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Abstract A new Boundary Integral Equation (BIE)
formulation for Stokes flow is presented for three-
dimensional and axisymmetrical problems using non-
primitive variables, assuming velocity field is pre-
scribed on the boundary. The formulation involves the
vector potential, instead of the classical stream func-
tion, and all three components of the vorticity are im-
plied. Furthermore, following the Helmholtz decom-
position, a scalar potential is added to represent the
solenoidal velocity field. Firstly, the BIEs for three-
dimensional flows are formulated for the vector po-
tential and the vorticity by employing the fundamen-
tal solutions in free space of vector Laplace and bi-
harmonic equations. The equations for axisymmetric
flows are then derived from the three-dimensional for-
mulation in a second step. The outcome is a domain in-
tegral free BIE formulation for both three-dimensional
and axisymmetric Stokes flows with prescribed veloc-
ity boundary condition. Numerical results are included
to validate and show the efficiency of the proposed ax-
isymmetric formulation.
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1 Introduction

During the last few decades there has been an increas-
ing interest in using BIE methods for incompressible
Stokes flow. The benefits invoked are the reduction in
dimensionality of the problem and a greater ease in
dealing with unbounded domain boundary conditions.
The theoretical foundation for handling Stokes flow by
the Boundary Integral Equation (BIE) method was laid
by Ladyzhenskaya [1] within the framework of hydro-
dynamic potentials. The first BIE formulation for sim-
ulating Stokes flow past particles was developed by
Youngren and Acrivos [2]. Since then, there have been
numerous investigations employing integral equation
techniques in two and three dimensions. The imple-
mentation has mostly been performed using primitive
variables, namely velocity and pressure. The book by
Pozrikidis [3] offers an overview of the main develop-
ments.

In this work we focus on non-primitive variable
(NPV) formulation in the context of BIE. Let us first
consider the status of the NPV formulation, indepen-
dently of BIE issues. The NPV formulation for two-
dimensional problems (i.e. the well known stream
function—vorticity formulation) involves two vari-
ables instead of three and has the important advantage
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that continuity condition is automatically fulfilled. On
the other hand, for three-dimensional problems, the
number of unknowns increases: six variables instead
of four in primitive variables formulation. Further-
more, Hirasaki and Hellums [4] have shown that it is
convenient to introduce one more harmonic scalar po-
tential variable in order to simplify the boundary con-
ditions when through-flow is allowed. In other words,
the Helmholtz decomposition has to be employed to
decompose the velocity field into a scalar and a vector
potential. But even so, the NPV formulation remains
attractive since it offers additional advantages: (1) the
continuity condition keeps on being automatically en-
forced by the vector potential, (2) the pressure term
is eliminated (the pressure can be calculated as a by-
product).

Having summarized the features of the NPV formu-
lation, we now focus on the BIE formulation based on
non-primitive variables. For two-dimensional Stokes
flows, one obtains a biharmonic problem in terms of
stream function, which is usually transformed to an
equivalent set of two coupled harmonic equations.
This is carried out by introducing the vorticity, so that
the two flow variables (vorticity ω and stream func-
tion ψ ) are respectively the solutions of Laplace and
Poisson type equations. The presence of the harmonic
forcing term in the stream function equation gives rise
to a domain integral. Although the domain integral can
be computed, its direct evaluation is contrary to the
spirit of BIEM and requires a significant amount of
computational resources. Indeed the presence of a do-
main integral constitutes a bottleneck for the BIEM.
However, when the source term is harmonic, the do-
main integral can be reformulated in terms of bound-
ary integrals, following the method initiated by Fair-
weather et al. [5]. This domain integral free approach
has been developed further for two-dimensional flows
with steady fixed boundaries [6, 7] and steady and
transient free surface problems [8–11].

In the same vein, the analysis of axisymmetrical
flows can be performed in terms of the azimuthal com-
ponents ω and ψ of the vorticity vector ω and the
stream vector ψ to represent the fluid motion in the
meridian plane. These two flow variables are solutions
of second order partial differential equations contain-
ing the elliptic differential operator E2. Unfortunately,
the procedure, valid for two-dimensional flows, lead-
ing to purely boundary integral equations cannot be

extended in a straightforward manner to axisymmetric
problems. Therefore, in previous works, the computa-
tion of the domain integral is carried out [12, 13].

Instead, it is shown in this paper that it is use-
ful to address three-dimensional Stokes flows as a
first step. It can be mentioned that, according to
best of our knowledge, there does not exist any
BIE method for three-dimensional Stokes flows using
non-primitive variables. Obtaining such equations for
three-dimensional problems is a goal in itself and at
the same time useful for axisymmetrical flows. At the
outset, the variables in the three-dimensional formu-
lation due to the Helmholtz decomposition are two
potentials (scalar φ and vector α) along with the vor-
ticity vector ω. Due to the involvement of two po-
tential this formulation is also referred as dual poten-
tial formulation. The equation for vorticity and vec-
tor potential are classical vector Laplace and Poisson
equation. The boundary conditions associated to each
dependent variable are extracted from the prescribed
velocity field. The BIE for the scalar potential, gov-
erned by the Laplace equation, is straightforward [14,
15]. The integral equation formulation for the vector
equations is directly carried out by employing the vec-
tor Green’s theorem. The initial approach proposed by
Fairweather et al. is then applied to get rid of the in-
volved domain integral. The BIEs for axisymmetrical
problems are derived in a second step from the three-
dimensional formulation.

