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Abstract Influence of rotation, relaxation times, mag-
netic field, initial stress and gravity field on attenua-
tion coefficient (Imaginary part of frequency equation
root) and Rayleigh waves velocity (the real part of fre-
quency equation root) in an elastic half-space of gran-
ular medium is studied. The analytical solution is ob-
tained by using Lame’s potential techniques. The nu-
merical calculations are carried out for the frequency
equation of Rayleigh waves velocity. The results are
displayed graphically. Some results of previous inves-
tigations are deduced as special cases from this study.

Keywords Granular medium · Rotation · Rayleigh
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Nomenclature
T is temperature difference (θ − T0)
θ is the ratio of the coefficients of heat transfer
t is the time

�

Ho is the constant primary magnetic field vector
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�

E is the electric intensity

s is the specific heat per unit mass

ρ is the density of the material

P is the initial stress

F is the coefficient of friction

Fj are the components of Lorentz’s body forces

vector

τ1, τ2 are the mechanical relaxation times

g is the earth gravity

�u is the component of displacement vector

To is reference temperature solid
�

j is the electric current density

ωij is the rotation vector

μe is the magnetic permeability

k is the wave number

c is speed of Rayleigh waves

λ,μ are the Lame’ constants

M is the third elastic constant

κ is thermal conductivity

K is the thickness
�

h is the perturbed magnetic field over the

constant primary magnetic field

σij is the stress tensor

ε is coupling coefficient

(ξ, η, ζ ) are components of rotation vector of the

grain about its center of gravity
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1 Introduction

The study of granular medium in recent times has
been necessiated by its possible applications in soil
mechanics, geophysical prospecting, mining engineer-
ing, earthquake science, etc. The dynamical problem
of magneto-thermoelasticity has received much atten-
tion in the literature during the past decade. In recent
years the theory of magneto-thermoelasticity which
deals with the interactions among strain, tempera-
ture and electromagnetic fields has drawn the atten-
tion of many researchers because of its extensive uses
in divers field, such as geophysics for understanding
the effect of Earth’s magnetic field on seismic waves,
damping of acoustic waves in magnetic field, emis-
sions of electromagnetic radiations from nuclear de-
vices, development of highly sensitive superconduc-
tion magnetometer, electrical power engineering, op-
tics etc. The dynamical problem in granular medium
of generalized magneto-thermoelastic waves has been
studied in recent times, necessitated by its possible
applications in Soil mechanics, earthquakes Science,
Geophysics, mining Engineering and Plasma physics,
etc. In the motion of a deformable body, quantities at
each point of it can’t be recognized with out some un-
certainty, and must be regarded as average values over
a small region about the point. Abd-Alla and Mah-
moud discussed magneto-thermoelastic problem in ro-
tating non-homogeneous orthotropic hollow cylindri-
cal under the hyperbolic heat conduction model [1].
Generalized magneto-thermoelastic Rayleigh waves in
a granular medium under influence of gravity field
and initial stress, also effect of the rotation on the ra-
dial vibrations in a non-homogeneous orthotropic hol-
low cylinder is discussed by Abd-Alla et al. [2, 4].
Mahmoud et al. [3, 5] discussed effect of the rotation
on plane vibrations in a transversely isotropic infinite
hollow cylinder, they solved effect of the rotation on
wave motion through cylindrical bore in a micropolar
porous cubic crystal.

The dynamical problem of a generalized thermoe-
lastic granular infinite cylinder under initial stress has
been illustrated by El-Naggar [6]. Abd-Alla et al.
[7–12] studied wave propagation modeling in cylin-
drical human long wet bones with cavity, propaga-
tion of S-wave in a non-homogeneous anisotropic in-
compressible and initially stressed medium under in-
fluence of gravity field, effect of the rotation on a
non-homogeneous infinite cylinder of orthotropic ma-
terial, effect of magnetic field and non-homogeneity

on the radial vibrations in hollow elastic cylinder,
on Problem of Transient Coupled Thermoelasticity
of an Annular Fin, effect of the rotation, and they
studied magnetic field and initial stress on peristaltic
motion of micropolar fluid, influences of rotation,
magnetic field, initial stress and gravity on Rayleigh
waves in a homogeneous orthotropic elastic half-
space. Abd-Alla and Mahmoud [13–15] solved ef-
fect of the rotation on propagation of thermoelas-
tic waves in a non-homogeneous infinite cylinder of
isotropic material, analytical solution of wave propa-
gation in non-homogeneous orthotropic rotating elas-
tic media, magneto-thermo-viscoelastic interactions in
an unbounded non-homogeneous body with a spher-
ical gravity subjected to a periodic loading. Effect
of the non-homogeneity on wave propagation on or-
thotropic elastic media, effect of rotation and magnetic
field through porous medium on Peristaltic transport
of a Jeffrey fluid in tube are investigated by Mahmoud
[16, 17]. Rayleigh waves in a thermoelastic granu-
lar medium under initial stress has been explained
by Ahmed [18]. Recently, Ahmed [19] discussed the
influence of gravity on the propagation of waves in
granular medium. Problem of Rayleigh waves prop-
agation in an orthotropic thermoelastic medium un-
der gravity and initial stress is discussed by Abd-Alla
and Ahmed [20]. Abouelregal [21] presented Rayleigh
waves in a thermoelastic solid half space using dual-
phase-lag model. The medium under consideration is
granular half-space overlying by a different granular
layer and initial stress present in this medium have
considerable effect in the propagation of Rayleigh
waves, Ahmed [18].

This study focuses on the study of Rayleigh waves
with models fitting with the earth. The granular
medium under consideration is a discontinuous one
and is composed of large or small grains. The ef-
fects of rotation, magnetic and gravity fields and ini-
tial stress on the propagation of Rayleigh waves in a
granular media under incremental thermal stresses are
investigated. The roots of this equation are in general
complex, the real part measures the Rayleigh wave ve-
locity and the imaginary part of an appropriate root
measures the attenuation of the waves. When there is
no coupling between the temperature and the strain
field in the absence of the initial stress, the derived
frequency equation reduces to an equation in the form
of ninth-order determinant.
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Fig. 1 Displaying of the problem

2 Formulation of the problem

Let us consider a system of orthogonal Cartesian axes
oxyz, the interface and the free surface of the granu-
lar layer resting on the granular half-space of different
material being the planes z = K , and z = 0, respec-
tively. The origin o is any point on the free surface,
z-axis is positive along the direction towards the exte-
rior of the half-space, and the x-axis is positive along
the direction of Rayleigh waves propagation. The both
media are under initial compression stress P along

x-direction and primary magnetic field
�

H parallel to
y-axis, as well as gravity field and incremental ther-
mal stresses as shown in Fig. 1.

