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Abstract This paper uses thermal non-equilibrium
model to study transient heat transfer by natural con-
vection of a nanofluid over a vertical wavy surface.
The model used for the nanofluid incorporates the ef-
fects of Brownian motion and thermophoresis. Three-
temperature model is applied to represent the local
thermal non-equilibrium among the particle, fluid, and
solid-matrix phases. Finite difference method is used
to solve the dimensionless governing equations of the
problem. The obtained results are displayed in 2D
graphs to illustrate the influences of the different phys-
ical parameters on local skin-friction coefficient, local
Nusselt numbers for fluid, particle and solid phases
and local Sherwood number. The results for velocity
component, nanoparticle volume fraction, fluid tem-
perature, particle temperature and solid-matrix tem-
perature are presented in 3D graphs as a function of
the axial and transverse coordinates. All the obtained
results are discussed.

Keywords Nanofluid · Wavy surface · Transient
analysis · Non-equilibrium model

Nomenclature
ā dimensional amplitude of the wavy surface
A amplitude-wave length ratio, ā/L
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Cf local skin-friction coefficient, defined by
Eq. (43)

Da Darcy number, defined by Eq. (16)
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
g gravitational acceleration
hfp heat transfer coefficient for fluid/particle

interface
hf s heat transfer coefficient for fluid/solid

interface
k thermal conductivity
K permeability of the porous medium
L wavelength of the wavy surface
Le Lewis number, defined by Eq. (18)
Nb Brownian motion parameter, defined by

Eq. (20)
Nr buoyancy ratio, defined by Eq. (19)
Nt thermophoresis parameter, defined by

Eq. (21)
Nhp Nield number for the fluid/particle interface,

defined by Eq. (22)
Nhs Nield number for the fluid/solid interface,

defined by Eq. (23)
Nux local Nusselt number, defined by

Eqs. (37)–(39)
P pressure
Pr Prandtl number, defined by Eq. (17)
Ra Rayleigh number, defined by Eq. (15)
Sh Sherwood number, defined by Eq. (40)
t dimensional time
T dimensional temperature
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V velocity vector
u, v dimensional velocity components
ū, v̄ dimensionless velocity components, defined

by Eq. (7)
Ũ characteristic velocity
x, y dimensional Cartesian coordinates
x̄, ȳ dimensionless Cartesian coordinates, defined

by Eq. (7)

Greek symbols
α thermal diffusivity
β volumetric expansion coefficient for the fluid
γp modified thermal capacity ratio, defined by

Eq. (24)
γs modified thermal capacity ratio, defined by

Eq. (25)
ε porosity
εp modified thermal diffusivity ratio, defined by

Eq. (26)
εs modified thermal diffusivity ratio, defined by

Eq. (27)
μ viscosity of the fluid
ρ density
(ρc) heat capacity
σ̄ dimensional coordinate of the wavy surface
σ dimensionless coordinate of the wavy

surface, defined by Eq. (7)
τ dimensionless time parameter, defined by

Eq. (7)
τw wall shear stress
θ dimensionless temperature, defined by

Eq. (7)
φ dimensional nanoparticle volume fraction
Φ dimensionless nanoparticle volume fraction,

defined by Eq. (7)

Subscripts
f fluid phase
p particle phase
s solid-matrix phase
w surface condition
∞ condition far away from the surface

1 Introduction

Nanofluids are multiphase colloidal suspensions which
are comprised of nanometer sized metallic or non
metallic particles suspended in abase liquid [1]. These