The outline of this paper is as follows. In Sect. 2,
the procedure proposed by Fairweather et al. to obtain
BIEs describing slow two-dimensional steady viscous
flows is recalled. The difficulties that prevent obtain-
ing a domain integral free BIE formulation for axisym-
metric flows are also highlighted in Sect. 2. The gov-
erning equations for three-dimensional Stokes flow
in dual potential formulation, along with the bound-
ary conditions on each dependent variable, are pre-
sented in Sect. 3. Section 3 also recalls the necessary
background on the fundamental solutions for vector
Laplace and biharmonic equations. The BIEs are then
formulated in Sect. 5 for three-dimensional problems
and in Sect. 6 for axisymmetric problems. Section 7
comprises of numerical results for axisymmetric for-
mulation. The last section summarizes the findings and
includes some conclusive remarks.
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2 BIE formulations for two-dimensional/planar
flows

In this section we recall the BIE method for two-
dimensional Stokes flows, originally proposed by Fair-
weather et al. [5], to provide the basis for the three-
dimensional BIE formulation for Stokes flows.

For flows in two dimensions, lying in the xy plane,
the scalar vorticity ω is often selected as the nega-
tive z-component of the vorticity vector normal to the
plane of flow, namely

ω = −ω.iz = −∇ × u.iz (1)

where u = (ux,uy) is the fluid velocity and iz is the
unit vector normal to the plane of flow. The condition
of incompressibility ∇.u = 0 is satisfied by expressing
u in terms of a stream function ψ according to

u = ∇ × ψ iz = ∇ψ × iz (2)

This stream function [16] can be considered as the z-
component of a stream vector ψ to be touched upon
later for the study of genuinely three-dimensional
flows. The equations of viscous incompressible flow
in terms of scalar vorticity and stream function are

∇2ω = 0 (3)

∇2ψ = −ω (4)

where the vorticity transport equation (3) is obtained
by taking the curl of the momentum equation and
neglecting the inertia terms, while (4) is obtained
by substituting (3) into the vorticity definition (1).
The boundary conditions supplementing the two field
equations result from separating the normal and tan-
gential components of the velocity boundary condition
u|S = b. Here S represents the boundary of the domain
Ω which is simply connected and is provided with an
outward unit vector n and a tangential unit vector t in
an anticlockwise orientation. Letting s be the curvi-
linear coordinate along the boundary, one obtains the
following boundary conditions on the stream function

n.∇ψ × iz|S = iz × n.∇ψ |S
= t.∇ψ |S = ∂ψ

∂t

∣
∣
∣
∣
S

= n.b (5)

t.∇ψ × iz|S = iz × t.∇ψ |S
= −n.∇ψ |S = −∂ψ

∂n

∣
∣
∣
∣
S

= t.b (6)

Integrating the right hand side of (5) to obtain the
Dirichlet boundary conditions for the stream function

ψ |S =
∫ s

s1

n.bds′ + constant (7)

gives a single valued function with an arbitrary ad-
ditive constant, thanks to the global incompressibility
condition
∫

S

n.bds = 0

Equations (6) and (7) provide the two required bound-
ary conditions, deduced from the prescribed velocity
field.

Following standard procedure to obtain the BIE,
Eqs. (3) and (4) are transformed in their equivalent
integral equation representations by employing the
second Green’s theorem, particularized by involving
the fundamental solution of Laplace’s equation GH

and the concerned variable: vorticity or stream func-
tion. The fundamental solution satisfies the singularly
forced Laplace equation

∇2GH
(

x,x′) = −δ2(x − x′) (8)

where x is the observation point, x′ is the fixed loca-
tion of the singular source point and δ2 is the Dirac
delta function in two dimensions. Further, employing
the singular behaviour of fundamental solution as the
observation point approaches S, the integral equations
for vorticity and stream function can be written as fol-
lows [14, 15]:

c(x)ω(x) =
∫

S

ω(x′)∂GH

∂n

(

x,x′)dS′

−
∫

S

∂ω

∂n

(

x′)GH
(

x,x′)dS′ (9)

c(x)ψ(x) =
∫

S

ψ
(

x′)∂GH

∂n

(

x,x′)dS′

−
∫

S

∂ψ

∂n

(

x′)GH
(

x,x′)dS′

+
∫

Ω

ω
(

x′)GH
(

x,x′)dΩ ′ (10)

where the coefficient c(x) depends on the local geom-
etry of the boundary at the evaluation point (c = 1/2
if the surface is regular at x). As the stream func-
tion equation contains the vorticity as a forcing term,
a domain integral appears in the corresponding inte-
gral equation (10).

The idea to transform the domain integral in (10)
into a boundary integral is to introduce the free space
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fundamental solution of the biharmonic equation GB

defined by

∇4GB
(

x,x′) = ∇2∇2GB
(

x,x′) = −δ2
(

x − x′) (11)

Substituting in Green’s theorem the fundamental solu-
tion GB and ω one obtains
∫

Ω

{

ω
(

x′)∇2GB
(

x,x′) − GB
(

x,x′)∇2ω
(

x′)}dΩ ′

=
∫

S

ω
(

x′)∂GB

∂n

(

x,x′)dS′

−
∫

S

∂ω

∂n

(

x′)GB
(

x,x′)dS′ (12)

As vorticity is a harmonic function and due to the ad-
ditional constraint that ∇2GB = GH , the domain inte-
gral in (10) becomes a boundary integral, given by
∫

Ω

ω
(

x′)GH
(

x,x′)dΩ ′

=
∫

S

ω
(

x′)∂GB

∂n

(

x,x′)dS′

−
∫

S

∂ω

∂n

(

x′)GB
(

x,x′)dS′ (13)

which can be substituted in (10). Hence, the two-
dimensional viscous incompressible flows are repre-
sented by a set of coupled boundary integral equations.