The state of deformation in the granular medium is
described by the displacement vector �u(u,0,w) and
�ξ(ξ, η, ζ ) are components of rotation vector of the
grain about its center of gravity. The electromagnetic
field is governed by Maxwell equations, under the con-
sideration that the medium is a perfect electric conduc-
tor taking into account the absence of the displacement
current.

The heat conduction equation in Lord and Shulman
theory is given by

κ∇2T = ρs
∂

∂t

[
1 + τ2

∂

∂t

]
T

+ γ To

∂

∂t

[
1 + τ2δ

∂

∂t

]
�∇.�u. (1)

The vector equation of motion is

τij,i + Fj = ρ[ü + (
�

� × �

� × �

u) + (2
�

� × �

u̇)]j
i, j = 1,2,3 (2)

where (
�

� × �

� × �

u) is the centripetal acceleration due

to the time varying motion only and (2
�

� × �

u) is the
Coriolis acceleration. Here

�

u is the dynamic displace-
ment vector measured from steady state deformed po-
sition and supposed to be small, Fj are the compo-
nents of Lorentz’s body forces vector.

Equation (2) has three Cartesian components:

∂τ11

∂x
+ ∂τ31

∂z
+ P

2

∂ω2

∂z
− ρg

∂w

∂x
+ Fx

= ρ

(
∂2u

∂t2
+ 2�

∂w

∂t
− �2u

)
,

∂τ21

∂x
+ ∂τ23

∂z
+ Fy = 0,

∂τ13

∂x
+ ∂τ33

∂z
+ P

2

∂ω2

∂x
+ ρg

∂u

∂x
+ Fz

= ρ

(
∂2w

∂t2
− 2�

∂u

∂t
− �2w

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

where
�

F = (−μeH
2
o ∇2�,0,μeH

2
o ∇2�) and

τ32 − τ23 + ∂M11

∂x
+ ∂M31

∂z
= 0,

τ31 − τ13 + ∂M12

∂x
+ ∂M13

∂z
= 0,

τ12 − τ21 + ∂M13

∂x
+ ∂M33

∂z
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4)

The stress-strain-temperature relations have the forms

τ11 = (λ + 2μ + P)
∂u

∂x
+ (λ + P)

∂w

∂z

− γ

(
1 + τ1

∂

∂t

)
T ,

τ33 = λ
∂u

∂x
+ (λ + 2μ)

∂w

∂z
− γ

(
1 + τ1

∂

∂t

)
T ,

τ13 = μ

(
∂u

∂z
+ ∂w

∂x

)
+ F

∂η

∂t
,

τ12 = −F
∂ζ

∂t
,

τ32 = −F
∂ξ

∂t
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

where η, ζ and ξ are the components of rotation vector
of the grain about its center of gravity.

Noted that, the fundamental equations of the Lord
and Shulman’s theory can be obtained when δ = 1 and
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τ1 = 0. Green and Lindsay model (G-L) can be also

obtained as a special case when δ = 0. In the absence

of the relaxation times τ1 and τ2, (1) reduces to the
classical theory of thermoelasticity, where

M11 = M
∂ξ

∂x
, M13 = M

∂ξ

∂z
, M33 = M

∂ζ

∂z
, M21 = M22 = M23 = 0,

M12 = M
∂

∂x
(ω2 + η), M32 = M

∂

∂z
(ω2 + η), M13 = M

∂ζ

∂z
.

⎫⎪⎪⎬
⎪⎪⎭

(6)

From (5) and (6), (3) and (4) tend to

(λ + 2μ + P + μeH
2
o )

∂2u

∂x2
+

(
λ + μ + P

2
+ μeH

2
o

)
∂2w

∂x∂z
+

(
μ + P

2

)
∂2u

∂z2

− γ
∂

∂x

(
1 + τ1

∂

∂t

)
T − F

∂2η

∂z∂t
− ρg

∂w

∂x
= ρ

(
∂2u

∂t2
+ 2�

∂w

∂t
− �2u

)
, (7)

∂

∂t

(
∂ζ

∂x
− ∂ξ

∂z

)
= 0, (8)

(
λ + μ + P

2
+ μeH

2
o

)
∂2u

∂x∂z
+

(
μ − P

2

)
∂2w

∂x2
+ (λ + 2μ + μeH

2
o )

∂2w

∂z2

− γ
∂

∂z

(
1 + τ1

∂

∂t

)
∂T

∂z
− F

∂2η

∂x∂t
+ ρg

∂u

∂x
= ρ

(
∂2w

∂t2
+ 2�

∂u

∂t
− �2w

)
, (9)

∇2ξ − s2
∂ξ

∂t
= 0, (10)

∇2(η + ω2) − s2
∂η

∂t
= 0, (11)

∇2ζ − s2
∂ζ

∂t
= 0. (12)

3 Solution of the problem

We assume that the displacements �u are derivable
from the displacement potentials � and � by the rela-
tion

�u = �∇� + �∇ × �

�,
�

� = (0,�,0), (13)

which reduces to

u = ∂�

∂x
− ∂�

∂z
, w = ∂�

∂z
+ ∂�

∂x
. (14)

Substituting from (14) into (7), (9) and (11), the wave
equations tend to

α2∇2� − γ

ρ

(
1 + τ1

∂

∂t

)
T − g

∂�

∂x

− ∂2�

∂t2
− 2�

∂�

∂t
+ �2� = 0, (15)

β2∇2� − s1
∂η

∂t
+ g

∂�

∂x
− ∂2�

∂t2

− 2�
∂�

∂t
+ �2� = 0, (16)

∇2η − s2
∂η

∂t
+ ∇4� = 0, (17)

where

s1 = F

ρ
, s2 = 2F

M
,

α2 = λ + 2μ + P + μeH
2
o

ρ
, β2 = 2μ − P

2ρ
.

