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Abstract In the present work, we investigate the
creeping unsteady motion of an infinite micropo-
lar fluid flow past a fixed sphere. The technique of
Laplace transform is used. The drag formula is ob-
tained in the physical domain analytically by using the
complex inversion formula of the Laplace transform.
The well known formula of Basset for the drag on a
sphere placed in an unsteady viscous fluid flow and
that of Ramkissoon and Majumdar for steady motion
in the case of micropolar fluids are recovered as spe-
cial cases. The obtained formula is employed to cal-
culate the drag force for some micropolar fluid flows.
Numerical results are obtained and represented graph-
ically.

Keywords Drag force · Micropolar fluid · Unsteady
motion · Laplace transform

1 Introduction

The theory of micropolar fluids has been introduced
by Eringen in 1964 as a subclass of a general type
of fluids, namely, microfluids [1]. These microflu-
ids physically represent fluids with microstructure in
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which each macro-volume element contains micro-
volume elements which can move and deform inde-
pendently of the motion of the macro-volume ele-
ment [1–3]. The micropolar fluids possess only micro-
rotational effects and micro-rotational inertia. From
the physical point of view viscous fluids containing
suspended, randomly oriented, rigid micro-elements
may be modeled by micropolar fluids [4]. These mi-
cropolar fluids have many physical models such as an-
imal bloods [5], bubbly fluids [6], liquid crystals [7]
and granular fluids [8]. Mathematically, micropolar
fluids have only six degrees of freedom, three for
translation of macro-element and three for microrota-
tion of micro-elements.

In the literature, steady micropolar fluid flow prob-
lems have been considered extensively. Ramkissoon
and Majumdar [9] derived an elegant formula for the
drag experienced by an axially symmetric body in the
slow steady flow of a micropolar fluid. In [10], Pala-
niappan and Ramkissoon rederived the drag formula
obtained by Ramkissoon and Majumdar [9] using
a more rigorous mathematical approach. Hoffmann,
Marx and Botkin [11] deduced a formula for the drag
acting on the surface of a sphere moving with constant
velocity in a micropolar fluid with non-zero boundary
conditions for the microrotations. Shu and Lee [12] de-
rived new fundamental solutions for micropolar steady
fluid flow and obtained the drag on a sphere translat-
ing in it. In [13], Hayakawa discussed the slow steady
motion of micropolar fluid flows around a sphere and a
cylinder. Sherief et al. [14] discussed the slow motion
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of a rigid sphere perpendicular to two infinite paral-
lel plane walls in a micropolar fluid using collocation
technique.

As mentioned above it can be seen that the steady
micropolar fluid flows have been discussed by several
authors, while the unsteady motion has received less
attention in spite of the importance of discussing un-
steady flows especially for small times. Lakshmana
Rao and Bhujanga Rao discussed the rectilinear os-
cillation of a sphere along a diameter in a micropo-
lar fluid in [15]. Charya and Iyengar [16] obtained a
general formula for the drag experienced by an ax-
isymmetric body oscillating rectilinearly along its axis
of symmetry in an incompressible micropolar fluid.
A general expression for the force exerted on a sphere
executing longitudinal oscillation, with small ampli-
tude, in an incompressible micropolar fluid is obtained
by Sran in [17]. The unsteady flow due to non-coaxial
rotations of a disk with the effect of slip condition is
investigated in [18]. The problem of unsteady Couette
flow of a micropolar fluid with the slip boundary con-
dition is discussed in [19]. To the author’s knowledge,
no formula for the drag on a sphere moving with a
general non-uniform speed has been obtained yet.

In this work, we investigate the creeping unsteady
motion of an incompressible micropolar fluid flow past
a fixed rigid sphere. The solution of the problem is
obtained and the resultant drag force of the fluid acting
on the surface of the sphere is calculated as well in
the Laplace transform domain. The complex inversion
formula of the Laplace transform is used together with
contour integration to get the drag force in the physical
domain. The obtained analytical formula of the drag
force is applied to some examples of micropolar fluid
flows.