Let us now consider flows that are symmetrical
about the z-axis. The velocity u is independent of
the azimuthal angle φ and its azimuthal component
u.iφ is zero, iφ being the unit vector normal to every
meridian plane φ = constant. The scalar vorticity ω

and stream function ψ are the azimuthal components
ω = ωφ of the vorticity vector ω and of the aforemen-
tioned stream vector ψ , namely

ωφ = ∇ × u.iφ, u = ∇ψ × iφ (14)

The axisymmetric Stokes flow equations for the scalar
vorticity and the stream function are obtained us-
ing the same procedure followed for two dimensions,
given as

E2ω = 0 (15)

E2ψ = −ω (16)

where the second order elliptic operator for axisym-
metrical problems E2 is defined in cylindrical coor-
dinates (ρ,φ, z) by E2 = ∇2 − 1/ρ2. The boundary
conditions on S, which is the cross section of the three-
dimensional fluid domain boundary with the meridian

plane, can be obtained in the same way as for two-
dimensional problems.

According to our literature survey, the only BIE im-
plementation in NPV for axisymmetric Stokes flows
has been proposed by Lu [12, 13]. The definition of
the stream function ‘ψL’ used by Lu is the same as
of Brenner [17] and is such that ψL = −ρψ . The re-
sulting operator E2

L is not self-adjoint and the second
Green’s theorem requires defining the conjugate op-
erator E∗2

L . It is thus needed to find G∗
L, the funda-

mental solution in free space of the conjugate equation
E∗2

L (G∗
L) = −δ.

However in our case E2 is a self-adjoint operator,
the second Green’s theorem can be applied straight-
forwardly to transform Eqs. (15) and (16) into inte-
gral equations by involving the fundamental solution
of E2 and the concerned variable. The problem is sim-
plified up to some extent but the vorticity always in-
duces a forcing term in the differential equation for the
stream function and the corresponding domain integral
appears in the integral equation. Transforming this do-
main integral into a surface one, on the same lines as
in the two dimensions proposed by Fairweather is no
longer possible, since the fundamental solution in free
space of E4 = −δ which is necessary has not been yet
obtained.

So, directly formulating the axisymmetrical prob-
lem cannot provide domain integral free BIE formu-
lation. Instead, a two step approach can be followed.
In a first step it is possible to obtain a domain integral
free formulation in three dimensions by taking the key
idea of Fairweather et al. for two-dimensional flows.
In a second step, the formulation of axisymmetrical
flows can be derived from the three-dimensional for-
mulation through proper substitutions and azimuthal
integration.

3 Three-dimensional flows: governing equations
and boundary conditions

The three-dimensional formulations in non-primitive
variables can be done by two different approaches.
For each, the distinctive feature is the way in which
the normal component of the prescribed boundary
velocity is enforced. The first approach is based on
the aforementioned stream vector u = ∇ × ψ (i.e.
the three-dimensional counterpart of the stream func-
tion). An elliptic problem over the boundary, gov-
erning an additional surface scalar unknown must be
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introduced [18]. The second approach, based on the
Helmholtz decomposition, introduces a vector poten-
tial α and a harmonic scalar potential ϕ to respectively
account for the rotational and irrotational parts of the
velocity field. So in both cases an extra problem has to
be solved, but the equation associated to the scalar po-
tential is well known in the BIE literature and is much
easier to solve than the elliptic problem arising in the
first case. Therefore, the second approach is chosen for
BIE formulations.

The non-primitive variables formulation based on
Helmholtz decomposition theorem is well known and
is repeated here for convenience. The decomposed ve-
locity field takes the following form:

u = ∇ϕ + ∇ × α (17)

Taking the curl of the velocity definition (17) and us-
ing the vorticity definition, one obtains the following
vector equation for the vector potential

∇ × ∇ × α = ω (18)

along with the Laplace equation for the scalar potential

−∇2ϕ = 0 (19)

The prescribed velocity boundary conditions, to be
imposed on the scalar and vector potentials, are de-
rived by separating the normal and tangential compo-
nents of the velocity on the boundary, according to
Hirasaki and Hellums [4]. The normal velocity com-
ponent is completely taken into account by the scalar
potential through the following boundary conditions:

n.∇ϕ|S = n.b (20)

n.∇ × α|S = 0 (21)

Assuming that the scalar potential is calculated before-
hand, the tangential component of the prescribed ve-
locity is represented by a boundary condition on the
vector potential

n × ∇ × α|S = n × (−∇ϕ + b) (22)

The scalar derivative boundary condition (21) can be
transformed into a non-derivative homogenous bound-
ary condition which fixes the tangential component
of α

n × α|S = 0 (23)

However, this set of boundary conditions does not de-
termine α uniquely and a gauge condition ∇.α = 0 is

imposed. The vector potential equation (18) now be-
comes

∇2α = −ω (24)

It can be showed that in order to satisfy the gauge con-
dition it is sufficient to impose the boundary condition
∇.α|S = 0. Taking the curl of the momentum equation
result in the Laplace equation for the vorticity

∇2ω = 0 (25)

By the definition of the vorticity, ∇.ω = 0. It is easy
to show that the vorticity remains solenoidal through-
out the domain if the homogenous boundary condition
∇.ω|S = 0 is satisfied. In conclusion, the set compris-
ing the six scalar boundary conditions to be satisfied
by the six components of ω and α is

n × α|S = 0, n × ∇ × α|S = n × (−∇ϕ + b)

∇.α|S = 0, ∇.ω|S = 0
(26)

while ω and α satisfy (24) and (25), or equivalently a
biharmonic equation in α. The Stokes system given by
(19), (24) and (25) with boundary conditions (20) and
(26) is equivalent to the original system in primitive
variables, see for instance [18] for more details.