liquids show a considerable increase in thermal con-
ductivity for very small volume fraction of solid parti-
cles. Therefore, research is underway to apply nanoflu-
ids in environments where higher heat flux is en-
countered and the conventional fluid is not capable
of achieving the desired heat transfer. Kuznetsov and
Nield [2] discussed natural convection boundary-layer
flow of a nanofluid past a vertical plate. The Cheng–
Minkowycz problem for natural convective boundary-
layer flow in a porous medium saturated by a nanofluid
was studied by Nield and Kuznetsov [3]. In this article
they used a model incorporates the effects of Brown-
ian motion and thermophoresis as well as the Darcy
model for the porous medium. Kuznetsov and Nield
[4] developed a theory of double-diffusive nanofluid
convection in porous media and applied it to investi-
gating the onset of nanofluid convection in a horizontal
layer of a porous medium saturated by a nanofluid for
the case when the base fluid of the nanofluid is itself
a binary fluid such as salty water. Thermal instabil-
ity in a porous medium layer saturated by a nanofluid
was reported by Nield and Kuznetsov [5]. They found
that the critical thermal Rayleigh number can be re-
duced or increased by a substantial amount, depend-
ing on whether the basic nanoparticle distribution is
top-heavy or bottom-heavy, by the presence of the
nanoparticles. A literature survey shows that the com-
prehensive review of these problems was made by the
authors [6–11].

In recent years, the local thermal non-equilibrium
model has been given considerable attention and has
been utilized in various fields [12] due to its perti-
nence in applications. For example, Lee and Vafai [13]
employed the thermal non-equilibrium model to in-
vestigate the forced convection flow through a chan-
nel filled with a porous medium. They obtained an-
alytical solutions for the fluid- and solid-phase tem-
perature distributions. Mansour et al. [14] used the
non-equilibrium model to study natural convection a
porous cavity under the influence of thermal radiation.
Chamkha et al. [15] studied the flow and heat trans-
fer of a micropolar fluid a long a elliptic cylinder in
porous media using thermal non-equilibrium model.
For nanofluids, Kuznetsov and Nield [16] reported on
effect of local thermal non-equilibrium on the onset of
convection in a porous medium layer.

On the other hand, the study of heat transfer near
irregular surfaces is of fundamental importance be-
cause it is often found in many industrial applications.
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The presence of irregular surface not only alters the
flow field but also alters the heat transfer characteris-
tics. Hady et al. [17] discussed the problem of MHD
free convection flow along a vertical wavy surface
with heat generation or absorption effect. Kumar and
Shalini [18] studied the non- Darcy free convection in-
duced by a vertical wavy surface in a thermally strat-
ified porous medium. Molla et al. [19] examined the
natural convection flow along a vertical wavy surface
with uniform surface temperature in the presence of
heat generation or absorption. Hossain and Rees [20]
studied the heat and mass transfer in natural convec-
tion flow along a vertical wavy surface with constant
wall temperature and concentration in Newtonian flu-
ids. Cheng [21] presented the solutions of the heat and
mass transfer in natural convection flow along a ver-
tical wavy surface in porous medium saturated with
Newtonian fluids. Mahdy [22] investigated the effect
of Soret and Dufour numbers on MHD non-Darcian
free convection from a vertical wavy surface. Jang and
Yan [23] studied the transient problem of natural con-
vection heat and mass transfer along a wavy surface.

Motivated by the investigations mentioned above,
the purpose of the present work is to consider the prob-
lem of boundary-layer free convection along a verti-
cal wavy surface in a porous medium saturated by a
nanofluid using thermal non-equilibrium model.

2 Formulation and analysis

Consider unsteady, two-dimensional flow of a nano-
fluid consisting of a base fluid and small nanoparti-
cles over a vertical wavy surface. Figure 1 shows the
schematic of the problem under consideration and co-
ordinate system. In the present problem, the following
assumptions have been made:

(a) The wavy surface is described by y = σ̄ (x) = ā ·
sin(2πx/L).

(b) The fluid porous medium properties are assumed
to be homogeneous.

(c) The effect of Brownian motion is considered.
(d) The local thermal non-equilibrium model among

the particles, fluid, and solid-matrix phases is ap-
plied.

(e) The Oberbeck–Boussinesq approximation is em-
ployed.

(f) Initially, i.e. t < 0, the fluid, wavy surface, particle
temperatures and nanoparticles volume fraction
have constant values T∞ and φ∞, respectively.