(18)
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Using (14), the heat conduction equation (1) be-
comes:

κ∇2T = ρs
∂

∂t

[
1 + τ2

∂

∂t

]
T

+ γ To

∂

∂t

[
1 + τ2δ

∂

∂t

]
∇2�. (19)

From (15) and (19), we get
[
∇2 − 1

ù

∂

∂t

(
1 + τ2

∂

∂t

)][
α2∇2� − ∂2�

∂t2

− g
∂�

∂x
− 2�

∂�

∂t
+ �2�

]

− ε
∂

∂t

(
1 + τ1

∂

∂t

)(
1 + τ2δ

∂

∂t

)
∇2� = 0. (20)

Where the coupling coefficient ε appears in tempera-
ture equation only

ù = κ

ρs
, ε = Toγ

2

ρκ
. (21)

From (16) and (17), by eliminated η, we get
(

∇2 − s2
∂

∂t

)(
β2∇2� − ∂2�

∂t2
+ �2�

+ g
∂�

∂x
− 2�

∂�

∂t

)
+ s1∇4 ∂�

∂t
= 0. (22)

For a plane harmonic wave propagation in the x-
direction, we assume

� = �1(z) exp(ik(x − ct)), (23)

� = �1(z) exp(ik(x − ct)), (24)

(ξ, η, ζ ) = (ξ1, η1, ζ1)(z) exp(ik(x − ct)). (25)

Substituting from (25) into (8), (10) and (12), one may
obtain:

Dξ1 − ikζ1 = 0, (26a)

D2ξ1 + q2ξ1 = 0, (26b)

D2ζ1 + q2ζ1 = 0, (26c)

where q2 = ikcs2 − k2, D = d
dz

.
Solutions of (26b) and (26c) are:

ξ1 = A1e
iqz + A2e

−iqz,

ζ1 = B1e
iqz + B2e

−iqz,
(27)

where, A1, A2, B1 and B2 are arbitrary constants, from
(26a) and (27) we obtain

q(A1e
iqz − A2e

−iqz) − k(B1e
iqz + B2e

−iqz) = 0,

(28)

then

Aj = (−1)j−1k

q
Bj , j = 1,2. (29)

Substituting from (23) and (24) into (20) and (22),
we obtain:

α2D4 +
(

k2(c2 − 2α2) + ikc

ù
(α4a2�2 + ùε�1�3) + �2

)
D2 + k4(α2 − c2)

+
[

ick3�2(c
2 − α2)

ù
− iεck3�1�3 + ick�2

ù
�2

]
�1 − ikg

[
(D2 − k2)

(
1 − 2�c

g

)
+ ikc�2

ù

]
�1 = 0, (30)

(β2 − ikcs1)D
4 + [k2(c2 − 2β2) + ikc(β2s2 − k2s1)]D2 + [k4(β2 − c2)

+ ik3c{s2(c
2 − β2) − k2s1}]�1 + ikg

[
D2 − k2 + ikcs2 − 2�c

g

]
�1 = 0, (31)

where

�1 = 1 − ikcτ1, �2 = 1 − ikcτ2, �3 = 1 − ikcτ2δ.
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The solutions of (30) and (31) take the form:

�1 =
4∑

j=1

Cje
ikNj z + Dje

−ikNj z, (32a)

�1 =
4∑

j=1

Eje
ikNj z + Fje

−ikNj z (32b)

Where the constants Ej and Fj are related with the constants Cj and Dj as the form

Ej = mjCj , Fj = mjDj , j = 1,2,3,4,

mj = −i

g(−k(N2
j + 1) + ic�2

ù
)

[
α2k2N4

j −
(

k2(c2 − 2α2) + ikc

ù
(α2�2 + εù�1�3) + �2

)
N2

j

+ (α2 − c2)

(
k2 − ick�2

ù

)
− icεk�1�3 + ic�2

ùk
�2

]
,

(33)

where N1, N2, N3 and N4 are taken to be the complex roots of equation

N8 + t1N
6 + t2N

4 + t3N
2 + t4 = 0, (34)

t1 = −2k2 + c2k2

α2
+ ick(α2�2 + εù�1�3)

ùα2
+ �2

α2
+ 1

β2 − ikcs1
(k2(c2 − 2β2) + ick(β2s2 − k2s1)), (35a)

t2 = k4 − c2k4

α2
− icεk3�1�3

α2
+ ick�2�

2

ùα2
+ k4(β2 − c2)

β2 − ikcs1
+ ik3c{s2(c

2 − β2) − k2s1}
β2 − ikcs1

+ 1

α2(β2 − ikcs1)
[k2(c2 − 2β2) + ick(β2s2 − k2s1)]

[
k2(c2 − 2α2)

+ ick(α2�2 + εù�1�3)

ù
+ �2

]
− ik3c�2(c

2 − α2)

ùα2
− k2g2(1 − 2�c

g
)

α2(β2 − ikcs1)
, (35b)

t3 = 1

α2(β2 − ikcs1)

[
(k2(c2 − 2β2) + ick(β2s2 − k2s1))

(
k4(α2 − c2)

+ ick3(�2(c
2 − α2) − εù�1�3 + �2�

2/k2)

ù

)
− g2k2

((
1 − 2�c

g

)(
icks2 − 2�c

g

)

+ ick�2

ù
+ −2k2

(
1 − 2�c

g

))
+

(
k2(c2 − 2α2)

+ ick(α2�2 + εù�1�3)

ù
+ �2

)
(k4(β2 − c2) + ik3c(s2(c

2 − β2) − k2s1))

]
, (35c)

t4 = 1

α2(β2 − ikcs1)

[
(k4(β2 − c2) + ik3c(s2(c

2 − β2) − k2s1))

(
k4(α2 − c2)

+ ick3(�2(c
2 − α2) − εù�1�3 + ick�2�

2)

ù

)
− g2k4

(
k

(
1 − 2�c

g

)
− ic�2

ù

)(
k − ics2 + 2�c

g

)]
. (35d)

From (16), (24), (25), (32a) and (32b), we obtain:

η1 =
4∑

j=1

[
1

is1c

(
k(β2(N2

j + 1) − c2) − �2

k

)
mj − ig − 2i�c

]
(Cj e

ikNj z + Dje
−ikNj z). (36)
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Using (32a) and (32b), we obtain

T = ρ

γ�1

4∑
j=1

[−α2k2(N2
j + 1) + k2c2

− ik(g − 2�c)mj + �2](Cj e
ikNj z

+ Dje
−ikNj z)eik(x−ct). (37)

With the lower medium, we use the symbols with
dashes, for ξ1, ζ1, η1, T , �1, �1 and q , for z > K ,

ξ ′
1 = − k

q ′ B
′
2e

−iq ′z, ζ ′
1 = B ′

2e
−iq ′z, (38a)

η′
1 =

4∑
j=1

[
1

is′
1c

(
k(β ′2(N ′2

j + 1) − c2) − �2

k

)
m′

j

− i(g − 2�c)

]
D′

j e
−ikN ′

j z
, (38b)

T ′ = ρ′

γ ′
1�1

4∑
j=1

[−α′2k2(N ′2
j + 1) + k2c2

− ik(g − 2�c)m′
j

+ �2]D′
j e

−ik(N ′
j z−x+ct)

, (38c)

�′
1 =

4∑
j=1

D′
j e

−ikN ′
j z

,

� ′
1 =

4∑
j=1

F ′
j e

−ikN ′
j z

.