The situation now resembles with that encountered
in two-dimensional problems. It is indeed possible to
obtain the free space fundamental solution of vec-
tor Laplace and biharmonic equations in three dimen-
sions. The free space fundamental solution of vector
Laplace equation satisfies, by definition, the singularly
forced Laplace equation

∇2GH
(

x,x′) = −Iδ3
(

x − x′) (27)

where δ3 is the three-dimensional Dirac delta function
and I is the identity tensor. The fundamental solution
GH (x,x′) satisfying (27) is [19]

GH
(

x,x′) = I
1

4πr
(28)

where r = |x − x′| is the distance between the source
and the observation point. The free space fundamental
solution for the biharmonic equation GB which fol-
lows

∇4GB
(

x,x′) = −Iδ3
(

x − x′) (29)

is given by

GB
(

x,x′) = I
r

8π
(30)

and satisfies the following basic relation

∇2GB = GH (31)
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4 Integral equation formulation in three
dimensions

In this section the integral equations are formulated
for Stokes flows, except for the scalar potential gov-
erned by the Laplace equation which is well known in
the BIE literature (see e.g. [14, 15]). Here we focus on
formulating the integral equation for vector Laplace
equation (25) and extend it to the vector Poisson equa-
tion (24). Two points can be distinguished at this stage
from the classical integral formulation of vector equa-
tions. First, during derivation, the operations and sim-
plification must be carried out in a way that the com-
ponents, known (26) and unknown, are preserved in
the formulation. The second point is the use of the
Fairweather approach in three dimensions, in order to
transform the domain integral into a boundary integral.

The BIE formulation for the vector equations re-
quires the Green’s identity, which for the vector fields
E and F, using the divergence theorem, is given
by [19]
∫

Ω

(

E.∇2F − F.∇2E
)

dΩ

=
∫

S

[(

n′ × E′).
(∇′ × F′) − (

n′ × F′).
(∇′ × E′)

+ (

n′.E′)(∇′.F′) − (

n′.F′)(∇′.E′)]dS (32)

where Ω is the domain of interest enclosed by the
boundary S, and n is the outward directed normal. On
the right hand side of (32), the vectors with prime su-
perscript lie on the boundary. For instance n′ = n(x′),
where x′ is the source point lying on the boundary S.
Identifying in (32) the vector fields E and F as the
vorticity vector and the fundamental solution GH for
the Laplace equation respectively, and using the defi-
nition (27), the integral equation for the vorticity is

c(x)ω(x) =
∫

S

[(

n′ × ω′).
(∇′ × GH

)

− (

n′ × GH
)

.
(∇′ × ω′)

+ (

n′.ω′)(∇′.GH
)

−(

n′.GH
)(∇′.ω′)]dS (33)

Substituting for the fundamental solution GH and sim-
plifying by using identities provided in Appendix A,
we obtain

c(x)ω(x) = 1

4π

∫

S

[
1

r3

(

n′ × ω′) × (

x − x′)

− 1

r
n′ × (∇′ × ω′) + 1

r3

(

n′.ω′)(x − x′)

− 1

r

(∇′.ω′)n′
]

dS (34)

The integral equation for the vector potential gov-
erned by the Poisson equation is formulated in the
same way, except that the vorticity, acting as a source,
gives rise to a domain integral. Identifying the vector
fields E and F in (32) as the vector potential and the
fundamental solution GH , we get after simplification

c(x)α(x) =
∫

S

[(

n′ × α′).
(∇′ × GH

)

− (

n′ × GH
)

.
(∇′ × α′)

+ (

n′.α′)(∇′.GH
)

− (

n′.GH
)(∇′.α′)]dS

−
∫

Ω

(

GH .ω
)

dΩ (35)

Since vorticity is a harmonic function, we can trans-
form the domain integral in (35) into a boundary inte-
gral. This is carried out by incorporating the Green’s
theorem, this time by substituting the vector fields E
and F as the vorticity vector and the fundamental so-
lution GB for biharmonic equation, to obtain the fol-
lowing integral relation:
∫

Ω

(

ω.∇2GB − GB .∇2ω
)

dΩ

=
∫

S

[(

n′ × ω′).
(∇′ × GB

) − (

n′ × GB
)

.
(∇′ × ω′)

+ (

n′.ω′)(∇′.GB
) − (

n′.GB
)(∇′.ω′)]dS (36)

Since GH is a symmetric tensor ω.GH = GH.ω and,
using (31), (36) becomes
∫

Ω

GH .ω dΩ =
∫

S

[(

n′ × ω′).
(∇′ × GB

)

− (

n′ × GB
)

.
(∇′ × ω′)

+ (

n′.ω′)(∇′.GB
)

− (

n′.GB
)(∇′.ω

)]

dS (37)

The domain integral has now been represented in
boundary integral form. Substituting (37) into (35)
gives the domain integral free formulation for the vec-
tor potential

c(x)α(x) =
∫

S

[(

n′ × α′).
(∇′ × GH

)

