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Abstract This paper is to study the two-dimensional
dynamic stress of a functionally graded material
(FGM) plate with a circular hole under plane com-
pressional waves at infinity. With using the method
of piece-wise homogeneous layers, the dynamic stress
distribution of the FGM plate having radial arbitrary
material parameters is derived based on the complex
variable method. As examples, numerical results are
presented for the FGM plate having given radial shear
modulus, density and Poisson’s ratio. It is found that
the dynamic stress around the circular hole in the
FGM plate can be effectively reduced by choosing the
proper change ways of the radial material parameters
for different frequency incident wave.

Keywords Functionally graded material · Circular
hole · Dynamic stress

1 Introduction

Functionally graded materials (FGMs) are composites
in which the material properties vary continuously as
a known function along a direction. The continuous
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change in microstructure of FGMs avoids the mis-
match of material properties across the interface, and
thus stress concentration can be effectively reduced
compared with that in the case where there are ma-
terial interfaces. Especially, when the structures are
subjected to dynamic loading, the stresses can be de-
creased by choosing the proper change ways of the ra-
dial material properties. Thus, it is of great importance
to study dynamic stresses in FGMs.

In the past decade, a lot of works have been done
in the study of the dynamic stress around and near the
discontinuities in FGMs. Ma et al. [1] studied the dy-
namic behavior of two collinear cracks in FGM layer
bonded to dissimilar half planes under anti-plane shear
waves by the Schmidt method. Meguid et al. [2] an-
alyzed the singularity behavior of a crack propagat-
ing in an infinite medium with spatially varying elas-
tic properties under plane elastic deformation. Using
Laplace and Fourier transforms, Chen et al. [3] inves-
tigated the transient response of an infinite function-
ally graded piezoelectric medium containing a through
crack subjected to electromechanical impact. Song
and Paulino [4] obtained the dynamic stress inten-
sity factors for homogeneous and smoothly heteroge-
neous materials using the interaction integral method.
Feng and Su [5] investigated the dynamic anti-plane
problem for a functionally graded magneto-electro-
elastic strip containing an internal crack perpendicu-
lar to the boundary. Li and Lee [6] dealt with the dy-
namic fracture behavior of a weak-discontinuous inter-
face in a symmetrical functionally gradient composite
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strip loaded by anti-plane impact. Peng and Li [7] an-
alyzed the dynamic magnetoelectroelastic of a homo-
geneous magnetoelectroelastic substrate with a func-
tionally graded coating containing a crack at the inter-
face. Han et al. [8] presented an analytical-numerical
method for analyzing characteristics of waves in a
cylinder composed of FGM. Chen et al. [9] inves-
tigated the free vibration of an arbitrarily thick or-
thotropic piezoelectric hollow cylinder with a func-
tionally graded property along the thickness direc-
tion and filled with a non-viscous compressible fluid
medium. Elmaimouni et al. [10] numerical calculated
the guided wave propagation in an infinite cylinder
composed of FGM. Based on the Green-Lindsay the-
ory, Bagri and Eslami [11] analyzed the thermoelas-
tic waves in functionally graded hollow spheres. As-
gari et al. [12] considered two-dimensional function-
ally graded thick hollow cylinder with finite length
subjected to impact internal pressure. Shariyat et al.
[13] studied nonlinear thermo-elasticity, vibration, and
stress wave propagation analyses of thick FGM cylin-
ders with temperature-dependent material properties.