(38d)

4 Boundary conditions and frequency equation

In this section, we obtain the frequency equation for
the boundary conditions which specify on the interface
z = K , i.e.,

(i) u = u′, (ii) w = w′,

(iii) ξ = ξ ′, (iv)η = η′,

(v) ζ = ζ ′, (vi) M33 = M ′
33,

(39a)

(vii) M31 = M ′
31, (viii) M32 = M ′

32,

(ix) τ33 + τ̄33 = τ ′
33 + τ̄ ′

33,

(x) τ31 + τ̄31 = τ ′
31 + τ̄ ′

31,

(39b)

(xi) τ32 + τ̄32 = τ ′
32 + τ̄ ′

32, (xii) T = T ′,

(xiii)
∂T

∂z
+ θT = ∂T ′

∂z
+ θT ′.

(39c)

The boundary condition on the free surface z = 0 are

(xiv) M33 = 0, (xv) M31 = 0,

(xvi) M32 = 0, (xvii) τ33 + τ̄33 = 0,
(40a)

(xviii) τ31 + τ̄31 = 0, (xix) τ32 + τ̄32 = 0,

(xx)
∂T

∂z
+ θT = 0,

(40b)

from the conditions (iii), (v), (vi), (vii), we get

B1e
iqK − B2e

−iqK = −B ′
2e

−iq ′K, (41a)

B1e
iqK + B2e

−iqK = B ′
2e

−iq ′K, (41b)

M(B1e
iqK − B2e

−iqK) = −M ′B ′
2e

−iq ′K, (41c)

M(B1e
iqK + B2e

−iqK) = −M ′B ′
2e

−iq ′K, (41d)

hence

B1 = B2 = B ′
2 = 0, ξ = ζ = ξ ′ = ζ ′ = 0. (42)

The other significant boundary conditions are respon-
sible for the following relations

(i)
4∑

j=1

(1 − Njmj )Cj e
ikNj K + (1 + Njmj )Dje

−ikNj K − (1 − N ′
jm

′
j )D

′
j e

−ikN ′
j K = 0,

(ii)
4∑

j=1

(Nj + mj)Cje
ikNj K + (mj − Nj)Dje

−ikNj K − (m′
j − N ′

j )D
′
j e

−ikN ′
j K = 0,
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(iv)

4∑
j=1

[
1

is1c

(
β2k(N2

j + 1) − kc2 − �2

k

)
mj − ig − 2i�c

]
(Cj e

ikNj K + Dje
−ikNj K)

−
4∑

j=1

[
1

s′
1c

(
β ′2k(N ′2

j + 1) − kc2 − �2

k

)
m′

j − ig − 2i�c

]
D′

j e
−ikN ′

j K = 0,

(viii)
4∑

j=1

MNj

(
1

s1c
(β2k(N2

j + 1) − kc2)mj − ig

)
(Cj e

ikNj K − Dje
−ikNj K)

+ k2mj(N
2
j + 1)(Cj e

ikNj K + Dje
−ikNj K) +

(
M ′N ′

j

(
1

s′
1c

(β ′2k(N ′2
j + 1) − kc2)m′

j − ig

)

− k2m′
j (N

′2
j + 1)

)
D′

j e
−ikN ′

j K = 0,

(ix)

4∑
j=1

[−k2{λ(1 − Njmj ) + Nj(λ + 2μ)(mj + Nj)}]Cje
ikNj K

+ [−k2{λ(1 + Njmj ) − Nj(λ + 2μ)(mj − Nj)}]Dje
−ikNj K

+ [k2(N2
j + 1)(ργ α2 − μeH

2
o ) − kργ (kc2 − igmj )](Cj e

ikNj K + Dje
−ikNj K)

− [−k2{λ′(1 + N ′
jm

′
j ) − N ′

j (λ
′ + 2μ′)(m′

j − N ′
j )}]D′

j e
−ikN ′

j K

− [k2(N ′2
j + 1)(ρ′γ ′α′2 − μ′

eH
2
o ) − kρ′γ ′(kc2 − igm′

j )]D′
j e

−ikN ′
j K = 0,

(x)

4∑
j=1

[
μk2(mj (N

2
j − 1)) + iFk

s1
((β2k(N2

j + 1) − kc2)mj − ig)

]

× (Cj e
ikNj K + Dje

−ikNj K) + 2μk2Nj(−Cje
ikNj K + Dje

−ikNj K)

−
[
μ′k2(m′

j (N
′2
j − 1) + 2N ′

j ) + iFk

s′
1

((β ′2k(N ′2
j + 1) − kc2)m′

j − ig)

]
D′

j e
−ikN ′

j K = 0,

− ρ′

γ ′ [−α′2k2(N ′2
j + 1) + k2c2 − ik(g − 2�c)m′

j + �2]D′
j e

−ikN ′
j K = 0,

(xiii)
4∑

j=1

ρ

γ
[−α2k2(N2

j + 1) + k2c2 − ik(g − 2�c)mj + �2][(θ + ikNj )Cj e
ikNj K

+ (θ − ikNj )Dje
−ikNj K ] − ρ′

γ ′ [−α′2k2(N ′2
j + 1) + k2c2 − ik(g − 2�c)m′

j + �2]

× (θ − ikN ′
j )D

′
j e

−ikN ′
j K = 0,

(xvi)
4∑

j=1

(
1

s1c
(β2k(N2

j + 1) − kc2)mj − ig

)
(MNj (Cj − Dj)) + k2mj(N

2
j + 1)(Cj + Dj) = 0,

(xvii)
4∑

j=1

−λk2[(1 − Njmj )Cj + (1 + Njmj )Dj ] + (λ + 2μ)[−k2Nj {(mj + Nj)Cj

+ (mj − Nj)Dj }] + [k2(N2
j + 1)(ργ α2 + μeH

2
o ) − kργ (kc2 − igmj )](Cj + Dj) = 0,
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(xviii)
4∑

j=1

−2k2Nj(Cj − Dj) + k2mj(N
2
j − 1) + iFk

s1
[(β2k(N2

j + 1) − kc2)mj − ig](Cj + Dj) = 0,

(xx)

4∑
j=1

[−α2k2(N2
j + 1) + k2c2 − ik(g − 2�c)mj + �2][(θ + ikNj )Cj + (θ − ikNj )Dj ] = 0.