− (

n′ × GH
)

.
(∇′ × α′)
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+ (

n′.α′)(∇′.GH
)

− (

n′.GH
)(∇′.α′)]dS

−
∫

S

[(

n′ × ω′).
(∇′ × GB

)

− (

n′ × GB
)

.
(∇′ × ω′)

+ (

n′.ω′)(∇′.GB
)

− (

n′.GB
)(∇′.ω′)]dS (38)

Substituting for the fundamental solutions and simpli-
fying, by using the identities given in Appendix A, we
get

c(x)α(x) = 1

4π

∫

S

[
1

r3

(

n′ × α′) × (

x − x′)

− 1

r
n′ × (∇′ × α′) + 1

r3

(

n′.α′)(x − x′)

− 1

r

(∇′.α′)n′
]

dS

+ 1

8π

∫

S

[
1

r

(

n′ × ω′) × (

x − x′)

+ r
[

n′ × (∇′ × ω′)] + 1

r

(

n′.ω′)(x − x′)

+ r
(∇′.ω′)n′

]

dS (39)

The vector equations (34) and (39) consist in six
scalar equations which can be projected on the or-
thonormal mobile basis. The mobile basis consisting
of a unit normal vector n and two unit vectors in the
tangential plane orthogonal to n is chosen. In this mo-
bile basis the set of six equations consists of two nor-
mal components (one for each vorticity and vector
potential) and four equations in the tangential plane
(two for each vorticity and vector potential). These six
equations can be obtained by operating the scalar and
vector product with normal component on both sides
of (34) and (39). Taking the scalar product of the vor-
ticity equation with the normal component at the ob-
servation point, and by the vector identity f.(g × h) =
−(f × h).g, the equation for the normal component of
the vorticity is

c(x)(n.ω) = 1

4π

∫

S

[

− 1

r3

[

n × (

x − x′)].
(

n′ × ω′)

− 1

r
n.

(

n′ × (∇′ × ω′))

+ 1

r3

[

n.
(

x − x′)](n′.ω′)

− 1

r

[

n.n′](∇′.ω′)]dS (40)

Taking the vector product of the vorticity equation
with the normal component at the observation point,
and using the following identity:

1

r3
n × [(

n′ × ω′) × (

x − x′)]

= 1

r3

[{

n.
(

x − x′)}(n′ × ω′)

− {

n.
(

n′ × ω′)}(x − x′)] (41)

in tensorial form

n × [(

n′ × ω′) × (

x − x′)]

= {

n.
(

x − x′)}(n′ × ω′)

− {

n ⊗ (

x − x′).
(

n′ × ω′)}

= {

n.
(

x − x′)I − n ⊗ (

x − x′)}.
(

n′ × ω′) (42)

the vector equation for the tangential components of
the vorticity is

c(x)(n × ω) = 1

4π

∫

S

1

r3

[

n.
(

x − x′)I

− n ⊗ (

x − x′)].
(

n′ × ω′)

− 1

r
n × (

n′ × (∇′ × ω′))

+ 1

r3

[

n × (

x − x′)](n′.ω′)

− 1

r

[

n × n′](∇.ω
)

dS (43)

Equation (43) is a vector equation containing one
scalar equation along each basis component in the tan-
gential plane. Using the same operations as on the vor-
ticity equation, the equations for the normal compo-
nent of the vector potential is

c(x)(n.α)

= 1

4π

∫

S

[

− 1

r3

[

n × (

x − x′)].
(

n′ × α′)

− 1

r
n.

(

n′ × (∇′ × α′)) + 1

r3

[

n.
(

x − x′)](n′.α′)

− 1

r

[

n.n′](∇′.α′)
]

dS

+ 1

8π

∫

S

[

−1

r

[

n × (

x − x′)].
(

n′ × ω′)

+ rn.
(

n′ × (∇′ × ω′)) + 1

r

[

n.
(

x − x′)](n′.ω′)

+ r
[

n.n′](∇′.ω′)
]

dS (44)

and the vector equation for the tangential components
of the vector potential is
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c(x)(n × α)

= 1

4π

∫

S

1

r3

[

n.
(

x − x′)I − n ⊗ (

x − x′)].
(

n′ × α′) − 1

r
n × (

n′ × (∇′ × α′)) + 1

r3

[

n × (

x − x′)](n′.α′)

− 1

r

[

n × n′](∇′.α′)dS + 1

8π

∫

S

[
1

r

[

n.
(

x − x′)I − n ⊗ (

x − x′)].
(

n′ × ω′) + rn × (

n′ × (∇′ × ω′))

+ 1

r

[

n × (

x − x′)](n′.ω′) + r
[

n × n′](∇′.ω′)
]

dS (45)

The set of equations composed of (40) and (43)–(45)
contains ten variables along with the divergence free
condition on the boundary for vorticity and the vec-
tor potential. For clarity, these variables are listed: one
normal component for each ω and α (46), two tangen-
tial components for ω and two tangential components
of the rotational of ω (47). These six variables consti-
tute the unknowns. The remaining four components,
namely the two tangential components of the vector
potential and the two tangential components of its ro-
tational (48) are fixed by the boundary conditions, as
shown in the next section.

n′.ω′,n′.α′ (46)

n′ × ω′,n′ × (∇′ × ω′) (47)

n′ × α′,n′ × (∇′ × α′) (48)

