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Abstract A study is made with an analysis of an in-
compressible viscous fluid flow past a slightly de-
formed porous sphere embedded in another porous
medium. The Brinkman equations for the flow in-
side and outside the deformed porous sphere in their
stream function formulations are used. Explicit ex-
pressions are investigated for both the inside and out-
side flow fields to the first order in small parameter
characterizing the deformation. The flow through the
porous oblate spheroid embedded in another porous
medium is considered as the particular example of
the deformed porous sphere embedded in another
porous medium. The drag experienced by porous
oblate spheroid in another porous medium is also eval-
uated. The dependence of drag coefficient and dimen-
sionless shearing stress on the permeability parame-
ter, viscosity ratio and deformation parameter for the
porous oblate spheroid is presented graphically and
discussed. Previous well-known results are then also
deduced from the present analysis.

P.K. Yadav (�)
Department of Mathematics, Birla Institute of Technology
and Science, Pilani 333031, RJ, India
e-mail: pramod547@gmail.com

S. Deo
Department of Mathematics, University of Allahabad,
Allahabad 211002, UP, India
e-mail: sd_mathau@yahoo.co.in

Keywords Brinkman equation · Gegenbauer
functions · Modified Bessel functions · Stream
function · Drag force

1 Introduction

The flow through porous media has attracted consid-
erable practical and theoretical interest in science, en-
gineering and technology. The flow through porous
media occurs commonly in geophysical and biome-
chanical problems and also has many engineering ap-
plications, such as, flow in fixed beds, petroleum in-
dustry, hydrology, lubrication problems, etc. [1]. En-
gineering system based on fluidized bed combustion,
enhance oil reservoir recovery, underground spreading
of chemical waste and chemical catalytic reactors, the
movement of water and other fluids in the sandy or the
earthen soil, the flow of water through the porous bank
of rivers, intrusion of sea water to coastal area, the flow
of blood through lungs and arteries are just a few ex-
amples of applications of the study of flow through
porous media. The most practical example of physi-
cal process of viscous flow inside a porous spherical
region is the structure of the earth. In the engineer-
ing practice, porous particles often have geometrical
shape, which differ significantly from spherical. The
simplest possible geometry to study the effect shape of
the permeable particle on the drag force is spheroid.

Due to its broad areas of applications in science,
engineering and industries; several conceptual mod-
els have been developed for describing fluid flow in
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porous media. There are many different theoretical
and experimental models that have been used for the
analysis of the fluid flow in a porous medium. The
Darcy’s law as proposed by Henri Darcy [2] states
that the rate of flow is proportional to pressure drop
through a densely packed bed of fine particles, is one
of the basic model that has been used extensively in
the literature. In a densely packed porous medium sat-
urated with turbulent flow, the curvature of the flow
due to meandering of flow gives raise to quadratic
drag of the form ρCb|v|v/

√
k, in addition to the linear

drag μv/k. In that case momentum equation is called
Darcy-Forchheimer’s equation

∇p = −μ

k
v − ρCb√

k
|v|v. (1)

In sparsely packed porous medium of porosity φ

the Darcy-Forchheimer’s equation is no longer valid
and in that case one has to take into account of bound-
ary layer effect. The modified form of (1) which
involve the boundary layer effect called as Darcy-
Lapwood-Forchheimer-Brinkaman equation (Nield
and Bejan [3]) as

ρ

[
1

φ

∂v
∂t

+ 1

φ2
(v.∇)v

]

= −∇p − μ

k
v − ρCb√

k
|v|v + μ̃∇2v. (2)

Joseph and Tao [4] examined the flow of a viscous in-
compressible fluid past a porous spherical particle by
using Darcy’s law in the porous region. They found
that the drag on the porous sphere is same as that
of solid sphere with reduced radius. However, this
law appears to be inadequate for the flows with high
porosity, large shear rates and for flows near the sur-
face of the bounded porous medium. Many early au-
thors on convection in porous media used various
types of extended Darcy models e.g. Boutros et al.
[5], were discussed Lie-group method of solution for
steady two dimensional boundary-layer stagnation-
point flow towards a heated stretching sheet placed
in a porous medium, Radiation effect on forced con-
vective flow and heat transfer over a porous plate in
a porous medium was studied by Mukhopadhyay and
Layek [6]. During nineteenth century after the Darcy’s
work, flow through porous media has been simulated
by questions arising in practical problems. Brinkman
[7] proposed a modification of the Darcy’s law for a

porous medium which was assumed to be governed
by a swarm of homogeneous spherical particles and
provides an expression like

μ̃∇2v − μ

k
v = ∇p, (3)

where, μ̃ denotes the effective viscosity of porous
medium, k being the permeability of a swarm, μ

is the viscosity of fluid and v being the velocity of
fluid. However, for steady Stokes flow through porous
medium, (3) can also be obtained by neglecting con-
vective inertia and form drag terms in (2). This equa-
tion reduces to Stokes equation for large permeabil-
ity k (μ̃∇2v = ∇p), whereas, for low permeability
medium this equation resembles with Darcy empirical
equation (−μ

k
v = ∇p). The no-slip boundary condi-

tion has been found to be inapplicable, when a viscous
fluid flows over a permeable surface. William [8] has
suggested the following matching conditions at the in-
terface:

voutside = φvinside,

∂voutside

∂n
= λφ

∂vinside

∂n
,

(4)

where, φ is the porosity of porous medium, n is the
direction of normal to the interface and λ being the
ratio of viscosities of fluid in the porous medium to
that in the clear fluid region.

