c and 4d show this
states.

6.2 Parametric excitations

The functions ϕi are taken to be the mode shapes of
the clamped-free micro-shaft, namely

ϕi(z̃) = sin

(
(2i − 1)π

2
z̃

)
(45)

which satisfies the homogenized boundary conditions.
The transition curves which are obtained analytically
are depicted in Fig. 5, in fact transition curves separate
the stable and unstable regions and along them there
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Fig. 5 Stable and unstable (shaded) regions in the parameter plane for the Mathieu equation

Fig. 6 Amplitude of Vac versus Vdc for Ω̃ = 0.01

exists periodic solutions. For the values in the shaded
regions the solution is unbounded. For the values in
the non-shaded regions it is bounded.

The stable and unstable regions in terms of AC volt-
age versus DC voltage for given excitation frequencies
are depicted in Figs. 6 and 7. The shaded regions are
translated to the right by increasing the parameter Ω̃ .

With the aim of examination of precision of the
transition curves, numerical solutions of Mathieu
equation for five particular points A–E in parameter
(ε–δ) plane are carried out. Figure 8 shows solutions
for point A (Vdc = 103 V, Vac = 28 V, Ω̃ = 0.01),
which is located in the unstable region at the ε–δ plane
and the obtained solution is unbounded and its ampli-
tude increases by increasing time.

Fig. 7 Amplitude of Vac versus Vdc for Ω̃ = 0.02

It can be seen from Fig. 9, the solutions at point B
(Vdc = 95 V, Vac = 25 V, Ω̃ = 0.01) located in stable
region is bounded and oscillatory.

As illustrated in Fig. 10 solutions at point C (Vdc =
90 V, Vac = 30 V, Ω̃ = 0.02) located in unstable re-
gion is unbounded.

Solutions at point D (Vdc = 60 V, Vac = 30 V, Ω̃ =
0.02) located in stable region is bounded and oscilla-
tory and illustrated in Fig. 11.

It can be seen from Fig. 12 the response at point E
(Vdc = 122 V, Vac = 27 V, Ω̃ = 0.02) located in sta-
ble region is bounded and oscillatory.

In order to verify the accuracy of the asymptotic
analytical procedure, Eq. (22) is re-written in the
form of the system of two first-order linear ordi-
nary differential equations and integrated using fourth-
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Fig. 8 Time history and phase diagram for point A (δ = 4.03, ε = 0.37)

Fig. 9 Time history and phase diagram for point B (δ = 3.83, ε = 0.31)

Fig. 10 Time history and phase diagram for point C (δ = 0.93, ε = 0.09)
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Fig. 11 Time history and phase diagram for point D (δ = 0.78, ε = 0.06)

Fig. 12 Time history and phase diagram for point E (δ = 1.14, ε = 0.11)

Fig. 13 Comparing VIM and RKM time histories for point (δ = 0.2, ε = 0.2)
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Fig. 14 Comparing VIM and RKM time histories for point (δ = 0.2, ε = 0.1)

order Runge–Kutta method, and the result of VIM
equation (43) is compared to those of the Runge–
Kutta method for the initial conditions ψ(0) = 0.001,
ψ̇(0) = 0. The time histories ψ(t) for various values
of the parameters (ε = 0.2 and ε = 0.1) are shown in
Figs. 13 and 14. These figures show obviously that
during the initial time period the difference between
the asymptotic analytical and numerical solutions is
negligible.

7 Conclusions

The torsional vibration of a two stage micro-shaft lo-
cated in a Newtonian fluid and subjected to electro-
static parametric excitations is investigated. The static
stability of the system is studied and the fixed points
of the micro-shaft are determined and the stability of
the fixed points is studied by plotting the micro-shaft
phase diagrams for different initial conditions. Sub-
sequently the dynamic governing equation of motion
is linearized about static equilibrium situation using
calculus of variation theory and discretized using the
Galerkin’s procedure. Then the device is modeled as a
single-degree-of-freedom system and a Mathieu type
equation is obtained. Then the stability regions of the
system and solution of differential equation are ob-
tained by using the variation iteration method. The ef-
fect of the parameters of system including the exci-
tation frequency and applied DC voltage on the in-
stability regions are discussed. The results obtained

from this method have been compared with those ob-
tained from fourth-order Runge–Kutta numerical inte-
gration method and excellent agreement observed be-
tween these methods. In addition, the results show that
using a parametric excitation with an appropriate fre-
quency and amplitude the system can be stabilized in
the vicinity of the pitch fork bifurcation point. The ob-
tained results can be useful in design of MEMS sen-
sors especially in viscosity sensors.
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