4.1 Substitution of boundary conditions

Assuming that the Neumann problem is solved before-
hand for the scalar potential, let us form the six scalar
equations by inserting in (40) and (43)–(45) the pre-
scribed boundary conditions given by (26). In order
to represent these equations in a convenient form, the
scalar, vector and tensorial kernel functions are respec-
tively denoted by k, k and K. The set of equations be-
comes

c(x)(n.ω) = 1

4π

∫

S

1

r2

[−k1
(

x,x′).
(

n′ × ω′)

− k2
(

x,x′).
(

n′ × (∇′ × ω′))

+ k
(

x,x′)(n′.ω′)]dS (49)

c(x)
(

n × ω) = 1

4π

∫

S

1

r2

[

K
(

x,x′).
(

n′ × ω′)

− k2
(

x,x′) × (

n′ × (∇′ × ω′))

+ k1
(

x,x′)(n′.ω′)]dS (50)

c(x)(n.α) = 1

4π

∫

S

1

r2

[−k2
(

x,x′).
(

n′×(−∇ϕ|S + b
))

+ k
(

x,x′)(n′.α′)]dS

+ 1

8π

∫

S

[−k1
(

x,x′).
(

n′ × ω′)

+ k2
(

x,x′).
(

n′ × (∇′ × ω′))

+ k
(

x,x′)(n′.ω′)]dS (51)

0 = 1

4π

∫

S

1

r2

[−k2
(

x,x′) × (

n′ × (−∇ϕ|S + b
))

+ k1
(

x,x′)(n′.α′)]dS

+ 1

8π

∫

S

[

K
(

x,x′).
(

n′ × ω′)

+ k2
(

x,x′) × (

n′ × (∇′ × ω′))

+ k1
(

x,x′)(n′.ω′)]dS (52)

where

k(x,x′) = 1

r

[

n.
(

x − x′)]

k1
(

x,x′) = 1

r

[

n × (

x − x′)], k2
(

x,x′) = rn

K(x,x′) = 1

r

[

n.
(

x − x′)I − n ⊗ (

x − x′)]
(53)

The number of equations is consistent with the num-
ber of unknown variables (46)–(48). The BIEs (49)–
(52) and an additional BIE for the scalar potential
completely characterizes the three-dimensional Stokes
flows problem with prescribed velocity boundary con-
dition.

5 Axisymmetric formulation

Consider Eqs. (49)–(52) and assuming that the solu-
tion domain Ω and the solution itself are both rotation-
ally symmetric about the z-axis, as illustrated in Fig. 1.
For sake of simplicity, let the evaluation point x lie in
the origin meridian plane φ = 0. At this point, two Eu-
clidean mobile frames can be defined. The first one is
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Fig. 1 Sketch of the axisymmetric domain and meridian plane
(φ = 0 and φ = φ′)

a Darboux frame (x,n, iφ, t) where n is the unit outer
normal to the surface S, iφ is the azimuthal unit vector
tangent to the surface and t is the unit vector tangent
to the meridian curve. The tangent vector t is such that
the basis (n, iφ, t) is right handed in that order. The
second one is a cylindrical coordinates moving frame
constituted by (x, iρ, iφ, iz).

Due to the axial symmetry, the two basis are related
by

n = nρ iρ + nziz, t = n × iφ = −nziρ + nρ iz

(54)

while the vorticity vector and the vector potential have
a single azimuthal component

ω = ωiφ, α = αiφ (55)

which implies

n × ω = −ωt, n.ω = 0, n.α = 0 (56)

Similarly two frames (x′,n′, i′φ, t′) and (x′, i′ρ, i′φ, i′z)
can be defined at the source point x′. Because of the
axial symmetry, the azimuthal component of the gra-
dient of any function vanishes

∇′ = ∂

∂n′ n′ + ∂

∂t′
t′ (57)

∇ × ω = ∂ω

∂t
n +

(

−∂ω

∂n

)

t

n × ∇ × ω = −∂ω

∂n
iφ = −κniφ

(58)

In the latter expression, κn is a shorthand notation used
for convenience. Let β = (−∇ϕ|S + b) be the cor-
rected prescribed velocity, then

n′ × (−∇ϕ|S + b) = βt′ iφ′ (59)

where βt is the tangential component of the corrected
prescribed velocity. Taking advantage of these simpli-
fications (49)–(52) reduce to

0 = 1

4π

∫

S

1

r2

[

k1
(

x,x′).
(

ω′t′
)

+ k2
(

x,x′).
(

κ ′
niφ′

)]

dS (60)

c(x)(ωt) = 1

4π

∫

S

1

r2

[

K
(

x,x′).
(

ω′t′
)

− k2

(

x,x′) × (

κ ′
niφ′

)]

dS (61)

0 = 1

8π

∫

S

[

k1
(

x,x′).
(

ω′t′
)

− k2
(

x,x′).
(

κ ′
niφ′

)]

dS

− 1

4π

∫

S

1

r2

[

k2
(

x,x′).
(

β ′
tiφ′

)]

dS (62)

0 = 1

8π

∫

S

[

K
(

x,x′).
(

ω′t′
)

+ k2
(

x,x′) × (

κ ′
niφ′

)]

dS

+ 1

4π

∫

S

1

r2

[

k2
(

x,x′) × (

β ′
tiφ′

)]

dS (63)