However, previous works cited above are mainly
restricted to the case of a FGM plate with cracks or
a FMG hollow cylinder, and not much work can be
found for the analysis of dynamic stress concentra-
tions around a hole or cavity in functionally graded
materials, although a number of works on dynamic
stress concentrations around the hole or cavity have
been reported for the case of homogeneous materials.
For example, earlier work on dynamic stress concen-
trations in homogeneous materials has been given by
Pao [14], who discussed the dynamical stress concen-
tration around a circular hole in an infinitely elastic
plate during passage of plane compressional waves.
Shortly thereafter, Mow and McCabe [15] studied the
dynamic stresses in an arbitrarily thick elastic cylinder
in an infinite elastic medium under plane, compres-
sional, harmonically time-varying waves. Later, Liu et
al. [16] presented a complex function method for an-
alyzing the dynamic stress concentrations around the
circular and elliptical cavities. Shankar [17] investi-
gated the behavior of dynamic stress in a flat plate
with a square hole by using statistical energy analysis
methods. Altenhof et al. [18] considered the dynamic
stress concentrations for an axially loaded strut at dis-
continuities due to an elliptical hole or double circular
notches. Zirka et al. [19] experimentally studied the
dynamic stress concentration factor near a hole in an

orthotropic plate by photoelastic method. Using dual
reciprocity boundary element method, Gao et al. [20]
analyzed the scattering of elastic waves and dynamic
stress concentrations in the thin plate with cutout.
Wang et al. [21] dealt with the dynamic stress concen-
tration around elliptic cavities in saturated poroelastic
soil under harmonic plane waves with complex vari-
able method. Wang et al. [22] investigated the diffrac-
tion of plane harmonic compressional wave and the
dynamics stress concentration in a solid with a nano-
sized circular hole.

Recently, some works have been made on dynamic
stress concentrations in a FGM plane with a hole or
cavity. For example, Fang et al. [23–25] presented a
theoretical method to investigate the multiple scatter-
ing of shear waves and dynamic stress concentrations
in semi-infinite FGM and semi-infinite slab of FGM
with a circular cavity. More recently, Dineva et al. [26]
calculated the stress and electric field concentrations
around a circular hole in a functionally graded piezo-
electric plane subjected to anti-plane elastic SH-wave
and in-plane time-harmonic electric load. However, in
the above works [23–26], it is all assumed that the ma-
terial parameters vary along the thickness direction.

In the present work, we present a complex vari-
able method for calculating the dynamic stress con-
centrations around a circular hole in a FGM plate in
which the material properties are graded in the radial
direction. Following the Introduction, basic equations
of two dimensional elastic problems are outlined for
later use in Sect. 2. In Sect. 3, theoretical analysis is
done for the FGM plate with a circular hole subjected
to plane compressional waves at infinity based on the
method of piece-wise homogeneous layers. Then, nu-
merical examples are given to discuss the effect of
varying the shear modulus μ, density ρ and the Pois-
son’s ratio ν on the dynamic stress around the hole in
Sect. 4. Finally, Sect. 5 concludes the present work.

2 Basic equations

Consider the two-dimensional problem of an isotropic
and homogeneous solid in a fixed rectangular coordi-
nate system (x − y). The equations of motion for the
displacements in the directions of x and y axes respec-
tively, u and v, are:

μ∇2u + (λ + μ)
∂θ

∂x
= ρ

∂2u

∂t2
, (1)
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μ∇2v + (λ + μ)
∂θ

∂y
= ρ

∂2v

∂t2
, (2)

where, λ and μ are the Lame elastic constants and ρ is
the density of the medium; ∇2 indicates Laplace oper-
ator; and θ is the two dimensional dilatation:

θ = ∂u

∂x
+ ∂v

∂y
. (3)

The wave potentials, Φ and Ψ , are related to u and
v as follows:

u = ∂Φ

∂x
+ ∂Ψ

∂y
, (4)

v = ∂Φ

∂y
− ∂Ψ

∂x
. (5)

The equations of motion are satisfied provided that Φ

and Ψ are the solutions of the following wave equa-
tions:

∇2Φ = 1

c2
p

∂2Φ

∂t2
, (6)

∇2Ψ = 1

c2
s

∂2Ψ

∂t2
. (7)

In the above, cp = [(λ+2μ)/ρ]1/2 and cs = (μ/ρ)1/2

are propagation velocities of compressive and shear
waves in the medium, respectively.