By eliminating Cj , Dj and D′
j from the relevant re-

sults, we will get a determinant of a twelfth-order form
which determines the wave velocity and attenuation
coefficient.

5 Special cases and discussion

5.1 In presence of rotation and absence of the gravity
field

In this case, we put the gravity field g = 0, and
the rotation � �= 0, (30) and (31) take the form:

α2D4 +
(

k2(c2 − 2α2) + ikc

ù
(α2

2�2 + ùε�1�3) + �2
)

D2

+
[
k4(α2 − c2) + ick3[�2(c

2 − α2 + �2

k2 ) − εù�1�3]+
ù

]
�1 + 2ick��1 = 0, (43)

(β2 − ikcs1)D
4 + 2[k2(c2 − 2β2) + ikc(s2β

2 − s1k
2)]D2

+ 2k4(2β2 − c2) + [2ics2k
3(c2 − β2) − ics1k

5]�1 − 2ick��1 = 0, (44)

which take the solutions

�1 =
4∑

j=1

Lje
ikNj z + Qje

−ikNj z,, �1 =
4∑

j=1

nj e
ikNj z + pje

−ikNj z, (45)

where

nj = IjLj , pj = IjQj , (46)

where

Ij = −2ick�

[α2k2N4
j − (k2(c2 −2α2)+ ikc

ù
(α2

2�2 + εù�1�3)+�2)N2
j + (α2 − c2)(k2 − ick�2

ù
)− icεk�1�3 + ic�2

ùk
�2] ,

(47)

R8 + �1R
6 + �2R

4 + �3R
2 + �4 = 0, (48)

�1 = − 2(c2 − 2β2)

(β2 − ikcs1)
− ic(β2s2 − k2s1)

k(β2 − ikcs1)
− (c2 − 2α2) + εù�1�3 + �2

k2α2
− ic

ùk
�2, (49a)

�2 =
{

2

[
(c2 − 2α2)

k2
+ icα2

k3
�2 + εú�1�3 + �2

k4

]
× [k2(c2 − 2β2) + ick(β2s2 − k2s1)]

+
[

1 − c2

α2
+ ic

ùkα2

[
�2

(
c2 − α2 + �2

k2

)
− εú�1�3

k4

]]
+ 2(β2 − c2)

(β2 − ikcs1)
+ 2ics2(c

2 − β2) − ick2s1

k(β2 − ikcs1)

}
,

(49b)
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�3 = 1

α2(β2 − ikcs1)k2

[
2(α2 − c2) + ic

ùk

(
�2

(
c2 − α2 + �2

k2

)
− εú�1�3

k4

)

× [k2(c2 − 2β2) + ick(β2s2 − k2s1)]
]
, (49c)

�4 = 1

α2(β2 − ikcs1)k2

{[
(α2 − c2)

k4
+ ic

ùk5

(
�2

(
c2 − α2 + �2

k2

)
− εú�1�3

k8

)

× [2k4(2β2 − c2) + 2ick3s2(c
2 − β2) − ick5s1] − 2ic�

k7

]}
. (49d)

Also,

η1 =
4∑

j=1

[
1

s1c
k

(
β2(R2

j + 1) − c2 − �2

k

)
Ij − 2i�c

]
(Lj e

ikRj z + Qje
−ikRj z), (50)

T = ρ

γ�1

4∑
j=1

[−α2k2(R2
j + 1) + k2c2 + ik(2�c)Ij + �2](Lj e

ikRj z + Qje
−ikRj z)eik(x−ct). (51)

With the lower medium, we use the symbols with dashes, for ξ1, ζ1, η1, T , �1, �1 and q , for z > K ,

ξ ′
1 = − k

q ′ B
′
2e

−iq ′z, ζ ′
1 = B ′

2e
−iq ′z, (52a)

η′
1 =

4∑
j=1

[
1

s′
1c

(
k(β ′2(R′2

j + 1) − c2) − �2

k

)
I ′
j − 2i�c

]
Q′

j e
−ikR′

j z
, (52b)

T ′ = ρ′

γ ′
1�1

4∑
j=1

[−α′2k2(R′2
j + 1) + k2c2 + 2i�ckI ′

j + �2]Q′
j e

−ik(R′
j z−x+ct)

, (52c)

�′
1 =

4∑
j=1

Q′
j e

−ikR′
j z

, � ′
1 =

4∑
j=1

p′
j e

−ikR′
j z

. (53)

Using the boundary conditions, we get:

d1j = (1 − RjIj )Lj e
ikRj K + (1 + RjIj )Qje

−ikRj K, d ′
1j = (1 − R′

j I
′
j )Q

′
j e

−ikR′
j K

,

d2j = (Rj + Ij )Lj e
ikRj K + (Ij − Rj )Qje

−ikRj K, d ′
2j = (I ′

j − R′
j )Q

′
j e

−ikR′
j K

,

d3j =
[

1

s1c

(
−ikβ2(R2

j + 1) + ikc2 − �2

ik

)
Ij + (−2�c)

]
(Lj e

ikRj K + Qje
−ikRj K),

d ′
3j =

[
1

s′
1c

(
−ikβ ′2(R′2

j + 1) + ikc2 − �2

ik

)
I ′
j + (−2�c)

]
Q′

j e
−ikR′

lK ,

d4j = MVj

(
1

s1c

(
−ikβ2(R2

j + 1) + ikc2 − �2

ik

)
Ij + (−2�c)

)
(Lj e

ikRj K − Qje
−ikRj K)

+ k2Ij (R
2
j + 1)(Lj e

ikRj K + Qje
−ikRj K),

d ′
4j =

(
1

s′
1c

(
−ikβ ′2(R′2

j + 1) + ikc2 − �2

ik

)
I ′
j + (−2�c)

)
MR′

jQ
′
j e

−ikR′
j K + k2I ′

j (R
′2
j + 1)Q′

j e
−ikR′

j K
,
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d5j = [−k2{λ(1 − RjIj ) + Rj (λ + 2μ)(Ij + Rj )}]Lje
ikRj K