Four scalar equations (60)–(63) still remain for two
variables (ω′ and κ ′

n), implying that two equations
should be redundant. To detect which are these equa-
tions, integration over the azimuthal angle must be
carried out. In this manner we specify that the con-
tribution of the ring source distribution is calculated
at the evaluation point placed on the meridian curve.
Some preliminary transformations have to be intro-
duced. First the differential surface area dS is ex-
pressed as ρdφdΓ , where dΓ is the differential arc
length along the meridian curve. Second, as all quanti-
ties appearing either in the left or right hand side inte-
grals are expressed in distinct moving frames, it is nec-
essary to recast all of them in a common fixed frame
which is chosen to be (O, iρ, iφ, iz). We can write
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iρ′ = cosφ′iρ + sinφ′iφ
iφ′ = − sinφ′iρ + cosφ′iφ, iz′ = iz

n′ = nρ′ iρ′ + nz′ iz′ = nρ′ cosφ′iρ + nρ′ sinφ′iφ + nz′ iz

t′ = n′ × iφ′ = −n′
ziρ′ + n′

ρ iz′

= −n′
z cosφ′iρ − n′

z sinφ′iφ + n′
ρ iz

x′ = ρ′iρ′ + z′iz′ = ρ′ cosφ′iρ + ρ′ sinφ′iφ + z′iz
(x − x′) = (ρ − ρ′ cosφ′)iρ − ρ′ sinφ′iφ + (z − z′)iz
and substitute these expressions into (60)–(63). After
integration in the azimuthal direction and simplifica-
tions we find that (60) and (62) are identically zero
and the two remaining equations are thus

c(x)ω(x)

= 1

4π

∫

Γ

[(

n′
ρρGAX

03 − n′
ρρ′GAX

13

+ (

z − z′)n′
zG

AX
13

)

ω′ − GAX
11 κ ′

n

]

ρ′dΓ (64)

∫

Γ

GAX
11 β ′

tρ
′dΓ

= − 1

8π

∫

Γ

[(

n′
ρρGAX

01 − n′
ρρ′GAX

11

+ (

z − z′)n′
zG

AX
11

)

ω′ + GAX
1−1κ

′
n

]

ρ′dΓ (65)

In the above equations, the axisymmetric kernel func-
tions are represented using the general notation

GAX
ij =

∫ 2π

0

cosi φ′

rj
dφ′ (66)

where r is the distance between the ring source and the
evaluation points.

The formulation composed of BIEs (64) and (65)
and an additional BIE for the scalar potential fully
characterizes the axisymmetric Stokes flows problem
with prescribed velocity boundary condition. The axi-
symmetric kernel functions involved in these equa-
tions can be represented in terms of complete elliptic
integrals (Appendix B).

6 Numerical results

The BIE formulation for axisymmetric problems is
implemented and validated for exterior and interior
flow problems. The BIEs are solved by the stan-
dard collocation approach. The integral equation for
the scalar potential is solved independently, whereas
(64) and (65) are solved in a coupled manner, since

the unknowns appear in both equations. The bound-
ary Γ is discretized into N elements represented by
cubic splines. Over each element the variables (speci-
fied and unknowns) are approximated by linear shape
functions (hat functions). In this manner we obtain a
balanced matrix system, denoting 2N equations in dis-
cretized form for 2N unknowns, which is solved by a
direct Gauss elimination solver. The quadrature for-
mula used to compute the kernels functions is adap-
tive: for regular integrals the order of quadrature varies
from 4 to 20, depending on the distance between the
evaluation and source points, whereas the logarithmic
singular integrals are computed using 20 integration
points.

6.1 Exterior Stokes flow: Translation of a sphere

A well known example of an axisymmetrical flow is
that arising from the motion of a solid sphere of ra-
dius a moving with a constant velocity U through an
unbounded fluid otherwise at rest [17]. The velocity
components in spherical coordinates (r, θ,φ) are

ur = −1

2
U cos θ

(
a

r

)2[
a

r
− 3

r

a

]

,

uθ = −1

4
U sin θ

(
a

r

)[(
a

r

)2

+ 3

] (67)

The boundary condition for the scalar potential is the
normal component of the prescribed velocity

n.b = n.∇ϕ|Γ = U cos θ (68)

The analytical expression for vorticity and its normal
derivative are given by

ω = ∇ × uiφ = 3U

2

a sin θ

r2
iφ,

n × ∇ × ω = −∂ω

∂n
iφ = −3U

2

nra sin θ

r3
iφ

(69)

We consider the radius of the sphere and the con-
stant velocity U as unity. First the Laplace equation is
solved for the scalar potential to obtain the corrected
tangential velocity βt (59) which is then substituted
in (65). The relative errors for computed variables on
the boundary: vorticity and its normal derivative for
varying number of nodes in the boundary discretiza-
tion are shown in Table 1.

6.2 Interior Stokes flow

In these examples the flow inside a sphere of unit ra-
dius with two slightly different boundary conditions
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Table 1 Relative errors for the vorticity and the normal deriva-
tive for translation of a sphere

Number of nodes Relative errors

ω ∂ω
∂n

21 1.1 × 10−3 1.9 × 10−3

51 1.9 × 10−4 1.2 × 10−3

101 4.9 × 10−5 8.9 × 10−4

201 1.2 × 10−5 6.4 × 10−4

Fig. 2 Velocity vector field for interior Stokes flow example in
test case 1

is considered. We impose only the tangential velocity
condition such that

in test case 1:

n.u|Γ = 0, t.u|Γ = ρ = sin θ

and in test case 2:

n.u|Γ = 0, t.u|Γ = ρ2 = sin2 θ

Both examples exhibit a re-circulating profile such
as the one presented in Fig. 2. Since the analytical so-
lution is not readily available, the boundary values of
the vorticity for both test cases are obtained through
commercial finite element software COMSOL Multi-
physics (R) for a quantitative comparison with BIEM.
The vorticity profiles computed through BIEM and
COMSOL are shown in Figs. 3 and 4, respectively.
The BIEM discretization involves 51 nodes on the
boundary.