The problem of creeping flow relative to perme-
able spheres was solved by Neale et al. [9]. Higdon
and Kojima [10] have studied the Stokes flow past
porous particles using the Brinkman’s equations for
the flow inside. They derived some asymptotic re-
sults for small and large permeability by using Green’s
function formulation of the Brinkman’s equation. A
Cartesian-tensor solution of the Brinkman’s equation
governed by the porous media was investigated by
Qin and Kaloni [11] and using this solution they also
evaluated the hydrodynamic force experienced by a
porous sphere. Pop and Cheng [12] have considered
the problem of an incompressible steady viscous flow
past a circular cylinder embedded in a constant poros-
ity medium based on the Brinkman model and they
obtained a closed form exact solution of stream func-
tion of Brinkman equation. Bhatt and Sacheti [13]
have studied the problem of viscous flow past a porous
spherical shell using the Brinkman model and they
evaluated the drag force experienced by the shell. Bar-
man [14] has studied the problem of a Newtonian
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fluid past an impervious sphere embedded in a con-
stant porous medium. Using Brinkman model, he re-
ported an exact solution of the stream function to the
governing equation specifying constant velocity away
from the sphere. Pop and Ingham [15] have also dis-
cussed the flow past a sphere embedded in a porous
medium based on the Brinkman model. The problem
of an incompressible steady flow past a porous imper-
vious sphere embedded in a constant and high porosity
porous medium using Brinkman model has been stud-
ied by Rudraiah et al. [16]. They had obtained an exact
solution for the governing equation specifying a con-
stant shear away from the sphere. Creeping flow about
a slightly deformed sphere was studied by Palaniappan
[17] and Ramkissoon [18] by using slip boundary con-
dition at the porous surface. Pal and Mondal were dis-
cussed Radiation effects on combined convection over
a vertical flat plate embedded in a porous medium of
variable porosity [19].

Zlatanovski [20] has considered the axi-symmetric
Stokes flow of an incompressible viscous fluid past a
porous prolate spheroidal particle using the Brinkman
model for the flow inside the spheroidal particle. Slip
flow past a prolate spheroid was investigated by Deo
and Datta [21] and evaluated the drag force expe-
rienced by it. The Stokes flow past a fluid prolate
spheroid is also studied by Deo and Datta [22]. Creep-
ing flow past a porous approximate sphere has been
discussed by Srinivascharya [23]. The drag force ex-
perienced by a swarm of porous deformed oblate
spheroidal particles was evaluated by Deo and Yadav
[24]. The variation of drag coefficient with permeabil-
ity and solid volume fraction was also discussed by
them. Deo [25] has solved the problem of Stokes flow
past a swarm of deformed porous spheroidal parti-
cles with Happel boundary condition. Recently, Deo
and Gupta [26] have evaluated the drag force on a
porous sphere embedded in another porous medium.
Yadav et al. [27] have evaluated the hydrodynamic per-
meability of membranes built up by spherical parti-
cles covered by porous shells. These above investiga-
tions, motivate us to discuss the slow viscous flow past
and through a porous deformed sphere embedded in
another porous medium which included these above
mentioned few cases of a porous sphere or a porous
spheroid.

This paper concerns the solution of the problem of
slow viscous flow past and through a porous deformed
spheroid embedded in another porous medium. The

Brinkman equations for the flow inside and outside the
porous spheroid, whose shape deviates slightly from
that of sphere, in their stream function formulations
are used. Explicit expressions for the stream function
are investigated for both the inside and outside flow
fields to the first order in small parameter character-
izing the deformation. A new result for the drag on a
porous deformed sphere embedded in another porous
medium has been reported. As a particular case, slow
viscous flow through a porous oblate spheroid embed-
ded in another porous medium is considered and the
drag experienced by it is evaluated. The dependence
of the drag coefficient on permeability for a porous
oblate/prolate spheroid is presented graphically and
discussed. It is seen that effect of permeability is to
reduce the drag force. An expression for the shearing
stress at the porous spheroid has been also reported.
The results reported earlier by Qin and Kaloni [11]
for a perfect porous sphere, Deo [25] for a porous
oblate spheroid, Ramkissoon [18] for a rigid spheroid
in an unbounded medium and Deo and Gupta [26] for
a porous sphere embedded in another porous medium
are then deduced as special cases of the present analy-
sis.

2 Statement and mathematical formulation of the
problem

The model employed here is that of a porous spheroidal
particle of permeability k1, whose shape deviates
slightly from that of sphere, embedded in another
porous medium of permeability k2. The porosities of
inside and outside porous media are φ1 and φ2, respec-
tively.

We shall consider a uniform, axi-symmetric, slow
viscous flow of a Newtonian fluid past and through a
porous spheroidal particle. For convenience, we con-
sider the porous spheroid to be stationary having its
center at the origin with the fluid approaching in the
positive z-direction with uniform velocity U , as illus-
trated in Fig. 1. Let the surface S of a spheroid which
departs but a little in shape from a sphere r = a be

r = a
(
1 + βmGm(ζ )

)
. (5)

Further, assuming that the coefficients βm is suffi-
ciently small so that squares and higher powers may
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be neglected, i.e.