+ [−k2{λ(1 + RjIj ) − Rj (λ + 2μ)(Ij − Rj)}]Qje
−ikRj K

+ [k2(R2
j + 1)(ργ α2 − μeH

2
o ) − kργ (kc2)](Lj e

ikRj K + Qje
−ikRj K),

d ′
5j = [−k2{λ′(1 + R′

jm
′
j ) − R′

j (λ
′ + 2μ′)(I ′

j − R′
j )}]Q′

j e
−ikR′

j K

− [k2(R′2
j + 1)(ρ′γ ′α′2 − μ′

eH
2
o ) − kρ′γ ′(kc2)]Q′

j e
−ikR′

j K,

d6j =
[
μk2(Ij (R

2
j − 1)) + iFk

s1
((β2k(R2

j + 1) − kc2)Ij )

]
(54)

× (Lj e
ikRj K + Qje

−ikRj K) + 2μk2Rj (−Lje
ikRj K + Qje

−ikRj K),

d ′
6j =

[
μ′k2((I ′

j (R
′2
j − 1)) + 2R′

j ) + iFk

s′
1

((β ′2k(R′2
j + 1) − kc2)I ′

j )

]
Q′

j e
−ikR′

j K
,

d7j = ρ

γ
[−α2k2(R2

j + 1) + k2c2 − ik(−2�c)Ij + �2](Lj e
ikRj K + Qje

−ikRj K),

d ′
7j = ρ′

γ ′ [−α′2k2(R′2
j + 1) + k2c2 − ik(−2�c)m′

j + �2]Q′
j e

−ikVj K,

d8j = ρ

γ
[−α2k2(R2

j + 1) + k2c2 − ik(−2�c)Ij + �2][(θ + ikRj )Lj e
ikRj K + (θ − ikVj )Qje

−ikRj K ],

d ′
8j = ρ′

γ ′ [−α′2k2(R′2
j + 1) + k2c2 − ik(−2�c)I ′

j + �2](θ ′ − ikR′
j )Q

′
j e

−ikR′
j K

,

d9j =
(

1

s1c

(
−ikβ2

(
R2

j + 1 + ikc2 − �2

ik

)
Ij + (−2�c)

))
(MRj (Lj − Qj)) + k2Ij (R

2
j + 1)(Lj + Qj),

d10j = −λk2[(1 − Rjmj )Cj + (1 + Rjmj )Dj ] + (λ + 2μ){−k2Rj [(Ij + Rj )Lj

+ (Ij − Rj )Dj ]} − [k2(R2
j + 1)(ργ α2 + μeH

2
o ) − kργ (kc2)](Lj + Qj),

d11j = −2k2Rj (Lj − Qj) + k2Ij (R
2
j − 1) + iFk

s1
[(β2k(R2

j + 1) − kc2)Ij ],

d12j = [−α2k2(R2
j + 1) + k2c2 − ik(−2�c)Ij + �2][(θ + ikRj )Lj + (θ − ikRj )Qj ],

d ′
9j = d ′

10j = d ′
11j = d ′

12j = 0, j = 3,4,5,6.

Equation (54) has complex roots, the real part gives
Rayleigh wave velocity and the imaginary part gives
the attenuation coefficient due to the friction of the
granular nature of the medium. Analytically, one may
observed that the Rayleigh wave velocity and atten-
uation coefficient depend on the rotation, magnetic
field, initial stress, gravity field, granular rotation and
thermal relaxation times. It’s shown from (34) that

due to effect of the thermal field and gravity field
change from fourth-order to eight-order which in-
volves four positive roots. The transcendental equa-
tion (54) in the determinant form, represents the re-
quired wave velocity equation of wave propagated in
generalized magneto-thermoelastic granular body un-
der the influence of rotation, gravity field and initial
stress.
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5.2 In presence of rotation, relaxation times,
granularity and there is no coupling (ε = 0)

between the temperature and strain field

In this case, presence of rotation (� �= 0), no gravity
field (g = 0), no initial stress (P = 0), no magnetic

field (Ho = 0), coupled parameter (ε = 0) and the ra-
tio of the coefficients of heat transfer (θ = 0), we ob-
tain:

lim
ε→0

�1 = − 2(c2 − 2β2)

(β2 − ikcs1)
− ic(β2s2 − k2s1)

k(β2 − ikcs1)
− (c2 − 2α2) + �2

k2α2
− ic

ùk
�2, (55)

lim
ε→0

�2 =
{

2

[
(c2 − 2α2)

k2
+ icα2

k3
�2 + �2

k4

]
× [k2(c2 − 2β2) + ick(β2s2 − k2s1)]

+
[

1 − c2

α2
+ ic

ùkα2

[
�2

(
c2 − α2 + �2

k2

)]]
+ 2(β2 − c2)

(β2 − ikcs1)
+ 2ics2(c

2 − β2) − ick2s1

k(β2 − ikcs1)

}
, (56)

lim
ε→0

�3 = 1

α2(β2 − ikcs1)k2

{[
2(α2 − c2) + ic

ùk

(
�2

(
c2 − α2 + �2

k2

))

× [k2(c2 − 2β2) + ick(β2s2 − k2s1)]
]}

, (57)

lim
ε→0

�4 = 1

α2(β2 − ikcs1)k2

{[
(α2 − c2)

k4
+ ic

ùk5

(
�2

(
c2 − α2 + �2

k2

))

× [2k4(2β2 − c2) + 2ick3s2(c
2 − β2) − ick5s1] − 2ic�

k7

]}
. (58)

After tanking γ → 0, boundary conditions become:

d ′
5j = [−k2{λ′(1 + R′

j I
′
j ) − R′

j (λ
′ + 2μ′)(I ′

j − R′
j )}]Q′

j e
−ikR′

j K
,

d6j =
[
μk2(Ij (R

2
j − 1)) + iFk

s1
((β2k(R2

j + 1) − kc2)Ij )

]

× (Lj e
ikrRj K + Qje

−ikRj K) + 2μk2Rj (−Lje
ikRj K + Qje

−ikRj K),

d ′
6j =

[
(μ′k2(I ′

j (R
′2
j − 1)) + 2R′

j ) + iFk

s′
1

((β ′2k(R′2
j + 1) − kc2)I ′

j )

]
Q′

j e
−ikR′

j K
,

d7j =
(

1

s1c

(
−ikβ2

(
R2

j + 1 + ikc2 − �2

ik

)
Ij + (−2�c)

)
(MRj (Lj − Qj))

+ k2Ij (R
2
j + 1)(Lj + Qj)

)
,

d8j = −λk2[(1 − RjIj )Lj + (1 + RjIj )Qj ] + (λ + 2μ){−k2Rj [(Ij + Rj )Lj + (Ij − Rj)Qj ]},
d9j = −2k2Rj (Lj − Qj) + k2Ij (R