Fig. 1 Physical model and coordinates

(g) At time t = 0, the temperatures of fluid, wavy sur-
face, particles and nanoparticles volume fraction
changed to new values Tw and φw , respectively.

With the above assumptions, the governing equa-
tions for fluid flow are given as (see [2], [16] and [23]).

Continuity equation

∇ · V = 0. (1)

Momentum equation

ρf

[
1

ε

∂V

∂t
+ V · ∇V

ε2

]

= μ
(∇2V

) − ∇P − μ

K
V

+
[
(ρp − ρf ∞)(φ − φ∞)

− (1 − φ∞)ρf ∞β(Tf − T∞)

]
g. (2)

Temperature equation for fluid phase

ε(1 − φ∞)(ρC)f

[
∂Tf

∂t
+ 1

ε
V · ∇Tf

]

= ε(1 − φ∞)kf

(∇2Tf

)

× ε(1 − φ∞)(ρC)p

[
DB(∇φ · ∇Tf )

+ DT

T∞
(∇Tf · ∇Tf )

]

+ hfp(Tp − Tf ) + hf s(Ts − Tf ). (3)
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Temperature equation for particle phase

εφ∞(ρC)p

[
∂Tp

∂t
+ 1

ε
V · ∇Tp

]

= εφ∞kp

(∇2Tp

) − hfp(Tp − Tf ). (4)

Temperature equation for solid phase

(1 − ε)(ρC)s
∂Ts

∂t

= (1 − ε)ks

(∇2Ts

) − hf s(Ts − Tf ). (5)

Nanoparticle volume fraction equation

∂φ

∂t
+ 1

ε
V · ∇φ = DB

(∇2φ
) +

[
DT

T∞
∇2Tf

]
(6)

where, V = (u, v) is the velocity vector with u and v

being the x- and y-components of velocity and all the
parameters appearing in the above equations are given
in the nomenclatures.

Introducing the following dimensionless quantities

x̄ = x

L
, ȳ = y − σ̄

L
Ra1/4, τ = αf t

L2
Ra1/2,

σ = σ̄

L
, ū = Lu

αf

Ra−1/2,

v̄ = L

αf

Ra−1/4(v − σ ′u), p̄ = L2

ρα2
f

Ra−1p,

θ = T − T∞
Tw − T∞

, Φ = φ − φ∞
φw − φ∞

.

(7)

By using Eq. (7) and ignoring the small order terms
in Ra (after allowing Ra → ∞), Eqs. (1)–(6) are con-
verted to

∂ū

∂x̄
+ ∂v̄

∂ȳ
= 0, (8)

1

Pr

[
1

ε

∂ū

∂τ
+ ū

ε2

∂ū

∂x̄
+ v̄

ε2

∂ū

∂ȳ

]

= − 1

Pr

[
∂p̄

∂x̄
− σ ′Ra1/4 ∂p̄

∂ȳ

]

+ (
1 + σ ′2)∂2ū

∂ȳ2
+ θf − NrΦ − Da−1u, (9)

1

Pr

σ ′′

ε2
u2 + σ ′(θf − NrΦ)

= σ ′

Pr

∂p̄

∂x̄
− (1 + σ ′2)

Pr
Ra1/4 ∂p̄

∂ȳ
, (10)

∂θf

∂τ
+ ū

ε

∂θf

∂x̄
+ v̄

ε

∂θf

∂ȳ

= (
1 + σ ′2)[∂2θf

∂ȳ2
+ Nb

∂Φ

∂ȳ

∂θf

∂ȳ
+ Nt

(
∂θf

∂ȳ

)2]

+ NHp(θp − θf ) + NHs(θs − θf ), (11)

∂θp

∂τ
+ ū

ε

∂θp

∂x̄
+ v̄

ε

∂θp

∂ȳ

= εp

(
1 + σ ′2)∂2θp

∂ȳ2
− γpNHp(θp − θf ), (12)