(
r

a

)n

≈ 1 + nβmGm(ζ ), (6)

where, n may be positive or negative.
The inside and outside regions of the porous de-

formed sphere are fully saturated with the viscous
fluid. We shall denote i = 1 in an entity for inside
and i = 2 for outside regions of the porous deformed
sphere, respectively. The governing Brinkman equa-
tions for the both regions can be expressed as

∇2v(i) − σ 2

a2
v(i) = 1

μ̃i

∇p(i), i = 1,2. (7)

Here, σ 2
i = μia

2

μ̃iki
= βa2

ki
, β = μi

μ̃i
, μi are the viscosi-

ties of fluids, μ̃i denotes the effective viscosity of
porous media and ki being the permeability in both
regions. Since, σi are dimensionless quantities related
inversely with the permeability, therefore, we named
σi as the dimensionless permeability parameter. In ad-
dition, the equations of continuity for incompressible
fluids must be satisfied in both regions:

div v(i) = 0, i = 1,2. (8)

These equations of continuity for axi-symmetric,
incompressible viscous fluid in the spherical polar co-
ordinates (r, θ,ϕ) for both regions can also be ex-
pressed as (Happel and Brenner [30])

∂

∂r
(r2v(i)

r ) + r

sin θ

∂

∂θ
(v

(i)
θ sin θ) = 0, (9)

where, v
(i)
r and v

(i)
θ , are components of velocities in

the direction of r and θ , respectively. The Stokes
stream functions ψ(i)(r, θ) in both regions satisfying
equations of continuity (9) can be defined as

v(i)
r = − 1

r2 sin θ

∂ψ(i)

∂θ
; v

(i)
θ = 1

r sin θ

∂ψ(i)

∂r
.

(10)

Therefore, on elimination of pressures from the Brink-
man’s equations and using (10), we get the following
fourth order partial differential equations

E2
(

E2 − σ 2
i

a2

)
ψ(i) = 0, (11)

where, the operator

E2 = ∂2

∂r2
+ (1 − ζ 2)

r2

∂2

∂ζ 2
, ζ = cos θ. (12)

Furthermore, the expressions for tangential and nor-
mal stresses for both regions T

(i)
rζ and T

(i)
rr , i = 1,2

are given by

T
(i)
rζ = μ̃i

r
√

1 − ζ 2

[
∂2ψ(i)

∂r2

− 2

r

∂ψ(i)

∂r
− (1 − ζ 2)

r2

∂2ψ(i)

∂ζ 2

]
, (13)

T (i)
rr = −p(i) − 2μ̃i

r2

[
2

r

∂ψ(i)

∂ζ
− ∂2ψ(i)

∂r∂ζ

]
. (14)

Also, the pressures in both regions may be obtained
by integrating the following relations respectively for
both regions as

∂p(i)

∂r
= − μ̃i

r2 sin θ

∂
∂θ

{(E2 − (
σi

a
)2)ψ(i)}

∂p(i)

∂θ
= μ̃i

sin θ
∂
∂r

{(E2 − (
σi

a
)2)ψ(i)}

⎫⎬
⎭ . (15)

A regular solution on the symmetry axis-z of the
Brinkman’s equation (7) in the spherical polar coor-
dinates can be taken (Zlatanovski [20]) as

ψ(i)(r, ζ ) =
∞∑

n=2

[
Anr

n + Bnr
1−n + Cn

√
rKν

(
σir

a

)

+ Dn

√
rIν

(
σir

a

)]
Gn(ζ ), i = 1,2.

(16)

Here, Iν(
σir
a

) and Kν(
σir
a

) are modified Bessel func-
tions of order ν of first and second kind, respectively
as defined in Abramowitz and Stegun [28] and An, Bn,
Cn & Dn are constants of integration. The function
Gn(ζ ) is the Gegenbauer function of first kind of or-
der n and related to Legendre function Pn(ζ ) of first
kind by the relation

Gn(ζ ) = Pn−2(ζ ) − Pn(ζ )

(2n − 1)
, n ≥ 2. (17)

3 Solution of the problem

The solution given by (16) provides the flow in both
regions with proper choice of these constants. For the
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Fig. 1 Co-ordinate system for axi-symmetric flow past a porous spheroid

flow inside the porous deformed sphere (r = a(1 +
βmGm(ζ ))) where origin occurs the constants Bn, Cn

should be zero [25]. Therefore, we assume that the
regular solution inside the porous spheroid in non-
dimensional form with the help of uniform stream
function as

ψ(1)(r, ζ ) = Ua2

[[
a2

(
r

a

)2

+ d2

√
r

a
I3/2

×
(

σ1r

a

)]
G2(ζ ) +

∞∑
n=2

[
An

(
r

a

)n

+ Dn

√
r

a
Iν

(
σ1r

a

)]
Gn(ζ )

]
(18)

For the flow in the region outside the porous spheroid
which satisfies the uniform condition, the constant Dn

will be zero [26]. Therefore, the regular solution out-
side the porous spheroid in non-dimensional form can
be taken as

ψ(2)(r, ζ ) = Ua2

[[
a∗

2

(
r

a

)2

+ b∗
2

(
a

r

)

+ c∗
2

√
r

a
K3/2

(
σ2r

a

)]
G2(ζ )

+
∞∑

n=2

[
A∗

n

(
r

a

)n

+ B∗
n

(
r

a

)1−n

+ C∗
n

√
r

a
Kν

(
σ2r

a

)]
Gn(ζ )

]
. (19)

The only coefficients which contribute to the flow past
a porous sphere are a2, d2, a∗

2 , c∗
2 and consequently, we

may expect that all other coefficients in (18) and (19)
are of order βm. Therefore, except where these coeffi-
cients enter, we may take the surface to be r = a in-
stead of the exact form of the spheroid.