Using the complex variable method introduced by
Liu et al. [16], Eqs. (6) and (7) in complex-plane (z, z̄)

can be expressed as:

4
∂2Φ

∂z∂z
= 1

c2
p

∂2Φ

∂t2
, (8)

4
∂2Ψ

∂z∂z
= 1

c2
s

∂2Ψ

∂t2
, (9)

where z = x + iy = r · eiθ and z = x − iy = r · e−iθ .
In our study of the steady state waves, Φ and Ψ can

be expressed as:

Φ(z, z, t) = Reϕ(z, z)e−iωt , (10)

Ψ (z, z, t) = Reψ(z, z)e−iωt , (11)

where ϕ(z, z) and ψ(z, z) are functions of z and z; ω

is the circular frequency of wave function.
Substituting Eqs. (10) and (11) into (8) and (9) re-

sults in:

∂2ϕ

∂z∂z
=

(
iα

2

)2

ϕ, (12)

∂2ψ

∂z∂z
=

(
iβ

2

)2

ψ, (13)

Fig. 1 FGM plate with a circular hole subjected to plane com-
pressional waves at infinity

where α = ω/cp and β = ω/cs are the wave numbers
of the compressional and shear waves. Expressions
(12) and (13) are recognized as the spatial equations
of wave functions in complex-plane. The correspond-
ing stress expression can be written in the following
form [16]:

σθ + σr = −2α2(λ + μ)Φ(z), (14)

σθ − σr + 2iτrθ = −8μ
∂2

∂z2

[
Φ(z) + iΨ (z)

]
e2iθ ,

(15)

where σr , σθ and τrθ are the components of stresses,
respectively; Φ(z)and Ψ (z) stand for the potential
functions, and they can be determined by the following
stress boundary condition:

−α2(λ + μ)Φ(z) + 4μ
∂2

∂z2

[
Φ(z) + iΨ (z)

]
e2iθ

= F1 − iF2, (16)

or displacement boundary condition:

2
∂

∂z

[
Φ(z) − iΨ (z)

]
e−iθ = ur + ivθ , (17)

where F1, F2, ur and vθ represent the components of
force and displacement at the boundary, respectively.

3 Theoretical analysis

Consider a FGM plate with a free circular hole, as
shown in Fig. 1. It is assumed that all the mate-
rial constants in the plane vary only along the radial
direction, and the plate is subjected to plane com-
pressional waves at infinity. In this case, the method
of piece-wise homogeneous layers can be used, that
is, the plate can be decomposed to N inner rings
S(1), S(2), . . . , S(i), . . . , S(N) with equal thickness, and
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Fig. 2 Decomposing the plate into N rings

Fig. 3 Any ring No.j

an outer region S(N+1), as shown in Fig. 2 where the
material constants in any ring can be regards as un-
changed.

The incident plane compressional waves, Fig. 1, are
represented by:

Φ(i) = ϕ0e
i(αx−ωt), (18)

Ψ (i) = 0, (19)

where ϕ0 is the amplitude of the incident wave and
α = αN+1 = ω/cp(N+1) is the wave number in region
S(N+1).

By applying Jacobi-Anger identity, Φ(i) can be ex-
pressed as:

Φ(i) = ϕ0

∞∑
−∞

inJn(αr)einθ e−iωt , (20)

in which Jn denotes the Bessel function of order n.
Inside any inner ring S(j) (j = 1,2, . . . ,N), as

shown in Fig. 3, the complex potentials can be ex-
pressed as:

ϕj (z) =
∞∑

−∞

[
a

(j)
n H 1

n (αj r) + c
(j)
n H 2

n (αj r)
]
einθ , (21)

ψj(z) =
∞∑

−∞

[
b

(j)
n H 1

n (βj r) + d
(j)
n H 2

n (βj r)
]
einθ , (22)

where j = 1,2, . . . ,N , a
(j)
n , b

(j)
n , c

(j)
n , d

(j)
n are un-

known coefficient; H 1
n ,H 2

n denote the Hankel function
of the first and second kind of order n, respectively.