2 Formulation of the problem

The field equations governing an isothermal incom-
pressible micropolar fluid flow are given by [2]

div q = 0, (2.1)

(λ + 2μ + κ)grad div q − (μ + κ) curl curl q

+ κ curlν − gradp + ρF = ρq̇, (2.2)

(α + β + γ )grad divν − γ curl curlν + κ curl q

− 2κν + ρC = ρj ν̇, (2.3)

where the two vectors q and ν are representing the
velocity and micro-rotation vectors, respectively. The

body forces and body couples per unit mass are de-
noted by the two vectors F and C. Also, p, ρ and j

are denoting fluid pressure, fluid density and micro-
inertia, respectively. λ and μ are the ordinary viscos-
ity parameters of the classical viscous fluids and the
constant κ is the new translational viscosity coeffi-
cient which can be termed as micropolarity parameter.
The remaining constants α, β and γ are termed gyro-
viscosity coefficients. These material constants have to
satisfy the inequalities [2].

2μ + κ ≥ 0, κ ≥ 0, 3λ + 2μ + κ ≥ 0,

γ ≥ 0, γ ≥ |β|, 3α + β + γ ≥ 0.
(2.4)

Moreover, a superposed dot, appeared in Eqs. (2.2)
and (2.3), indicates material differentiation.

The stress and couple stress tensors are given by the
following constitutive relations [3]

tij = −pδij + (2μ + κ)eij + κεijk(ωk − νk), (2.5)

mij = ανr,r δij + βνi,j + γ νj,i , (2.6)

where εijk is the usual alternating tensor and δij de-
notes the Kronecker delta function.

The deformation rate tensors eij and ωk are defined
by

eij = 1

2
(qi,j + qj,i), ωk = 1

2
(curl q)k.

Assume that a rigid sphere of radius “a” is placed
in a an unbounded micropolar fluid that starts to
move unsteadily with a rectilinear non-uniform veloc-
ity U(t) along the diameter θ = 0 as represented in
Fig. 1. Then the motion is axially symmetric. Working
with the spherical polar coordinates (r, θ,φ), therefore
the velocity and microrotation vectors have the forms

q = (
u(r, θ, t), v(r, θ, t),0

)
and

ν = (
0,0,ω(r, θ, t)

)
.

(2.7)

If the fluid initially is at rest, then the initial condi-
tion becomes

q(r, θ, t) = 0, ν(r, θ, t) = 0 at t = 0. (2.8)

At the time moment t = 0+, the fluid is set in mo-
tion by applying a time dependent speed U(t) away
from the sphere along the diameter θ = 0. Thus

q(r, θ, t) = U(t)(cos θ êr − sin θ êθ ),

ν(r, θ, t) = 0 as r → ∞,
(2.9)

where êr and êθ are the unit vectors along radial and
transverse directions.
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Fig. 1 The geometrical sketch

On the surface of the sphere, the boundary condi-
tions are given by

q(r, θ, t) = 0, ν(r, θ, t) = 0 on r = a. (2.10)

The spin inertia appearing in the equation of motion is
given by [3]

j = 2γ

2μ + κ
. (2.11)

The relation (2.11) is assumed to permit the field
equations to recover the classical theory of viscous
fluids as a special case when the microrotation vec-
tor coincide with the angular velocity and the micro-
structure effects be neglected.

If the body forces and body couples are assumed to
be absent, then the governing equations (2.1)–(2.3) in
view of (2.11) reduce to

−(μ + κ) curl curl q + κ curlν − gradp

= ρ
∂q
∂t

, (2.12)

−γ curl curlν + κ curl q − 2κν

= 2γρ

2μ + κ

∂ν

∂t
, (2.13)

where the inertial terms of Eqs. (2.2) and (2.3) are ne-
glected since we are considering the creeping motion.