Boundary Conditions: The boundary conditions
those are physically realistic and mathematically con-
sistent for this proposed problem can be taken as:

On the porous surface: r = a(1 + βmGm(ζ ))

φ1v
(1)
r = φ2v

(2)
r ; φ1v

(1)
θ = φ2v

(2)
θ , (20)

φ1T
(1)
rθ = φ2T

(2)
rθ ; φ1T

(1)
rr = φ2T

(2)
rr . (21)

The condition at infinity

ψ(2)(r, ζ ) = −1

2
Ur2 sin2 θ

= −Ur2G2(ζ ) as r → ∞ (22)
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for a uniform stream flowing with velocity U in the
direction of positive z-axis. By using condition (22),
we get a∗

2 = −1.

Applying the boundary conditions (20)–(21) and
using the perturbation method, we have the following
equations:

[a2 + I3/2(σ1)d2 + ϕ(1 − b∗
2 − K3/2(σ2)c

∗
2)]P1(ζ ) + [{σ1I1/2(σ1) − 3I3/2(σ1)}d2

+ ϕ{3b∗
2 + (σ2K1/2(σ2) + 3K3/2(σ2))c

∗
2}]βmP1(ζ )Gm(ζ ) +

∞∑
n

[An + Iν(σ1)Dn

− ϕ{B∗
n + Kν(σ2)C

∗
n}]Pn−1(ζ ) = 0, (23)

[2a2 + {σ1I1/2(σ1) − I3/2(σ1)}d2 + ϕ{2 + b∗
2 + (σ2K1/2(σ2) − K3/2(σ2))c

∗
2}]G2(ζ )

− [{σ1I1/2(σ1) − (σ 2
1 + 3)I3/2(σ1)}d2 + ϕ{3b∗

2 + (σ2K1/2(σ2) + (σ 2
2 + 3)K3/2(σ2))c

∗
2}]

× βmG2(ζ )Gm(ζ ) +
∞∑
n

[nAn + {σ1Iν−1(σ1) + (1 − n)Iν(σ1)}Dn + ϕ{(n − 1)B∗
n

+ {σ2Kν−1(σ2) + (n − 1)Kν(σ2)}C∗
n}]Gn(ζ ) = 0, (24)

[{(σ 2
1 + 6)I3/2(σ1) − 2σ1I1/2(σ1)}d2 − λϕ{6b∗

2 + {(σ 2
2 + 6)K3/2(σ2) + 2σ2K1/2(σ2)}

× c∗
2}]G2(ζ ) + [{(σ 3

1 + 8σ1)I1/2(σ1) − (24 + σ 2
1 )I3/2(σ1)}d2 + λϕ{24b∗

2 + {(4σ 2
2 + 24)

× K3/2(σ2) + (8σ2 + σ 3
2 )K1/2(σ2)}c∗

2}]βmG2(ζ )Gm(ζ ) +
∞∑
n

[2n(n − 2)An + {(σ 2
1

+ 2(n2 − 1))Iν(σ1) − 2σ1Iν−1(σ1)}Dn − λϕ{2(n2 − 1)B∗
n + {(σ 2

2 + 2(n2 − 1))Kν(σ2)

+ 2σ2Kν−1(σ2)}C∗
n}]Gn(ζ ) = 0, (25)

[−2σ 2
1 a2 + {12I3/2(σ1) − 4σ1I1/2(σ1)}d2 − λϕ{2σ 2

2 + (σ 2
2 + 12)b∗

2 + {12K3/2(σ2)

+ 4σ2K1/2(σ2)}c∗
2}]G2(ζ ) − [2σ 2

1 a2 + {(4σ 2
1 + 48)I3/2(σ1) − 16σ1I1/2(σ1)}d2

+ λϕ{2σ 2
2 − (2σ 2

2 + 48)b∗
2 − {(4σ 2

2 + 48)K3/2(σ2) + 16σ2K1/2(σ2)}c∗
2}]βmP1(ζ )Gm(ζ )

+
∞∑
n

[{−σ 2
1 n + 2n(n − 1)(2 − n)}An + {2n(n2 − 1)Iν(σ1) − 2σ1n(n − 1)Iν−1(σ1)}Dn

− λϕ{{σ 2
2 (n − 1) + 2n(n2 − 1)}B∗

n + {2n(n2 − 1)Kν(σ2) + 2n(n − 1)

× σ2Kν−1(σ2)}C∗
n}]Pn−1(ζ ) = 0, (26)

where, λ = μ2
μ1 and porosity ratio ϕ = φ2

φ1
.

Solving the leading terms in (23)–(26), we can ob-
tained the values of a2, d2, b∗

2 and c∗
2 . Here, it is noted

that these values corresponds to the flow past a porous

sphere embedded in another porous medium which
were evaluated by Deo and Gupta [26].

Substituting the values of a2, d2, b∗
2 and c∗

2 into
(23)–(26) and using the following identities:
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Gm(ζ )G2(ζ ) = − (m − 2)(m − 3)

2(2m − 1)(2m − 3)
Gm−2(ζ )

+ m(m − 1)

(2m + 1)(2m − 3)
Gm(ζ )

− (m + 1)(m + 2)

2(2m − 1)(2m + 1)
Gm+2(ζ ),

(27)

P1(ζ )Gm(ζ ) = (m − 2)

(2m − 1)(2m − 3)
Pm−3(ζ )

+ 1

(2m + 1)(2m − 3)
Pm−1(ζ )

− (m + 1)

(2m + 1)(2m − 1)
Pm+1(ζ ), (28)

we get on simplification the following equations

∞∑
n

[An + Iν(σ1)Dn − ϕ{B∗
n + Kν(σ2)C

∗
n}]Pn−1(ζ ) = 0, (29)