Inside the outer region S(N+1), the complex poten-
tials can be expressed as:

ϕN+1(z) =
∞∑

−∞

[
a(N+1)
n H 1

n (αN+1r)

+ ϕ0i
nJn(αN+1r)

]
einθ , (23)

ψN+1(z) =
∞∑

−∞

[
b(N+1)
n H 1

n (βN+1r)
]
einθ , (24)

where a
(N+1)
n , b

(N+1)
n are unknown coefficients.

On the surface of the hole, one has F1 = F2 = 0,
and this condition requires from Eq. (16) that:

−α2
1(λ1 + μ1)Φ1(z)

+ 4μ1
∂2

∂z2

[
Φ1(z) + iΨ1(z)

]
e2iθ = 0, (25)

where z = r0σ = r0e
iθ .

Substituting Eqs. (21) and (22) into (25), and mul-
tiplying e−isθ at both sides of the equations, then inte-
grating from −π to π , one has:
[−α2

1(λ1 + μ1)H
1
n (α1r0) + μ1α

2
1H 1

n−2(α1r0)
]
a(1)
n

+ [−α2
1(λ1 + μ1)H

2
n (α1r0)

+ μ1α
2
1H 2

n−2(α1r0)
]
c(1)
n + iμ1β

2
1H 1

n−2(β1r0)b
(1)
n

+ iμ1β
2
1H 2

n−2(β1r0)d
(1)
n = 0, (26)

[−α2
1(λ1 + μ1)H

1
n (α1r0) + μ1α

2
1H 1

n+2(α1r0)
]
a(1)
n

+ [−α2
1(λ1 + μ1)H

2
n (α1r0)

+ μ1α
2
1H 2

n+2(α1r0)
]
c(1)
n − iμ1β

2
1H 1

n+2(β1r0)b
(1)
n

− iμ1β
2
1H 2

n+2(β1r0)d
(1)
n = 0, (27)

where r0 is the radius of the hole, and n = 0,±1,±2,

. . . ,±M .
On the other hand, the continuous condition at the

interface between the rings j and j + 1 can be ex-
pressed as:

F
(j)

1 = −F
(j+1)

1 , F
(j)

2 = −F
(j+1)

2 , (28)

u
(j)
r = u

(j+1)
r , v

(j)
θ = v

(j+1)
θ , (29)

where j = 1,2, . . . ,N .
Using Eqs. (16) and (17), Eqs. (28) and (29) can be

rewritten as:
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−α2
j (λj + μj )Φj (z) + 4μj

∂2

∂z2

[
Φj(z) + iΨj (z)

]
e2iθ

= −α2
j+1(λj+1 + μj+1)Φj+1(z) + 4μj+1

∂2

∂z2

[
Φj+1(z) + iΨj+1(z)

]
e2iθ , (30)

∂

∂z̄

[
Φj(z) − iΨj (z)

] = ∂

∂z̄

[
Φj+1(z) − iΨj+1(z)

]
, (31)

where z = rj σ = rj e
iθ , j = 1,2, . . . ,N .

Similarly, substituting Eqs. (21)–(24) into (30) and (31) results in:
[−α2

j (λj + μj )H
1
n (αj rj ) + μjα

2
jH

1
n−2(αj rj )

]
a

(j)
n + [−α2

j (λj + μj )H
2
n (αj rj ) + μjα

2
jH

2
n−2(αj rj )

]
c
(j)
n

+ iμjβ
2
j H 1

n−2(βj rj )b
(j)
n + iμjβ

2
j H 2

n−2(βj rj )d
(j)
n

= [−α2
j+1(λj+1 + μj+1)H

1
n (αj+1rj ) + μj+1α

2
j+1H

1
n−2(αj+1rj )

]
a

(j+1)
n

+ [−α2
j+1(λj+1 + μj+1)H

2
n (αj+1rj ) + μj+1α

2
j+1H

2
n−2(αj+1rj )