∂θs

∂τ
= εs

(
1 + σ ′2)∂2θs

∂ȳ2
− γsNHs(θs − θf ), (13)

∂Φ

∂τ
+ ū

ε

∂Φ

∂x̄
+ v̄

ε

∂Φ

∂ȳ

= (1 + σ ′2)
Le

[
∂2Φ

∂ȳ2
+ Nt

Nb

∂2θf

∂ȳ2

]
, (14)

where,

Ra = gβ(1 − φ∞)(Tw − T∞)L3

υα

is the Rayleigh number. (15)

Da =
[
k2gβ(1 − φ∞)(Tw − T∞)

υαf L

]1/2

is the Darcy number. (16)

Pr = υ

α
is the Prandtl number. (17)

Le = αf

D
is the Lewis number. (18)

Nr = (ρp − ρf ∞)(φw − φ∞)

(1 − φ∞)βρf ∞(Tw − T∞)

is the buoyancy ratio. (19)

Nb = (ρc)pDB(φw − φ∞)

(ρc)f αf

is the Brownian motion parameter. (20)

Nt = (ρc)pDT (Tw − T∞)

(ρc)f αf T∞
is the thermophoresis parameter. (21)

NHp =
[

h2
fpLυαf

ε2(1 − φ∞)3k2
f (Tw − T∞)gβ

]1/2

is Nield

number for the fluid/particle interface. (22)

NHs =
[

h2
f sLυαf

ε2(1 − φ∞)3k2
f (Tw − T∞)gβ

]1/2

is Nield

number for the fluid/solid interface. (23)

γp = (1 − φ∞)(ρc)f

φ∞(ρc)p
is the fluid/particle modified

thermal capacity ratio. (24)

γs = ε(1 − φ∞)(ρc)f

(1 − ε)(ρc)s
is the fluid/solid modified

thermal capacity ratio. (25)
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εp = αp

αf

is the fluid/particle modified thermal

diffusivity ratio. (26)

εs = αs

αf

is the fluid/solid modified thermal

diffusivity ratio. (27)

In the current problem, the pressure gradient ∂p̄
∂x̄

is
zero [23]. Therefore, Eqs. (9) and (10) can be reduced
to the following equation:

1

Pr

[
1

ε

∂ū

∂τ
+ ū

ε2

∂ū

∂x̄
+ v̄

ε2

∂ū

∂ȳ

]

= (
1 + σ ′2)∂2ū

∂ȳ2
− Da−1u

+ 1

1 + σ ′2

(
θf − NrΦ − ū2σ ′σ ′′

Prε2

)
. (28)

It is noticeable that σ ′ and σ ′′ indicate the first and sec-
ond differentiations of σ with respect to x̄. In addition,
the singularity at the leading edge can be removed by
introducing the following transformation.

X = x̄, Y = ȳ

(4x̄)1/4
,

U = ū

(4x̄)1/2
, V = (4x̄)1/4v̄.

(29)

Equations (8), (11), (12), (13), (14) and (28) become:

4X
∂U

∂X
+ 2U − Y

∂U

∂Y
+ ∂V

∂Y
= 0, (30)

1

Pr

[
1

ε

∂U

∂τ
+ 1

ε2

(
4XU

∂U

∂X
+ (V − UY)

∂U

∂Y

+
(

2 + 4Xσ ′σ ′′

1 + σ ′2

)
U2

)]

= (
1 + σ ′2)∂2U

∂Y 2
− 2

√
X

Da
U

+ 1

1 + σ ′2 (θf − NrΦ), (31)

∂θf

∂τ
+ 1

ε

(
4XU

∂θf

∂X
+ (V − UY)

∂θf

∂Y

)

= (
1 + σ ′2)[∂2θf

∂Y 2
+ Nb

∂Φ

∂Y

∂θf

∂Y
+ Nt

(
∂θf

∂Y

)2]

+ NHp(θp − θf ) + NHs(θs − θf ), (32)