7 Summary

A new BIE formulation has been presented for three-
dimensional and axisymmetric Stokes flows using
Helmholtz decomposition based non-primitive vari-
ables. The dependent variables governing the flow
field are classically a scalar potential, a vector poten-
tial and the vorticity vector. For prescribed boundary
velocity the boundary conditions applied to each de-
pendent variable are chosen according to the approach
of Hirasaki and Hellums [4]. In a first step, the BIE
formulation for three-dimensional flows is obtained.
The domain integral appearing in the integral equa-
tions for the vector Poisson equation is transformed
into boundary integrals by invoking the fundamental
solution for the biharmonic equation, using the initial
framework provided by Fairweather et al. [5] for two-
dimensional problems. The BIE formulation for axi-
symmetric problems is derived in a second step from
the three-dimensional one. This formulation is vali-
dated for exterior and interior flows.

The main advantage of both formulations is that
they are free from domain integral, thus preserving
the ‘boundary only’ character of the method. From
a comparative point of view, the NPV based axisym-
metric BIE formulation contains logarithmic singular
kernel functions, instead of the first order singularity
occurring in conventional primitive variable formula-
tion. The first order singularity is evaluated only in
Cauchy principal value sense and, as a consequence,
the integrals involved in domain value computation are
known to behave as nearly singular. Accordingly, this
issue may require special treatment for such compu-
tations [20]. The drawback associated with the for-
mulation is the extra equations: seven equations for
three-dimensional and three equations for axisymmet-
ric problems, whereas in primitive variable there are
only four and three equations respectively. To some-
what compensate this issue, it is possible to couple the
formulation with fast solution methods, for instance
based on multipole techniques [21, 22].

Appendix A: Vector operations on tensors

The necessary formulas involving the divergence and
curl operation of a function, irrespective of the coordi-
nate system are as follows:
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Fig. 3 Vorticity profile on the meridian curve for test case 1

Fig. 4 Vorticity profile on the meridian curve for test case 2

(n.f (r)I)∇.ω = (

f (r)∇.ω
)

n (A.1)

(n.ω)
(∇.f (r)I

) = n.ω
(∇f (r)

)

(A.2)

(

n × f (r)I
)

.(∇ × ω) = n × (

f (r)I.∇ × ω
)

= f (r)
[

n × (∇ × ω)
]

(A.3)

(n × ω).(∇ × f (r)I) = (n × ω) × ∇f (r) (A.4)

Appendix B: Axisymmetric kernel functions in
terms of Complete Elliptic Integrals

The complete elliptic integral of the first and second
kind, K(m) and E(m), are defined as

K(m) =
∫ π/2

0

dφ′
√

1 − m cos2 φ′ (B.1)

E(m) =
∫ π/2

0

√

1 − m cos2 φ′ dφ′ (B.2)
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where m is the elliptic integral parameter (0 ≤ m ≤ 1).
Some functions which can be represented in the form
of complete elliptic integrals required later to express
the kernel functions are
∫ π/2

0

1

[1 − m cos2 φ′]3/2
dφ′ = 1

1 − m
E(m) (B.3)

∫ π/2

0

cos 2φ′

[1 − m cos2 φ′]3/2
dφ′

= (2 − m)E(m) − 2(1 − m)K(m)

m(1 − m)
(B.4)

∫ π/2

0

cos 2φ′

[1 − m cos2 φ′]1/2
dφ′

= −2E(m) − (2 − m)K(m)

m
(B.5)

∫ π/2

0
cos 2φ′(1 − m cos2 φ′)1/2

dφ′

= (−2 + m)E(m) + 2(1 − m)K(m)

3m
(B.6)

The axisymmetric integration is carried out in cylindri-
cal coordinates (ρ,φ, z), where the distance between
the source and evaluation points is

r = [(

z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos
(

φ − φ′)]1/2

(B.7)

and the elliptic integral parameter is defined as

m = 4ρρ′

(z − z′)2 + (ρ + ρ′)2
(B.8)

Taking into account that the plane of computation is
the origin plane (φ = 0), we obtain

r = [

a − b cosφ′]1/2
, m = 2b

a + b
(B.9)

where

a = (

z − z′)2 + ρ2 + ρ′2, b = 2ρρ′ (B.10)

For specific values of i and j , the kernel functions ap-
pearing in the axisymmetric BIE formulation are

For i = 0 and j = 1:

GAX
01 = 4K(m)

(a + b)1/2
(B.11)

For i = 0 and j = 3:

GAX
03 = 4

(a + b)3/2

∫ π/2

0

1

[1 − m cos2 φ′]3/2
dφ′

(B.12)

For i = 1 and j = 1:

GAX
11 = 4

(a + b)1/2

∫ π/2

0

cos 2φ′

[1 − m cos2 φ′]1/2
dφ′

(B.13)

For i = 1 and j = 3:

GAX
13 = 4

(a + b)3/2

∫ π/2

0

cos 2φ′

[1 − m cos2 φ′]3/2
dφ′

(B.14)

For i = 1 and j = −1:

GAX
1−1 = 4(a + b)1/2

×
∫ π/2

0
cos 2φ′(1 − m cos2 φ′)1/2

dφ′

(B.15)
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