]
c
(j+1)
n

+ iμj+1β
2
j+1H

1
n−2(βj+1rj )b

(j+1)
n + iμj+1β

2
j+1H

2
n−2(βj+1rj )d

(j+1)
n , (32)[−α2

j (λj + μj )H
1
n (αj rj ) + μjα

2
jH

1
n+2(αj rj )

]
a

(j)
n + [−α2

j (λj + μj )H
2
n (αj rj ) + μjα

2
jH

2
n+2(αj rj )

]
c
(j)
n

− iμjβ
2
j H 1

n+2(βj rj )b
(j)
n − iμjβ

2
j H 2

n+2(βj rj )d
(j)
n

= [−α2
j+1(λj+1 + μj+1)H

1
n (αj+1rj ) + μj+1α

2
j+1H

1
n+2(αj+1rj )

]
a

(j+1)
n

+ [−α2
j+1(λj+1 + μj+1)H

2
n (αj+1rj ) + μj+1α

2
j+1H

2
n+2(αj+1rj )

]
c
(j+1)
n

− iμj+1β
2
j+1H

1
n+2(βj+1rj )b

(j+1)
n − iμj+1β

2
j+1H

2
n+2(βj+1rj )d

(j+1)
n , (33)

αjH
1
n−1(αj rj )a

(j)
n + αjH

2
n−1(αj rj )c

(j)
n + iβjH

1
n−1(βj rj )b

(j)
n + iβjH

2
n−1(βj rj )d

(j)
n

= αj+1H
1
n−1(αj+1rj )a

(j+1)
n + αj+1H

2
n−1(αj+1rj )c

(j+1)
n + iβj+1H

1
n−1(βj+1rj )b

(j+1)
n

+ iβj+1H
2
n−1(βj+1rj )d

(j+1)
n , (34)

αjH
1
n+1(αj rj )a

(j)
n + αjH

2
n+1(αj rj )c

(j)
n − iβjH

1
n+1(βj rj )b

(j)
n − iβjH

2
n+1(βj rj )d

(j)
n

= αj+1H
1
n+1(αj+1rj )a

(j+1)
n + αj+1H

2
n+1(αj+1rj )c

(j+1)
n

− iβj+1H
1
n+1(βj+1rj )b

(j+1)
n − iβj+1H

2
n+1(βj+1rj )d

(j+1)
n , (35)

where j = 1,2, . . . , (N − 1), and when j = N results in:
[−α2

j (λj + μj )H
1
n (αj rj ) + μjα

2
jH

1
n−2(αj rj )

]
a

(j)
n + [−α2

j (λj + μj )H
2
n (αj rj ) + μjα

2
jH

2
n−2(αj rj )

]
c
(j)
n

+ iμjβ
2
j H 1

n−2(βj rj )b
(j)
n + iμjβ

2
j H 2

n−2(βj rj )d
(j)
n

= [−α2
j+1(λj+1 + μj+1)H

1
n (αj+1rj ) + μj+1α

2
j+1H

1
n−2(αj+1rj )

]
a

(j+1)
n

+ [−α2
j+1(λj+1 + μj+1)Jn(αj+1rj ) + μj+1α

2
j+1Jn−2(αj+1rj )

]
ϕ0 · in

+ iμj+1β
2
j+1H

1
n−2(βj+1rj )b

(j+1)
n , (36)[−α2

j (λj + μj )H
1
n (αj rj ) + μjα

2
jH

1
n+2(αj rj )

]
a

(j)
n + [−α2

j (λj + μj )H
2
n (αj rj ) + μjα

2
jH

2
n+2(αj rj )

]
c
(j)
n

− iμjβ
2
j H 1

n+2(βj rj )b
(j)
n − iμjβ

2
j H 2

n+2(βj rj )d
(j)
n

= [−α2
j+1(λj+1 + μj+1)H

1
n (αj+1rj ) + μj+1α

2
j+1H

1
n+2(αj+1rj )