3 Solution in the Laplace transform domain

Here, we apply the integral Laplace transform defined
by

F̄ (r, θ, s) =
∫ ∞

0
e−stF (r, θ, t)dt, (3.1)

to the governing equations (2.12) and (2.13), with the
aid of initial conditions (2.8), to obtain

−(μ + κ) curl curl q̄ + κ curl ν̄ − grad p̄

= ρsq̄, (3.2)

−γ curl curl ν̄ + κ curl q̄ − 2κ ν̄

= 2γρs

2μ + κ
ν̄. (3.3)

From the equation of continuity (2.1), the velocity
components can be represented in terms of the stream
function Ψ̄ (r, θ, s) as follows

ū = −1

r2 sin θ

∂Ψ̄

∂θ
, v̄ = 1

r sin θ

∂Ψ̄

∂r
. (3.4)

Hence, the radial and transverse components of
Eq. (3.2) can be represented as

−∂p̄

∂r
+ κ

r2 sin θ

∂

∂θ
(r sin θν̄)

− 1

r2 sin θ

∂

∂θ

(
(μ + κ)L−1 − ρs

)
Ψ̄ = 0, (3.5)

−∂p̄

∂θ
− κ

sin θ

∂

∂r
(r sin θν̄)

+ 1

sin θ

∂

∂r

(
(μ + κ)L−1 − ρs

)
Ψ̄ = 0, (3.6)

where

L−1 = ∂2

∂r2
− cot θ

r2

∂

∂θ
+ 1

r2

∂2

∂θ2
.

The only non-vanishing component of the differen-
tial equation (3.3) in view of (3.4) gives

κL−1Ψ̄ +
{
γL−1 − 2κ − 2γρs

2μ + κ

}
(r sin θν̄) = 0.

(3.7)

Eliminating the pressure p appearing in Eqs. (3.5)
and (3.6), we arrive at

L−1
{
(μ + κ)L−1 − ρs

}
Ψ̄ − κL−1(r sin θν̄) = 0.

(3.8)
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The two equations (3.7) and (3.8) can be simplified
to the following forms

L−1
{
L−1 − α2

1

}{
L−1 − α2

2

}
Ψ̄ = 0, (3.9)

{
L−1 − α2

1

}{
L−1 − α2

2

}
(r sin θν̄) = 0, (3.10)

where

α2
1 = 2ρs

2μ + κ
, α2

2 = �2 + ρs

μ + κ
,

�2 = κ(2μ + κ)

γ (μ + κ)
.

The bounded solutions of the differential equations
(3.9) and (3.10) are, respectively, found to be of the
forms

Ψ̄ (r, θ, s) =
{
A

(
α1 + 1

r

)
e−α1r + B

(
α2 + 1

r

)
e−α2r

+ C

r
+ Dr2

}
sin2 θ, (3.11)

and

ν̄(r, θ, s) = (μ + κ)

κ

{
A

(
α2

1 − ρs

μ + κ

)

×
(

α1 + 1

r

)
1

r
e−α1r + B

(
α2

2 − ρs

μ + κ

)

×
(

α2 + 1

r

)
1

r
e−α2r

}
sin θ, (3.12)

where A, B , C and D are constants, depending only
on the parameter s, to be determined from the imposed
boundary conditions.

The boundary conditions (2.9) and (2.10), with the
aid of (3.1) and (3.4), can be rewritten as

∂Ψ̄

∂θ
= −Ūr2 sin θ cos θ,

∂Ψ̄

∂r
= −Ūr sin2 θ, ν̄ = 0 as r → ∞,

(3.13)

∂Ψ̄

∂θ
= 0,

∂Ψ̄

∂r
= 0,

ν̄ = 0 on r = a.

(3.14)

Applying the boundary conditions (3.13) and (3.14)
we obtain the values of the constants A, B , C and D

in the following forms

A = −3aŪ(s)

2�

{
α2

2 − ρs

μ + κ

}(
α2 + 1

a

)
eα1a,

(3.15)

B = 3aŪ(s)

2�

(
α2

1 − ρs

μ + κ

)(
α1 + 1

a

)
eα2a, (3.16)

C = a3Ū (s)

2
− 3a2Ū (s)

2�

(
α2

1 − α2
2

)(
α1 + 1

a

)

×
(

α2 + 1

a

)
, (3.17)

D = − Ū (s)

2
, (3.18)

where

� = α2
1

(
α2

2 − ρs

μ + κ

)(
α2 + 1

a

)

− α2
2

(
α2

1 − ρs

μ + κ

)(
α1 + 1

a

)
.