∂θp

∂τ
+ 1

ε

(
4XU

∂θp

∂X
+ (V − UY)

∂θp

∂Y

)

= εp

(
1 + σ ′2)∂2θp

∂Y 2
− γpNHp(θp − θf ), (33)

∂θs

∂τ
= εs

(
1 + σ ′2)∂2θs

∂ȳ2
− γsNHs(θs − θf ), (34)

∂Φ

∂τ
+ 1

ε

(
4XU

∂Φ

∂X
+ (V − UY)

∂Φ

∂Y

)

= (1 + σ ′2)
Le

[
∂2Φ

∂Y 2
+ Nr

Nt

∂2θf

∂Y 2

]
. (35)

The dimensionless forms of the boundary are

Y = 0: U = V = 0, θf = θp = θs = 1, Φ = 1,

Y → ∞: U → 0, θf → 0, θp → 0,

θs → 0, Φ → 0.

(36)

The local Nusselt number for fluid, particle and
solid phases are defined, respectively, as:

Nuxf = hf x

kf

= −
[
X3Ra

4

]1/4(
1 + σ ′2)1/2 ∂θf

∂Y

∣∣∣∣
Y=0

, (37)

Nuxp = hpx

kp

= −
[
X3Ra

4

]1/4(
1 + σ ′2)1/2 ∂θp

∂Y

∣∣∣∣
Y=0

, (38)

Nuxs = hsx

ks

= −
[
X3Ra

4

]1/4(
1 + σ ′2)1/2 ∂θs

∂Y

∣∣∣∣
Y=0

. (39)

The local Sherwood number is defined by:

Shx = hDx

D

= −
[
X3Ra

4

]1/4(
1 + σ ′2)1/2 ∂Φ

∂Y

∣∣∣∣
Y=0

. (40)

The local skin friction coefficient Cf x is defined as:

Cf x = 2τw

ρŨ2
(41)

where Ũ = L

αf Ra1/2 is characteristic velocity and the

shearing stress on the wavy surface is

τw =
[
μ

(
∂v

∂x
+ ∂u

∂y

)]
y=0

. (42)

Substituting Eq. (42) into Eq. (41) yields:

Cf x = 2Pr

(
4X

Ra

)1/4(
1 + σ ′2)[∂U

∂Y

]
Y=0

. (43)
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Fig. 2 Grid independence results at (A = 0.1, Da = 1, Le = 10,
Pr = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 10)

3 Results and discussion

In order to solve these unsteady, non-linear coupled
Eqs. (32) to (35) under the conditions (36), an implicit
finite difference scheme of Crank-Nicolson type has
been employed. This method has been extensively de-
veloped in recent years and remains one of the most re-
liable procedures for solving partial differential equa-
tion systems. The details of this method can be found
in recent article reported by Chamkha et al. [24]. The
steady-state criteria for the relative deviations of the
variables U , V , θf , θp , θs and Φ between two time in-
tervals is less than 10−5. Figure 2 shows an accuracy
tests using the finite difference method using three sets
of grids: 30×30, 40×40, 60×60. A 40×40 uniform
grid is found to meet the requirements of both the grid
independence study and the computational time lim-
its. The numerical method was implemented in a FOR-
TRAN software. The obtained results are plotted in 2D
and 3D graphs by using ORIGIN6 software and MAT-
LAB software, respectively. The results of the present
problem are presented in Figs. 3–16. In all the results
to be reported below, the values of Nt , Nb , Nr , Pr and
Le are taken to be 0.5, 0.5, 0.5, 10 and 10 respectively,
as Kuznetsov and Nield [2]. Also, values of ε, εp , εs ,
γp , γs and Da are fixed at 0.4, 1, 1, 1, 1 and 1, respec-
tively (Mansour et al. [14] and Chamkha et al. [15]).