]
a

(j+1)
n

+ [−α2
j+1(λj+1 + μj+1)Jn(αj+1rj ) + μj+1α

2
j+1Jn+2(αj+1rj )

]
ϕ0 · in

− iμj+1β
2
j+1H

1
n+2(βj+1rj )b

(j+1)
n , (37)
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αjH
1
n−1(αj rj )a

(j)
n + αjH

2
n−1(αj rj )c

(j)
n + iβjH

1
n−1(βj rj )b

(j)
n + iβjH

2
n−1(βj rj )d

(j)
n

= αj+1H
1
n−1(αj+1rj )a

(j+1)
n + αj+1Jn−1(αj+1rj )ϕ0 · in + iβj+1H

1
n−1(βj+1rj )b

(j+1)
n , (38)

αjH
1
n+1(αj rj )a

(j)
n + αjH

2
n+1(αj rj )c

(j)
n − iβjH

1
n+1(βj rj )b

(j)
n − iβjH

2
n+1(βj rj )d

(j)
n

= αj+1H
1
n+1(αj+1rj )a

(j+1)
n + αj+1Jn+1(αj+1rj )ϕ0 · in − iβj+1H

1
n+1(βj+1rj )b

(j+1)
n , (39)

where n = 0,±1,±2, . . . ,±M .

Equations (26), (27) and (32)–(39) constitute a set
of 2(2N + 1)(2M + 1) linear equations which contain
2(2N + 1)(2M + 1) unknown coefficients a

(j)
n , b

(j)
n ,

c
(j)
n , d

(j)
n (j = 1,2, . . . ,N ; n = 0,±1,±2, . . . ,±M)

and a
(N+1)
n , b

(N+1)
n , and thus all these unknown co-

efficients can be determined by using transfer matrix
solution technique. Then, all the complex potentials
become known in any ring, and finally field variables
in the plate can be approximately determined from
Eqs. (14) and (15).

4 Numerical examples

Numerical results are obtained in dimensionless forms
by normalizing with respect to the stress associated
with the incident wave; that is:

σ0 = −μN+1β
2
N+1ϕ0, (40)

The hoop stress around the circular hole is written as:

σ ∗
θ = σθ

σ0

= 2(λ1 + μ1)α
2
1

μN+1β
2
N+1ϕ0

Re

{+∞∑
−∞

[
a(1)
n H 1

n (α1r)

+ c(1)
n H 2

n (α1r)
]
einθ

}
e−iωt . (41)

In the following numerical examples, we will dis-
cuss the effect of shear modulus μ,density ρ and Pois-
son’s ratio ν on the normalized stress σ ∗

θ , respectively.
Firstly, we check the accuracy of the present nu-

merical analysis by comparing the obtained solutions
for several special cases with those given in previous
works. For example, consider a homogeneous plate
with a circular hole having the material parameters as:

μ(r) = μ0, (42)

ρ(r) = ρ0, (43)

ν(r) = ν0, (44)

Fig. 4 Distribution of stress for homogeneous plate with a cir-
cular hole (r = r0, θ = π/2)

where μ0, ρ0 and ν0 is constant. In this case, it is an-
alyzed the normalized hoop stresses at the position of
θ = π/2 as a function of dimensionless wave number
αr0 for two Poisson’s ratios; ν0 = 0.25 and ν0 = 0.3.
The results are shown in Fig. 4 and they agree with
those reported in Pao [14].

For another case when the number of layers N = 1,
the results for an infinite elastic medium with a cylin-
drical lining may be derived. In order to compared
the results with that in Mow and McCabe [15], the
material parameters for the case of the stiff cylindri-
cal lining are taken as μ2/μ1 = 0.31, Cα2/Cα1 = 0.7,
ν1 = 0.3 and ν2 = 0.25. The distribution of normalized
hoop stresses for r1/r0 = 1.05, 1.1 and 1.2 are shown
in Fig. 5. Compared the results with those in Mow and
McCabe [15], the error is about 1 %.