We are going now to evaluate the resultant drag
force exerted by the fluid on the sphere by using the
well known formula

F̄z(s) = 2πa2
∫ π

0

{
t̄rr (a, θ, s) cos θ

− t̄rθ (a, θ, s) sin θ
}

sin θdθ. (3.19)

Using the stress formula (2.5) and after some
straight forward manipulations the formula (3.19) can
be simplified to the form

F̄z(s) = 2πa

{
1

3
ρa2(sŪ(s)

) + 3κ1κ2

κ3
Ū (s)(�a + 1)

+ 3aκ1

π

(
sŪ (s)Φ̄(s)

)}
, (3.20)

where

Φ̄(s) = πρs

�1

{(
aκ3(α1κ2 + 2α2κ1) + κ2

2 + 4�aκ2
1

)

+ κ1κ2
(
�κ(aα1α2 + α1 + α2 − �)

+ κ3α1
(
α2 + �2a

))}
, (3.21)

and

�1 = κ1κ3s
{
2aκ1α

2
2 + κ2(aα1α2 + α1 + α2)

}
,

κ1 = (μ + κ), κ2 = (2μ + κ),

κ3 = κ2 + 2�aκ1.

4 Inverse Laplace transform

Taking the inverse Laplace transform to Eq. (3.20) and
using the convolution theorem, we obtain the follow-
ing drag formula in the physical domain

Fz(t) = 2πa

{
1

3
ρa2 dU(t)

dt
+ 3κ1κ2

κ3
U(t)(�a + 1)

+ 3aκ1

π

∫ t

0

dU(τ)

dτ
Φ(t − τ)dτ

}
, (4.1)
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Fig. 2 The modified Bromwich contour Γ

where the time dependent function Φ(t) represents the
inverse Laplace transform of the function Φ̄(s) defined
by the relation (3.21). In order to obtain the inverse
Laplace transform of Φ̄(s), we shall use the complex
inversion formula of the Laplace transform defined
by [20]

Φ(t) = 1

2πi

∫ σ+i∞

σ−i∞
est Φ̄(s)ds, (4.2)

where the constant σ is assumed to be greater than all
the real parts of the singularities of Φ̄(s) [20, 21]. The
function Φ̄(s) defined by Eq. (3.21) has only two real
branch points at so = 0, s1 = −η, where η = κ1�

2/ρ,
and a simple pole at so = 0.

To use the complex inversion formula of the La-
place transform, we have to integrate the function
Φ̄(s) along the modified Bromwich contour Γ illus-
trated in Fig. 2. The contour consists of three small
circular arcs DE, IJ and FGH each of radius ε, say. It
is formed also of two arcs BC and KA of large radii R,
say. The contour Γ also contains four straight lines
connecting the circular arcs as shown in Fig. 2 and an-
other vertical line AB along which s takes the value
σ + iy. When taking the limits as ε → 0 and R → ∞,
the integral along AB matches the integral (4.2). Since
the considered function has no singular points in-
side Γ , then the integral along Γ vanishes.