∞∑
n

[nAn + {σ1Iν−1(σ1) + (1 − n)Iν(σ1)}Dn + ϕ{(n − 1)B∗
n + {σ2Kν−1(σ2) + (n − 1)

× Kν(σ2)}C∗
n}]Gn(ζ ) = pβm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )], (30)

∞∑
n

[2n(n − 2)An + {(σ 2
1 + 2(n2 − 1))Iν(σ1) − 2σ1Iν−1(σ1)}Dn − λϕ{2(n2 − 1)B∗

n

+ {(σ 2
2 + 2(n2 − 1))Kν(σ2) + 2σ2Kν−1(σ2)}C∗

n}]Gn(ζ ) = qβm[Em−2Gm−2(ζ )

+ EmGm(ζ ) + Em+2Gm+2(ζ )], (31)

∞∑
n

[{−σ 2
1 n + 2n(n − 1)(2 − n)}An + {2n(n2 − 1)Iν(σ1) − 2σ1n(n − 1)Iν−1(σ1)}Dn

− λϕ{{σ 2
2 (n − 1) + 2n(n2 − 1)}B∗

n + {2n(n2 − 1)Kν(σ2) + 2n(n − 1)σ2Kν−1(σ2)}C∗
n}]Pn−1(ζ )

= tβm[Tm−2Pm−3(ζ ) + TmPm−1(ζ ) + Tm+2Pm+1(ζ )], (32)

where,

p = [−σ 2
1 I3/2(σ1)d2 + ϕσ 2

2 K3/2(σ2)c
∗
2], (33)

q = [−{(8σ1 + σ 3
1 )I1/2(σ1) − (24 + 4σ 2

1 )I3/2(σ1)}d2 − λϕ{24b∗
2

+ {(8σ2 + σ 3
2 )K1/2(σ2) + (24 + 4σ 2

2 )K3/2(σ2)}c∗
2], (34)

t = [{(6σ 2
1 + 72)I3/2(σ1) − 24σ1I1/2(σ1)}d2 − λϕ{(3σ 2

2 + 72)b∗
2

+ {(6σ 2
2 + 72)K3/2(σ2) + 24σ2K1/2(σ2)}c∗

2}], (35)

Em−2 = −m − 3

2
Tm−2, Em = m(m − 1)Tm, Em+2 = m + 2

2
Tm+2, (36)

Tm−2 = m − 2

(2m − 1)(2m − 3)
, Tm = 1

(2m + 1)(2m − 3)
, Tm+2 = 1 + m

(2m + 1)(1 − 2m)
. (37)



1506 Meccanica (2012) 47:1499–1516

By solving (29)–(32), we can obtain the non-vanishing
coefficients which correspond to n = m − 2, m,
m + 2.

Therefore, we have determined the explicit expres-
sion for the stream functions for the flow inside and
outside of the porous deformed sphere S as

ψ(1)(r, ζ )

Ua2
=

[
a2

(
r

a

)2

+ d2

√
r

a
I3/2

(
σ1r

a

)]
G2(ζ ) +

[
Am−2

(
r

a

)m−2

+ Dm−2

√
r

a

I
m− 5

2

(
σ1r

a

)]
Gm−2(ζ ) +

[
Am

(
r

a

)m

+ Dm

√
r

a
I
m− 1

2

(
σ1r

a

)]
Gm(ζ )

+
[
Am+2

(
r

a

)m+2

+ Dm+2

√
r

a
I
m+ 3

2

(
σ1r

a

)]
Gm+2(ζ ) (38)

ψ(2)(r, ζ )

Ua2
=

[
−

(
r

a

)2

+ b∗
2

(
a

r

)
+ c∗

2

√
r

a
K3/2

(
σ2r

a

)]
G2(ζ ) +

[
B∗

m−2

(
r

a

)3−m

+ C∗
m−2

√
r

a

× K
m− 5

2

(
σ2r

a

)]
Gm−2(ζ ) +

[
B∗

m

(
r

a

)1−m

+ C∗
m

√
r

a
K

m− 1
2

(
σ2r

a

)]
Gm(ζ )

+
[
B∗

m+2

(
r

a

)−1−m

+ C∗
m+2

√
r

a
K

m+ 3
2

(
σ2r

a

)]
Gm+2(ζ ) (39)

where, all the constants have been determined. These
above expressions (38) and (39) are the new solutions
of the Brinkman equation under the above mentioned
boundary conditions.

4 Application to a porous oblate spheroid

We consider an approximate porous oblate spheroid
as an application of the above analysis. Let us consider
that porous oblate spheroid is stationary and the steady
axi-symmetric flow has been established around its
symmetry axis z by a uniform velocity U . Let the
Cartesian equation of an oblate spheroid be

x2 + y2

d2
+ z2

d2(1 − ε)2
= 1, (40)

whose equatorial radius is d , in which ε is so small
that squares and higher powers of it may be neglected.
Its polar equation can be written in the form

r = a(1 + 2εG2(ζ )), (41)

where, a = d(1 − ε). Here, it may be mentioned that
for the case of 0 < ε ≤ 1, the shape of spheroid will be

oblate, whereas, for ε < 0 the shape will become pro-
late spheroid. Clearly, when ε = 0, (40) represents a
sphere of radius d . Upon comparison with (5), we are
led to the values m = 2, βm = 2ε. Since A0, D0, B∗

0 ,
C∗

0 are all become zero and further using (41), we find
from (38) and (39) that the stream functions around
and through the porous oblate spheroid are