Figures 3–7 show the effects of dimensionless time
parameter τ on the local skin friction coefficient, lo-
cal Sherwood number, local Nusselt for fluid phase,
local Nusselt number for particle phase and local Nus-
selt number for solid phase, respectively. It is found

Fig. 3 Effects of dimensionless time parameter τ on the local
skin friction coefficient at (A = 0.1, Da = 1, Pr = 10, Le = 10,
Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)

Fig. 4 Effects of dimensionless time parameter τ on the lo-
cal Sherwood number at (A = 0.1, Da = 1, Pr = 10, Le = 10,
Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)

that, at the initial transients, the hydrodynamic bound-
ary layer thickness and the wall shear stress take small
values. The reason for that is the buoyancy-induced
flow velocity is relatively low at the initial transients.
As the time parameter τ increases the hydrodynamic
boundary layer thickness and the wall shear stress in-
crease, which in turn, the skin-friction coefficient in-
creases as well. Also, the maximum values of skin-
friction coefficient arises beside the wall but these val-
ues decreases as X increases (far way from the wall).
Regarding the local Sherwood number, local Nusselt
for fluid phase, local Nusselt number for particle phase
and local Nusselt number for solid phase, it decrease
with increase the dimensionless time parameter. In ad-
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Fig. 5 Effects of dimensionless time parameter τ on the local
Nusselt for fluid phase at (A = 0.1, Da = 1, Pr = 10, Le = 10,
Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)

Fig. 6 Effects of dimensionless time parameter τ on the local
Nusselt number for particle phase at (A = 0.1, Da = 1, Pr = 10,
Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)

dition, at the initial transients the maximum values
of the local Sherwood number, local Nusselt for fluid
phase, local Nusselt number for particle phase and lo-
cal Nusselt number for solid phase remain the same.
But, as the time proceeds, these values decrease as X

increases. All these behaviors are plotted in Figs. 3–
7 with referenced case A = 0.1, Da = 1, Pr = 10,
Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1,
NHs = 1.

The effects of thermal nonequilibrium between the
fluid and particle represented by the variations of
Nield number for the fluid/particle interface NHp on
the steady profiles of local skin-friction coefficient and
local Sherwood number are plotted in Fig. 8. The re-
sults show that, increasing in the Nield number for

Fig. 7 Effects of dimensionless time parameter τ on the local
Nusselt number for solid phase at (A = 0.1, Da = 1, Pr = 10,
Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)

Fig. 8 Effects of Nield number for the fluid/particle interface
NHp on the steady profiles of local skin-friction coefficient and
local Sherwood number at (A = 0.1, Da = 1, Pr = 10, Le = 10,
Nb = 0.5, Nr = 0.5, Nt = 0.5, NHs = 1)

the fluid/particle interface NHp leads to a decreasing
the intensity of buoyancy and hence the flow intensity,
which in turn, the skin-friction coefficient decreases
as well. The same behavior is observed for the lo-
cal Sherwood number. In addition, the variations of
NHp have a significant effects on the local Nusselt
number for fluid, particle and sold-matrix phases. This
clearly can be found in Fig. 9. The Nusselt number
for fluid and solid-matrix phases increase as NHp in-
creases whereas, the Nusselt number for particle phase
takes the inverse behaviors.
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Fig. 9 Effects of Nield number for the fluid/particle interface
NHp on the steady profiles of local Nusselt numbers for fluid,
particle and solid phases at (A = 0.1, Da = 1, Pr = 10, Le = 10,
Nb = 0.5, Nr = 0.5, Nt = 0.5, NHs = 1)

Fig. 10 Effects of Nield number for the fluid/solid interface
NHs on the steady profiles of local skin-friction coefficient and
local Sherwood number at (A = 0.1, Da = 1, Pr = 10, Le = 10,
Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1)

With the help of Figs. 10 and 11, the effects of ther-
mal nonequilibrium between the fluid and solid phases
at the steady state can be observed. The variations of
Nield number for the fluid/solid interface NHs repre-
sent this influence. The referenced case for these fig-
ures is A = 0.1, Da = 1, Pr = 10, Le = 10, Nb = 0.5,
Nr = 0.5, Nt = 0.5, NHp = 1. The results show that,
increasing in NHs results in an increase in the ther-
mal nonequilibrium state between the fluid and solid
phases. This can be found clearly in the profiles of
skin-friction coefficient and local Nusselt number for