From the above discussion we have
∮

Γ

est Φ̄(s)ds = 0, (4.3)

Lim
R→∞

∫

AB

est Φ̄(s)ds = 2πiΦ(t), (4.4)

∫

FGH

est Φ̄(s)ds = O
(
ε

1
2
) → 0 as ε → 0, (4.5)

∫

DE

est Φ̄(s)ds +
∫

IJ

est Φ̄(s)ds = O(ε) → 0

as ε → 0, (4.6)
∫

BC

est Φ̄(s)ds +
∫

KA

est Φ̄(s)ds → 0

as R → ∞. (4.7)

The integrals along the straight lines (CD, JK) and
(EF, HI) are evaluated and are found to be of the forms

Lim
ε→0

R→∞

{∫

CD

est Φ̄(s)ds +
∫

JK

est Φ̄(s)ds

}

= −2πi

∫ ∞

η

e−xt

�2

{
κ1�

2(2κ2b1
{
�2a2κ2

1 − μ

− 3ρxa2} + b2
{
κ2κ − 2ρxa2(2κ1 + κ2)

})

+ ρx
(
κ2 + 2ρxa2)

× (
2b1κ2 + b2(2κ1 + κ2)

)}
dx, (4.8)
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Fig. 3 Drag force versus time for case (1)

Lim
ε→0

R→∞

{∫

EF

est Φ̄(s)ds +
∫

HI

est Φ̄(s)ds

}

= 4πi�2κ2
1 κ2

∫ η

0

e−xt

�3
b1

× {
a2b2

3 − 2ab3 − 1
}
dx, (4.9)

where

�2(x) = x
{
4�4a2κ3

1 − �2κ1
(
κ2

2 + 2ρxa2(4κ1 + κ2)

+ 4b1b2a
2κ1κ2

) + (
ρx(2κ1 + κ2)

+ 2b1b2κ1κ2
(
2ρxa2 + κ2

))}
,

�3(x) = x
{
4�4a2κ3

1 + �2κ1
(
κ2

2 − 2ρxa2(2κ1 + κ)

+ 4ab3κ1κ2
) + ρxκ

(
2ρxa2 + κ2

)}
,

and

b1 =
√

2ρx

κ2
, b2 =

√
ρx

κ1
− �2,

b3 =
√

�2 − ρx

κ1
.

Now we substitute the values of the integrals (4.4)–
(4.9) into (4.3) to obtain the desired function Φ(t) in
the physical domain as follows

Φ(t) = −2�2κ2
1 κ2

∫ η

0

e−xt

�3
b1

{
a2b2

3 − 2ab3 − 1
}
dx

+
∫ ∞

η

e−xt

�2

{
κ1�

2(2κ2b1
[
�2a2κ2

1 − μ

− 3ρxa2] + b2
[
κ2κ − 2ρxa2(2κ1 + κ2)

])

+ ρx
(
κ2 + 2ρxa2)

× (
2b1κ2 + b2(2κ1 + κ2)

)}
dx. (4.10)

From the above equation and Eq. (4.1) we obtain
a general formula to calculate the drag force exerted
by the fluid on the surface of a sphere placed in an
unsteady micropolar fluid flow in the following simple
form

Fz(t) = 2πa

[
1

3
ρa2 dU(t)

dt
+ 3κ1κ2

κ3
(�a + 1)U(t)

+ 3aκ1

π

∫ t

0

dU(τ)

dτ
Φ(t − τ)dτ

]
. (4.11)

The classical case of viscous fluid flow is recovered
as a special case of this work when the micropolarity
constant κ tends to zero. In this case the relation (4.11)
simply reduces to

Fz(t) = 2πa

[
1

3
ρa2 dU(t)

dt
+ 3μU(t)

+ 3a

√
ρμ

π

∫ t

0

dU(τ)

dτ

1√
(t − τ)

dτ

]
. (4.12)

The formula (4.12) is in agreement with that of
Basset (see Basset [22] and Landau and Lifshitz [23]).

If the fluid flow is assumed to move steadily, i.e.
when U(t) = Uo, where Uo is a constant, the drag for-
mula (4.11) becomes

Fz(t) = 6πκ1κ2

κ3
aUo(�a + 1), (4.13)

which is coincident with that obtained by Ramkissoon
and Majumdar [9].
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Fig. 4 Drag force versus time for case (2)

Fig. 5 Drag force versus time for case (3)

5 Drag of some flows

In this section we employ the general drag formula
(4.11) to evaluate the resultant drag force on the sur-
face of a sphere translating in a micropolar fluid with
some given speeds.