ψ(1)(r, ζ )

Ua2
=

[
a2

(
r

a

)2

+ d2

√
r

a
I3/2

(
σ1r

a

)]
G2(ζ ) +

[
A2

(
r

a

)2

+ D2

√
r

a
I3/2

(
σ1r

a

)]
G2(ζ )

+
[
A4

(
r

a

)4

+ D4

√
r

a
I7/2

(
σ1r

a

)]
G4(ζ ) (42)
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ψ(2)(r, ζ )

Ua2
=

[
−

(
r

a

)2

+ b∗
2

(
a

r

)
+ c∗

2

√
r

a
K3/2

(
σ2r

a

)]
G2(ζ ) +

[
B∗

2

(
r

a

)−1

+ C∗
2

√
r

a
K3/2

(
σ2r

a

)]
G2(ζ )

+
[
B∗

4

(
r

a

)−3

+ C∗
4

√
r

a
K7/2

(
σ2r

a

)]
G4(ζ ) (43)

Thus the flow fields around and through the porous
oblate spheroid are also completely determined.

5 Results and discussion

The drag force F experienced by a porous oblate
spheroid embedded in another porous medium can be

evaluated by integrating the stresses over the porous
oblate spheroid as:

F = 2πa2
∫ π

0
(T (2)

rr cos θ

− T
(2)
rθ sin θ)r=a(1+2εG2(ζ )) sin θ dθ. (44)

On evaluation of stress-components, we get

T (2)
rr = μ2U

r

[
σ 2

2

(
r

a

)2

+ 1

2

(
a

r

)3{
σ 2

2

(
r

a

)2

+ 12

}
(b∗

2 + B∗
2 ) + 2

√
a

r

{
3

(
a

r

)
K3/2

(
σ2r

a

)

+ σ2K1/2

(
σ2r

a

)}
(c∗

2 + C∗
2 )

]
P1(ζ ) + μ2U

r

[{
σ 2

2

4

(
a

r

)3

+ 10

(
a

r

)5}
B∗

4

+ 2

√
a

r

{
5

(
a

r

)
K7/2

(
σ2r

a

)
+ σ2K5/2

(
σ2r

a

)}
C∗

4

]
P3(ζ ), (45)

T
(2)
rθ = μ2U

r sin θ

[
6

(
a

r

)3

(b∗
2 + B∗

2 ) +
√

r

a

{(
σ 2

2 + 6

(
a

r

)2)
K3/2

(
σ2r

a

)

+ 2σ2

(
a

r

)
K1/2

(
σ2r

a

)}
(c∗

2 + C∗
2 )

]
G2(ζ ) + μ2U

r sin θ

[
30

(
a

r

)5

B∗
4

+
√

r

a

{(
σ 2

2 + 30

(
a

r

)2)
K7/2

(
σ2r

a

)
+ 2σ2

(
a

r

)
K5/2

(
σ2r

a

)}
C∗

4

]
G4(ζ ). (46)

Therefore, inserting these values of (45) and (46) in
(44) and integrating, we find that

F = 2

3
πdμ2U

[
σ 2

2 {2 + b∗
2 + B∗

2 − 2K3/2(σ2)

× (c∗
2 + C∗

2 )} − ε

5
{6σ 2

2 + (−96 + 9σ 2
2 )b∗

2

− ((96 + 34σ 2
2 )K3/2(σ2)

+ (32σ 2
2 + 8σ 3

2 )K1/2(σ2))c
∗
2}

]
. (47)

This is the new result for the drag experienced by a
porous oblate spheroid embedded in another porous

medium, where the values of constants b∗
2 , c∗

2 , B∗
2 and

C∗
2 are given in Appendix A.

Also, the drag coefficient CD can be found as

CD =
[

8

3
[σ 2

2 {2 + b∗
2 + B∗

2 − 2K3/2(σ2)(c
∗
2 + C∗

2 )}

− ε

5
{6σ 2

2 + (−96 + 9σ 2
2 )b∗

2

− ((96 + 34σ 2
2 )K3/2(σ2)

+ (32σ 2
2 + 8σ 3

2 )K1/2(σ2))c
∗
2}]

]
Re−1, (48)
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Fig. 2 Variation of the drag coefficient CD with permeability parameter σ1 for a porous oblate spheroid for various values of σ2 when
viscosity ratio λ = 0.5, porosity ratio ϕ = 5 and ε = 0.05

Table 1 Quantitative values of ReCD for different values of σ1 and σ2 for porous oblate spheroid and porous prolate spheroid and
porous sphere

ReCD

σ1 = 0.1 σ1 = 0.4 σ1 = 0.7 σ1 = 10 σ1 = 18 σ1 = 50 σ1 = 100 σ1 = 400

λ = 0.5
ϕ = 5
ε = 0.05

σ2 = 0.1 0.107 1.677 4.478 24.591 25.432 26.024 26.175 26.283
σ2 = 0.5 −0.033 1.642 4.783 34.970 36.567 37.699 37.987 38.193
σ2 = 0.9 −0.383 1.435 4.954 47.477 50.140 52.019 52.494 52.832

λ = 0.5
ϕ = 5
ε = −0.05

σ2 = 0.1 0.106 1.511 4.079 24.758 25.676 26.322 26.487 26.604
σ2 = 0.5 0.255 1.732 4.550 34.323 35.981 37.157 37.457 37.670
σ2 = 0.9 0.619 2.197 5.286 45.761 48.415 50.295 50.770 51.109

λ = 0.5
ϕ = 5
ε = 0.0

σ2 = 0.1 0.106 1.594 4.278 24.675 25.554 26.173 26.331 26.437
σ2 = 0.5 0.111 1.687 4.666 34.643 36.274 37.428 37.722 37.932
σ2 = 0.9 0.118 1.186 5.120 46.619 49.277 51.157 51.632 51.971

where, Re = 2dU
ν2

and v2 = μ2
ρ

being the Reynolds
number and kinematic viscosity of fluid, respectively.