Fig. 11 Effects of Nield number for the fluid/solid interface
NHs on the steady profiles of local Nusselt numbers for fluid,
particle and solid phases at (A = 0.1, Da = 1, Pr = 10, Le = 10,
Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1)

solid matrix. These profiles have significant influences
with variations of NHs beside the wall but far away
from the wall these influences is little observed. This
can be attributed to the difference between the fluid
temperature and solid-matrix temperature which de-
crease as X increases (far away from the wall). In addi-
tion, increasing in NHs leads to increase both of skin-
friction, local Nusselt number for fluid phase and local
Nusselt number for solid phase, however, it decrease
local Sherwood number and local Nusselt number for
particle phase.

Figures 12–16 display the axial velocity component
U , nanoparticle volume fraction Φ , fluid temperature
θf , particle temperature θp and solid-matrix tempera-
ture θs as a function of the axial and transverse coordi-
nates at the steady-state case. It is clear that, the effect
of sinusoidal variation of the wavy surface is signifi-
cant through the profiles of the velocity, nanoparticle
volume fraction, fluid temperature, particle tempera-
ture and solid matrix temperature. Also, the amplitude
of the velocity component takes its maximum beside
the wall and it decreases as X increases. However, the
amplitudes of nanoparticle volume fraction, fluid tem-
perature, particle temperature and solid matrix temper-
ature remain the same. These profiles can be found in
Figs. 12–16 with referenced case A = 0.1, Da = 1,
Pr = 10, Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5,
NHp = 1, NHs = 1.
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Fig. 12 Axial velocity profiles at (A = 0.1, Da = 1, Pr = 10, Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)

Fig. 13 Profiles of nanoparticle volume fraction Φ at (A = 0.1, Da = 1, Pr = 10, Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1,
NHs = 1)

Fig. 14 Fluid temperature profiles θf at (A = 0.1, Da = 1, Pr = 10, Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)
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Fig. 15 Particle temperature profiles θp at (A = 0.1, Da = 1, Pr = 10, Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1, NHs = 1)

Fig. 16 Solid-matrix temperature profiles θs at (A = 0.1, Da = 1, Pr = 10, Le = 10, Nb = 0.5, Nr = 0.5, Nt = 0.5, NHp = 1,
NHs = 1)

4 Conclusions

In the present paper, heat transfer by natural convec-
tion of a nanofluid over a wavy surface using thermal
nonequilibrium model was studied. The nonequilib-
rium state was taken among fluid, particle and solid
phases. A numerical solution of the problem was
obtained using finite-difference method with Crank-
Nicolson type. A parametric study was performed to
examine the effects of dimensionless time parameter,
Nield number for the fluid/particle interface and Nield
number for the fluid/solid interface on the flow and
heat transfer characteristics. From this investigation,
we can draw the following conclusions:

• The local skin-friction coefficient increases mono-
tonically as the dimensionless time parameter in-

creases, whereas, the local Sherwood number, local
Nusselt numbers for fluid, particle and solid phases
decreases as the dimensionless time parameter in-
creases.

• Increasing in the Nield number for the fluid/particle
interface leads to increase the difference between
the fluid and particle temperatures which increase
the nonequilibrium state between the fluid and par-
ticle.

• Both of Nusselt numbers for fluid and solid phases
increase as Nield number for the fluid/particle inter-
face increases whereas, the skin-friction coefficient,
Sherwood number and Nusselt number for particle
phase take the inverse behaviors.

• Increasing in the Nield number for the fluid/solid
interface leads to increase skin-friction coefficient,
Nusselt number for fluid phase and Nusselt number
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for solid phase, whereas, the Sherwood number and
Nusselt number for particle phase take the opposite
behaviors.
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