4.1 Effects of variations of shear modulus on the
stress

To study the effect of shear modulus on the stress, we
take the material shear modulus μ as three different
situations:
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Fig. 5 Distribution of stress for elastic medium with a cylindri-
cal lining (r = r0, θ = π/2)

Fig. 6 Distribution of stress as μ changes in different ways
(r = r0, θ = π/2)

μ−(r) = 0.5 ∗ μ0

(
1 + e

er/r0

)
, (45)

μ0(r) = μ0, (46)

μ+(r) = μ0

(
1 − 0.5

e

er/r0

)
. (47)

In addition, the density ρ(r) = ρ0 and Poisson’s ra-
tio ν(r) = ν0 = 0.25 are taken. In this case, the nor-
malized stress σ ∗

θ as a function of dimensionless wave
number αr0 is shown in Fig. 6. It is found that when
the density and Poisson’s ratio are kept unchanged, the
increase of shear modulus in the radial direction make
the stress decreased, while the decrease of shear mod-

Fig. 7 Angular distribution of stress σ ∗
θ around the hole as μ

changes in different ways (αr0 = 0.2)

Fig. 8 Angular distribution of stress σ ∗
θ around the hole as μ

changes in different ways (αr0 = 2.0)

ulus can increase the stress as wave number less than
about 2.2.

Figures 7 and 8 show the angular distribution of
the stress σ ∗

θ around the hole for two wave numbers;
αr0 = 0.2 and αr0 = 2.0. At the low wave number,
the stress is not only symmetric with respect to the x-
axis but also approximately symmetric with respect to
the y-axis. As the shear modulus decreases along the
radial direction, the stress around the hole obviously
increases; on the contrary, as the shear modulus in-
creases, the stress reduces. For a high frequency inci-
dent wave with αr0 = 2.0, the stress is no longer sym-
metric with respect to the y-axis. The peak stress is
shifted toward the incident side of the hole for μ0(r)

and μ+(r) but toward the other side for μ−(r). In this
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Fig. 9 FGM plate with a circular hole subjected to biaxial load
at infinity

Fig. 10 Angular distribution of stress σθ/σ0 around the hole as
μ changes in different ways under biaxial load

case, the magnitude of stress is generally lower than
that for a low frequency incident wave with αr0 = 0.2.

For a special case of incident wave, in which α →
0, the incident wave represents a biaxial loading with
σxx = −σ0 and σyy = −σ0ν/(1 − ν) [27], as shown
in Fig. 9. We choose three different variations of
shear modulus μ−(r),μ0(r) and μ+(r) as shown in
Eqs. (45)–(47). In addition, the density and Poisson’s
ratio are kept as constant and ν = 0.25. With using
the method introduced by Yang et al. [28], the stress
σθ/σ0 around the hole is derived and the result is
shown in Fig. 10. Compared with Fig. 7, it is found
that the stress for the low frequency incident wave with
αr0 = 0.2 is only slightly different from the static so-

Table 1 The dimensionless dynamic and static stresses at the
position of θ = π/2 for three different variations of shear mod-
ulus

μ−(r) μ0(r) μ+(r)

Dynamic stress 3.804 2.669 1.743

Static stress 3.817 2.667 1.751

Fig. 11 Distribution of stress as ρ changes in different ways
(r = r0, θ = π/2)

lution. And if a lower wave number is taken, the corre-
sponding result will be closer to the static answer. For
example, the dynamic stress at the position of θ = π/2
for wave number αr0 = 0.01 is calculated and shown
in Table 1. Compared with the static stress, it is ob-
served that the results are very close and the error is
less than 0.5 %.