Figure 2 represents the variation of ReCD for
various values of σ2 with σ1, when viscosity ratio
λ = 0.5, porosity ratio ϕ = 5 and deformation param-
eter ε = 0.05. This shows that the ReCD increases on
the porous oblate spheroid with the increase of perme-
ability parameter σ1. The variation of ReCD is almost
same for different values of σ2 when σ1 < 1 and then
increases rapidly for 1 < σ1 < 10 and after this it be-
come almost constant (Table 1).

For porous oblate spheroid, the value of ReCD de-
creases with increase of σ2, when σ1 < 0.4 and then
increases with increases of σ2 but for porous prolate

spheroid the value of ReCD increases with increases
of σ2 for all values of σ1 (Table 1).

The value of ReCD decreases on the porous oblate
spheroid embedded in another porous medium with
the increase of viscosity ratio λ and inside perme-
ability k1, when σ2 = 0.1, porosity ratio ϕ = 5 and
ε = 0.05 (Fig. 3).

Figure 4 shows that the value of ReCD increases on
the porous oblate spheroid with the increase of ε and
for a permeability parameter σ1 < 7 and it becomes
constant for all values of ε, when 7 < σ1 < 8 but the
value of ReCD increases with decrease of ε, when per-
meability parameter σ1 ≥ 8. Similar, above variations
in the value of ReCD will take place for the case of
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Fig. 3 Variation of drag coefficient CD with permeability parameter σ1 for a porous oblate spheroid for various values of viscosity
ratio λ when σ2 = 0.1, ϕ = 5 and ε = 0.05

Fig. 4 Variation of the drag coefficient ReCD for a porous oblate spheroid on permeability parameter σ1 for various values of ε when
viscosity ratio λ = 1, porosity ratio ϕ = 5 and σ2 = 0.1
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a porous prolate spheroid as it can be observed from

Table 1.

The dimensionless shearing stress at any point on
the porous oblate spheroid can be defined as

= T
(2)
rθ

(
μ2U

a
) sin θ

at r = a

= [3(b∗
2 + B∗

2 ) +
{

1
2 (σ 2

2 + 6)K3/2(σ2) + σ2K1/2(σ2)

}
(c∗

2 + C∗
2 )]

− 2ε[6b∗
2 + {(σ 2

2 + 6)K3/2(σ2) +
(

2σ2 + 1
4σ 3

2

)
K1/2(σ2)}c∗

2](1 − cos2 θ)

+ [30B∗
4 + {(σ 2

2 + 30)K7/2(σ2) + 2σ2K5/2(σ2)}C∗
4 ] (5 cos2 θ−1)

8 .

(49)

where the values of constants b∗
2 , c∗

2 , B∗
2 , C∗

2 , B∗
4 and

C∗
4 are given in Appendix A.

The effect of deformation parameter ε and per-
meability parameters σ1 & σ2 on the dimensionless
shearing stress of porous oblate spheroid is shown in
Figs. 5 and 6. Figure 5 shows that the dimension-
less shearing stress increases with increase of ε but
it is almost same for all values of ε (for σ1 ≤ 4),
when ϕ = 5, λ = 1, θ = π/4 and σ2 = 0.1. The di-
mensionless shearing stress increases slowly with de-
crease of σ1 > 20 and increases rapidly with decrease
of σ1 ≤ 20. Figure 6 shows that the dimensionless
shearing stress decreases with increase of σ2 and al-
most same for σ2 ≈ 2 when ϕ = 5, λ = 1, θ = π/4
and σ2 = 0.1. The dimensionless shearing stress in-
creases slowly with decrease of σ1 > 20 and increases

rapidly with decrease of σ1 ≤ 20. Similar, above vari-
ations in the value of Trθ will take place for the case
of a porous prolate spheroid as it can be observed from
Table 2. For limiting case ε = 0, our results agree with
those of Deo and Gupta [26]. These calculations and
graphs made here are evaluated by using Mathematica
software.

6 Deductions of some special known results

6.1 Porous oblate spheroid in an unbounded fluid

If k2 → ∞, then σ2 → 0, i.e., porous region will be
clear fluid and hence the value of the drag force on the
porous oblate spheroid in an unbounded clear fluid, for

Fig. 5 Variation of the dimensionless shearing stress Trθ for porous oblate spheroid on permeability parameter σ1 for various values
of ε when ϕ = 5, λ = 1, θ = π/4 and σ2 = 0.1
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Fig. 6 Variation of the dimensionless shearing stress Trθ for porous oblate spheroid on permeability parameter σ1 for various values
of, σ2 when ϕ = 5, λ = 1, θ = π/4 and ε = 0.01

Table 2 Quantitative values of Trθ for different values of σ1 and σ2 for porous oblate spheroid and porous prolate spheroid and porous
sphere

−Trθ

σ1 = 0.7 σ1 = 0.9 σ1 = 1.5 σ1 = 10 σ1 = 18 σ1 = 50 σ1 = 100 σ1 = 400

λ = 0.5
θ = π/4
ε = 0.01

σ2 = 0.1 1.561 0.303 0.567 1.386 1.489 1.574 1.599 1.617
σ2 = 0.5 3.634 0.268 0.603 1.844 2.008 2.143 2.180 2.209
σ2 = 0.9 0.078 0.173 0.556 2.275 2.512 2.706 2.760 2.800