2
j − 1) + iFk

s1
[(β2k(R2

j + 1) − kc2)Ij ],
d10j = [−α2k2(R2

j + 1) + k2c2 − ik(−2�c)Ij + �2][(ikRj )Lj − (ikRj )Qj ],
d ′

7j = d ′
8j = d ′

9j = d ′
10j = 0, j = 3,4,5,6.

det(dij ) = 0. (59)
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Equation (59) has complex roots, the real part gives
Rayleigh wave velocity and the imaginary part gives
the attenuation coefficient. The frequency equation
(54) which determines the wave velocity equation for
the Rayleigh waves in a granular medium, when the
rotation and initial stress are absent, we have

α2 = λ + 2μ

ρ
, β2 = μ

ρ
. (60)

Finally, if there is (i) no rotation, magnetic field, ther-
mal relaxation times, gravity field, and granular rota-
tion is vanishes and (ii) absence of the magnetic field,
thermal relaxation times, gravity field, there is uncou-
pling between temperature and strain field, and the
granular rotation is vanishes, the results obtained by
Ahmed [18, 19] are deduced as special case from this
study with slight changes in symbols with additional
to the graphs that not included in the last work.

For a computation work by half-interval method
program, we use Sand Stone as a granular medium and
Nephiline as a granular layer taking into consideration
that the friction coefficient F = 0.5 and third elastic
constants M1 = 0.4, M2 = 0.6.

5.3 In presence of rotation, there are no coupling
(ε = 0) between the temperature and strain field,
there are no relaxation times and granularity

In this case presence of rotation (� �= 0), no relax-
ation times (τ1 = τ2 = 0) no gravity field (g = 0), no
initial stress (P = 0), no magnetic field (Ho = 0), cou-
pled parameter (ε = 0) and the ratio of the coefficients
of heat transfer (θ = 0), and the friction coefficient
F = 0, we obtain:

lim
ε→0

�1 = −2(c2 − 2β2)

β2
− (c2 − 2α2) + �2

k2α2
− ic

ùk
,

lim
ε→0

�2 = 2

[
(c2 − 2α2)

k2
+ icα2

k3
+ �2

k4

]
× [k2(c2 − 2β2)]

+
[

1 − c2

α2
+ ic

ùkα2

[(
c2 − α2 + �2

k2

)]]
+ 2(β2 − c2)

β2
,

lim
ε→0

�3 = 1

α2β2k2

{[
2(α2 − c2) + ic

ùk

((
c2 − α2 + �2

k2

))
[k2(c2 − 2β2)]

]}
,

lim
ε→0

�4 = 1

α2β2k2

{[
(α2 − c2)

k4
+ ic

ùk5

((
c2 − α2 + �2

k2

))
[2k4(2β2 − c2)] − 2ic�

k7

]}
,

d1j = (1 − RjIj )Lj e
ikRj K + (1 + RjIj )Qje

−ikRj K,

d ′
1j = (1 − R′

j I
′
j )Q

′
j e

−ikR′
j K

,

d2j = (Rj + Ij )Lj e
ikRj K + (Ij − Rj )Qje

−ikRj K,

d ′
2j = (I ′

j − R′
j )Q

′
j e

−ikR′
j K

,

d3j = (−k2{λ(1 − RjIj ) + Rj (λ + 2μ)(Ij + Rj)}]Lje
ikRj K + [−k2{λ(1 + RjIj )

− Rj (λ + 2μ)(Ij − Rj )}]Qje
−ikRj K,

d ′
3j = [k2{λ′(1 + R′

j I
′
j ) + R′

j (λ
′ + 2μ′)(I ′

j − R′
j )}]Q′

j e
−ikR′

j K
,

d4j = −λk2[(1 − RjIj )Lj + (1 + RjIj )Qj ] + (λ + 2μ){−k2Rj [(Ij + Rj )Lj + (Ij − Rj )Qj ]},
d5j = −2k2Rj(Lj − Qj) + k2Ij (R

2
j − 1)(Lj + Qj),

d6j = [−α2k2(R2
j + 1) + k2c2 + 2ik�cIj + �2][(ikRj )Lj − (ikRj )Qj ],

d ′
4j = d ′

5j = d ′
6j = 0, j = 1,2.
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So, (59) tends to

det(dij ) = 0. (61)

Equation (61) has complex roots, the real part gives Rayleigh wave velocity and the imaginary part gives the
attenuation coefficient, where

d11 = (1 − R1I1)e
ikR1K, d12 = (1 + R1I1)e

−ikR1K, d13 = (1 − R2I2)e
ikR2K,

d14 = (1 + R2I2)e
−ikR2K, d15 = (1 − R1I

′
1)e

−ikR′
1K, d16 = (1 − R′

2I
′
2)e

−ikR′
2K,

d21 = (1 − R1I1)e
ikR1K, d22 = (I1 − R1)e

−ikR1K, d23 = (R2 + I2)e
ikR2K,

d24 = (I2 − R2)e
−ikR2K, d25 = (I ′

1 − R′
1)e

−ikR′
1K, d26 = (I ′

2 − R′
2)e

−ikR′
2K,

d31 = −k2{λ(1 − R1I1) + R1(λ + 2μ)(I1 + R1)}eikR1K,

d32 = −k2{λ(1 + R1I1) − R1(λ + 2μ)(I1 − R1)}e−ikR1K,

d33 = −k2{λ(1 − R2I2) + R2(λ + 2μ)(I2 + R2)}eikR2K,

d34 = −k2{λ(1 + R2I2) − R2(λ + 2μ)(I2 − R2)}e−ikR2K,

d35 = k2{λ′(1 + R′
1I

′
1) + R′

1(λ
′ + 2μ′)(I ′

1 − R′
1)}e−ikR′

1K,

d36 = k2{λ′(1 + R′
2I

′
2) + R′

2(λ
′ + 2μ′)(I ′

2 − R′
2)}e−ikR′

2K,

d41 = −λk2(1 − R1I1) − k2R1(λ + 2μ)(I1 + R1),

d42 = −λk2(1 + R1I1) − k2R1(λ + 2μ)(I1 − R1),

d43 = −λk2(1 − R2I2) − k2R2(λ + 2μ)(I2 + R2),

d44 = −λk2(1 + R2I2) − k2R2(λ + 2μ)(I2 − R2),

d45 = k2λ′(1 + R′
1I

′
1) + R′

1(λ
′ + 2μ′)(I ′

1 − R′
1),

d46 = k2λ′(1 + R′
2I

′
2) + R′

2(λ
′ + 2μ′)(I ′

2 − R′
2),

d51 = −2k2Rj + k2Ij (R
2
j − 1), d52 = 2k2Rj + k2Ij (R

2
j − 1),

d53 = −2k2Rj + k2Ij (R
2
j − 1),

d54 = 2k2Rj + k2Ij (R
2
j − 1), d55 = 0, d56 = 0,

d61 = (ikR1)[−α2k2(R2
1 + 1) + k2c2 + 2ik�cI1 + �2],

d62 = (−ikR2)[−α2k2(R2
2 + 1) + k2c2 + 2ik�cI2 + �2],

d63 = (ikR1)[−α2k2(R2
1 + 1) + k2c2 + 2ik�cI1 + �2],

d64 = (−ikR2)[−α2k2(R2
2 + 1) + k2c2 + 2ik�cI2 + �2],

d65 = 0, d66 = 0.