4.2 Effects of variations of density on the stress

The density ρ is taken as three different situations:

ρ−(r) = 0.5 ∗ ρ0

(
1 + e

er/r0

)
, (48)

ρ0(r) = ρ0, (49)

ρ+(r) = ρ0

(
1 − 0.5

e

er/r0

)
, (50)

In addition, the shear modulus μ(r) = μ0 and Pois-
son’s ratio ν(r) = ν0 = 0.25 are used. In this case,
the variation of stress σ ∗

θ with the dimensionless wave
number αr0 is shown in Fig. 11. It can be seen that
the change of density influences the stress obviously
in the region of high frequency especially for the case
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Fig. 12 Angular distribution of stress σ ∗
θ around the hole as ρ

changes in different ways (αr0 = 0.2)

Fig. 13 Angular distribution of stress σ ∗
θ around the hole as ρ

changes in different ways (αr0 = 2.0)

of ρ−(r). As wave number αr0 → 0, the variation of
density has little effect on the stress. That’s because
the situation of αr0 → 0 can be considered as a static
loading condition. In the static state, as we all know,
the stress is not influenced by the change of density.

Figures 12 and 13 show the angular distribution
of the stress σ ∗

θ around the hole for two wave num-
bers; αr0 = 0.2 and αr0 = 2.0. At the low wave num-
ber, the stress is symmetric with respect to both axes
and the influence of the variation of density on the
stress is small. For a high frequency incident wave
with αr0 = 2.0, the peak stress is shifted toward the
incident side of the hole for ρ−(r) but toward the other
side for ρ+(r), which is contrary to the case of shear
modulus.

Fig. 14 Distribution of stress as ν changes in different ways
(r = r0, θ = π/2)

4.3 Effects of variations of Poisson’s ratio on the
stress

Finally, to examine the effects of the material Pois-
son’s ratio ν, we take the following three different
functions:

ν−(r) = 0.5 ∗ ν0

(
1 + e

er/r0

)
, (51)

ν0(r) = ν0, (52)

ν+(r) = ν0

(
1 − 0.5

e

er/r0

)
, (53)

where ν0 = 0.25 and other material properties are kept
as constant. In this case, the distribution of normalized
stress σ ∗

θ is shown in Fig. 14. It is found that the in-
crease of Poisson’s ratio in the radial direction reduces
the stress, while the decrease of Poisson’s ratio makes
the stress increased, except for the case of wave num-
ber more than about 3.1.

Figures 15 and 16 show the angular distribution of
the stress σ ∗

θ around the hole for two wave numbers;
αr0 = 0.2 and αr0 = 2.0. At the low wave number,
the effect of Poisson’s ratio on the stress is similar to
that of shear modulus, but the influence level is rela-
tively lower. For the case of αr0 = 2.0, the peak stress
is shifted toward the incident side of the hole for all
three situations. Moreover, the change of the magni-
tude of stress is small.

5 Conclusions

We studied the two-dimensional problem of dynami-
cal stress distribution in a functionally graded mate-
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Fig. 15 Angular distribution of stress σ ∗
θ around the hole as ν

changes in different ways (αr0 = 0.2)

Fig. 16 Angular distribution of stress σ ∗
θ around the hole as ν

changes in different ways (αr0 = 2.0)

rial plate with a circular hole under plane compres-
sional waves at infinity. By using the method of piece-
wise homogeneous layers, the problem is reduced ap-
proximately to the case where the homogeneous ma-
terial contains N rings which have different material
constants, and thus it can be solved based on the the-
ory of the complex variable functions. Discussions are
made about the effects of shear modulus, density and
Poisson’s ratio on the dynamic stress around the cir-
cular hole by numerical examples. It is found that
the decrease of shear modulus in the radial direction
makes the stress increased for the low frequency inci-
dent wave, while decreased for the high frequency in-
cident wave. However, the increase of shear modulus
reduces the stress for each frequency incident wave.
On the other hand, the change of density influences

the stress obviously only for the high frequency inci-
dent wave. Additionally, the effect of Poisson’s ratio
on the stress is similar to that of shear modulus, but
the influence level is relatively lower. Thus, the dy-
namic stress around the circular hole in the infinite
medium can be effectively reduced by choosing the
proper change ways of the radial material parameters
for different frequency incident wave.
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