Case (1) The case of damping oscillation, with fre-
quency ω, is considered here by assuming that U(t) =
Uoe

−ωt sin(ωt), therefore

Fz(t) = 2πaUo

[
1

3
ρa2ωe−ωt

(
cos(ωt) − sin(ωt)

)

+ 3κ1κ2

κ3
(�a + 1)e−ωt sin(ωt)

+ 3aκ1ω

π

∫ t

0
e−ωτ

(
cos(ωτ) − sin(ωτ)

)

× Φ(t − τ)dτ

]
. (5.1)

Case (2) In this case we consider the oscillatory flow
given by applying the velocity U(t) = Uo sin(ωt) to
get

Fz(t) = 2πaUo

[
1

3
ρa2ω cos(ωt)

+ 3κ1κ2

κ3
(�a + 1) sin(ωt)

+ 3aκ1ω

π

∫ t

0
cos(ωτ)Φ(t − τ)dτ

]
. (5.2)
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Fig. 6 Drag force versus time for case (4)

Fig. 7 Drag force versus micropolarity coefficient for case (1)

Case (3) The sudden motion is considered here by
taking U(t) = UoH(t), where H(t) is the Heaviside
unit step function defined by

H(t) =
{

1 if t > 0,

0 otherwise.
(5.3)

In this case the drag formula (4.11) reduces to the
form

Fz(t) = 3aκ1Uo

κ3

{
2πκ2(�a + 1)H(t)

+ aκ3Φ(t)
}
. (5.4)

This latter relation yields the correct behavior of the
steady motion when the time t becomes infinite.

Case (4) Here we consider the case of accelerating
velocity, i.e. U(t) = tUo, then we have

Fz(t) = 2πaUo

[
1

3
ρa2 + 3κ1κ2

κ3
(�a + 1)t

+ 3aκ1

π

∫ t

0
Φ(t − τ)dτ

]
. (5.5)

6 Numerical results and conclusion

To illustrate our results graphically, formula (4.11)
is employed for different cases of the speed U(t).
In view of (2.4), the material parameters γ , ρ and
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Fig. 8 Drag force versus micropolarity coefficient for case (2)

Fig. 9 Drag force versus micropolarity coefficient for case (3)

μ have been assigned the following values during
numerical calculations; the parameter γ is taken
equal to 1.3 g cm s−1, the density ρ is assumed to be
1.05 g cm−3 and the viscosity coefficient μ is assigned
the value 0.05 g cm−1 s−1. The last two values repre-
sents the mean density and mean viscosity of animal
blood which can be modeled as micropolar fluids. The
drag force is calculated and represented graphically
against the time for different values of κ/μ in Figs. 3,
4, 5 and 6 and against the micropolarity coefficient
ratio κ/μ for different values of time in Figs. 7, 8,
9 and 10. From Figs. 3, 4, 5 and 6 it can be noticed
that the increase of the micropolarity factor κ/μ in-

creases the values of the drag force. Also, from Fig. 3

we observe that the drag vanishes after a short time;

of course the decay of the drag force occurring in this

case is expected since we consider here the case of

damping oscillation. Figures 7 and 9 show that the

values of the drag force decrease with the increase of

the time; this behavior is in accord with damping oscil-

lation and sudden motion. In Fig. 10 we find that the

increase of the time increases the values of the drag

force which is also expected because the cases of sine

oscillation and accelerating speed are considered and

they both proportional to the time.
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Fig. 10 Drag force versus micropolarity coefficient for case (4)

The well known drag formula (4.12) obtained by
Basset (see Basset [22] and Landau and Lifshitz [23])
in the case of viscous fluid flow is recovered as a spe-
cial case of the present work when the micropolarity
parameter κ becomes zero.

Also, when the speed U(t) is assumed to be
constant the drag formula (4.11) reduces to that of
Ramkissoon and Majumdar [9] in the case of steady
state micropolar fluids. This behavior is also seen in
Fig. 9 when the time tends to infinity.
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