6 Numerical results and discussion

In order to show theoretical results and present some
numerical results obtained. We investigate the varia-
tion of attenuation coefficient (imaginary part of fre-
quency equation root) and Rayleigh wave velocity in a
perfectly conducting granular medium under effect of
rotation �, magnetic field, initial stress P and gravity
field g, for computational work. From Fig. 3a shows
the effects of rotation � on variation of attenuation co-

efficient with respect to initial stress with the various
values of rotation �, k = 10−5, τ1 = 10−2, K = 10−3,
Ho = 4 × 103 which it decreases with increasing of
initial stress and it increases with increasing of rota-
tion �.

Figure 2(a,b) shows variation of the attenuation co-
efficient (imaginary part of frequency equation root)
and velocity of Rayleigh waves (real part of fre-
quency equation root), with respect to initial stress,
for the various values of gravity field; we found that
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Fig. 2 (a) Variation of attenuation coefficient with respect to initial stress, for the various values of gravity field. (b) Variation of
Rayleigh wave coefficient with respect to initial stress, for the various values of gravity field

Fig. 3 (a) Variation of attenuation coefficient with respect to initial stress, for the various values of rotation �. (b) Variation of
Rayleigh wave coefficient with respect to initial stress, for the various values of rotation �

the attenuation coefficient and velocity of Rayleigh
waves decreased with increasing values of initial stress
P and gravity field g. From Fig. 3b, it’s noticed that
the various values of Rayleigh wave velocity are fixed
for the small values of initial stress P , jump to its
maximum value that help an engineers in their appli-
cations, and run to its fixed value.

Figure 4(a,b) shows the effects of rotation � and
magnetic field Ho on variation of attenuation coeffi-
cient and Rayleigh wave velocity with respect to ini-
tial stress with the various values of magnetic field
Ho, k = 10−5, τ1 = 10−2, K = 10−3, which it de-
creases with increasing of initial stress and it decreases
with increasing of magnetic field Ho. Figure 5(a,b)
shows the effects of rotation � and wave number k

on variation of attenuation coefficient and Rayleigh
wave velocity with respect to initial stress with the var-

ious values of wave number k, τ1 = 10−2, K = 10−3,
Ho = 4 × 103, which it decreases with increasing of
initial stress and it decreases with increasing of wave
number k. Figure 6(a,b) shows the effects of rotation
� and relaxation time τ1 on variation of attenuation
coefficient and Rayleigh wave velocity with respect
to initial stress with the various values of relaxation
time, k = 10−5, K = 10−3, Ho = 4×103, which it de-
creases with increasing of initial stress and it increases
with increasing of relaxation time τ1.

Figure 7(a,b) shows the effects of rotation � on
attenuation coefficient and Rayleigh wave velocity c

with respect to thickness K with the various val-
ues of rotation, k = 10−5, τ1 = 10−2, K = 10−3,
Ho = 4 × 103, which it increases with increasing of
thickness K and it increases with decreasing of rota-
tion �. Figure 8 shows the effects of rotation � on
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Fig. 4 (a) Variation of attenuation coefficient with respect to initial stress, for the various values of magnetic field H0. (b) Variation
of Rayleigh wave coefficient with respect to initial stress, for the various values of magnetic field H0

Fig. 5 (a) Variation of attenuation coefficient with respect to initial stress, for the various values of wave number. (b) Variation of
Rayleigh wave coefficient with respect to initial stress, for the various values of wave number

Fig. 6 (a) Variation of attenuation coefficient with respect to initial stress, for the various values of relaxation time. (b) Variation of
Rayleigh wave velocity with respect to initial stress, for the various values of relaxation time
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Fig. 7 (a) Variation of attenuation coefficient with respect to thickness, for the various values of rotation. (b) Variation of Rayleigh
wave velocity with respect to thickness, for the various values of rotation �

Fig. 8 Variation of non-dimensional frequency with respect to
thickness, for the various values of rotation �

Fig. 9 Variation of non-dimensional frequency with respect to
thickness, for the various values of magnetic field Ho

Fig. 10 Variation of non-dimensional frequency with respect to
thickness, for the various values of relaxation times

non-dimensional frequency, which it increases with in-
creasing of thickness K and it decreases with increas-
ing the rotation. Figure 9 shows the effects of magnetic
field Ho on non-dimensional frequency, which it in-
creases with increasing of thickness K and it increases
with increasing the magnetic field. Figure 10 shows
the effects of relaxation time on non-dimensional fre-
quency, which it increases with increasing of thick-
ness K and it increases with increasing the relaxation
time. Figure 11 shows the effects of wave number on
non-dimensional frequency, which it increases with in-
creasing of thickness K and it increases with increas-
ing the wave number. Figure 12 shows the effects of
gravity field on non-dimensional frequency, which it
has no effect for small values of thickness K and it has
Trivial effect for higher values, non-dimensional fre-
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Fig. 11 Variation of non-dimensional frequency with respect to
thickness, for the various values of wave number

Fig. 12 Variation of non-dimensional frequency with respect to
thickness, for the various values of gravity field

quency increases with increasing of thickness K and
it increases with increasing the gravity field.

Finally, from the previous results obtained in gen-
eral case and special cases, it is shown that the rotation,
magnetic field, initial stress, gravity field, thermal re-
laxation times, and granular rotations have utilitarian
aspects on Rayleigh wave velocity and attenuation co-
efficient.

7 Conclusion

The effects of rotation, relaxation times, magnetic
field, gravity field, initial stress and wave number are
very pronounced on attenuation coefficient, Rayleigh
wave velocity and non-dimensional frequency. When
the medium is an orthotropic and the effect of rotation

is neglected, the frequency equation reduces to previ-
ous work. Special cases are investigated. The results
indicate that the effect of rotation is very sensitive.
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