λ = 0.5
θ = π/4
ε = −0.01

σ2 = 0.1 1.446 0.303 0.568 1.418 1.529 1.623 1.650 1.670
σ2 = 0.5 −0.537 0.284 0.603 1.879 2.054 2.120 2.241 2.271
σ2 = 0.9 −1.976 0.158 0.555 2.311 2.562 2.770 2.828 2.872

λ = 0.5
θ = π/4
ε = 0

σ2 = 0.1 0.199 0.296 0.567 1.402 1.509 1.599 1.624 1.644
σ2 = 0.5 0.154 0.265 0.603 1.862 2.031 2.171 2.211 2.240
σ2 = 0.9 0.036 0.158 0.556 2.293 2.537 2.738 2.794 2.836

the case when λ = 1 and ϕ = 1, will be

F = [12πdμ2Uσ 2
1 [3(5 + ε){sinh2 σ1 − σ1 sinh 2σ1

+ σ 2
1 cosh2 σ1} + 5(−1 + ε)σ 3

1 sinh 2σ1

+ (5 − 9ε − (−5 + ε) cosh 2σ1)σ
4
1 ]]

/(5[σ1(3 + 2σ 2
1 ) coshσ1 − 3 sinhσ1]2)−1 (50)

and drag coefficient CD comes out as

CD = [48σ 2
1 [3(5 + ε){sinh2 σ1 − σ1 sinh 2σ1

+ σ 2
1 cosh2 σ1} + 5(−1 + ε)σ 3

1 sinh 2σ1

+ (5 − 9ε − (−5 + ε) cosh 2σ1)σ
4
1 ]]

/(5Re[σ1(3 + 2σ 2
1 ) coshσ1 − 3 sinhσ1]2)−1.

(51)

These results agree with the previously established
similar results by Deo [25] for the drag force expe-
rienced by a porous oblate spheroid in an unbounded
fluid medium.

6.2 Rigid oblate spheroid in an unbounded fluid
medium

If σ1 → ∞ i.e., k1 → 0 and k2 → ∞ i.e., σ2 → 0,
then the porous oblate spheroid embedded in another
porous medium reduces to the rigid oblate spheroid in
an unbounded clear fluid. In this case, the value of drag
force F experienced by the rigid oblate spheroid will
be

F = 6πdμ2U

(
1 − 1

5
ε

)
. (52)
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Fig. 7 Variation of drag coefficient ReCD with permeability parameter σ1 for a porous sphere for various values of viscosity ratio λ,
when σ2 = 0.1

Fig. 8 Variation of the drag coefficient CD with permeability parameter σ1 for a porous sphere for various values of σ2 when viscosity
ratio λ = 1

This result agrees with a well-known result reported
earlier by Palaniappan [17] and Ramkissoon [18] for
the flow past a rigid spheroid in an unbounded fluid
medium.

6.3 Porous sphere embedded in another porous
medium (ε = 0)

In this case, the value of drag force F experienced by a
porous sphere of radius a embedded in another porous

media will become as

F = 2

3
πμ̃2aUσ 2

2 [2 + b∗
2 − 2K3/2(σ2)c

∗
2], (53)

and the drag coefficient CD comes out as

CD =
8
3σ 2

2 [2 + b∗
2 − 2K3/2(σ2)c

∗
2]

Re
. (54)

These results and Figs. 7, 8 and 9 agree with the
previously established results by Deo and Gupta [26]
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Fig. 9 Variation of the dimensionless shearing stress Trθ for porous sphere on permeability parameter σ1 for various values of σ2
when λ = 1

for the drag force experienced by a porous sphere em-
bedded in another porous medium.

The quantitatively comparison in the values of
ReCD and −Trθ for porous oblate spheroid, porous
prolate spheroid and porous sphere are shown in Ta-
ble 1 and in Table 2 respectively for particular values
of permeability parameters σ1 and σ2 at λ = 0.5, ϕ = 5
(for Table 1); and λ = 0.5, θ = π

4 (for Table 2). It is
observed from Table 1 that for small values of per-
meability parameter σ2(≈ 0.1) and σ1 > 1 the value
of ReCD for porous prolate spheroid is higher than
the value of ReCD for porous sphere and the value of
ReCD for porous sphere is higher than the value of
ReCD for porous oblate spheroid but for large values
of permeability parameter σ2(≥0.4) and σ1 > 4 the
value of ReCD for porous oblate spheroid is higher
than the value of ReCD for porous sphere and the
value of ReCD for porous sphere is higher than the
value of ReCD for porous prolate spheroid. From Ta-
ble 2 it is seen that for σ1 (≥ 1) the value of Trθ

for porous oblate spheroid is higher than the value of
Trθ for porous sphere and the value of Trθ for porous
sphere is higher than the value of Trθ for porous pro-
late spheroid.

6.4 Porous sphere in an unbounded fluid medium

If k2 → ∞ i.e., σ2 → 0 and ε = 0, then the porous
oblate spheroid embedded in another porous medium
reduces to the porous sphere in an unbounded clear

fluid. In this case, the value of drag force F experi-
enced by the porous sphere of radius a, for the case
λ = 1 will be

F = 12πμ2aU

[
σ 2

1 (σ1 coshσ1 − sinhσ1)

σ1(3 + 2σ 2
1 ) coshσ1 − 3 sinhσ1

]
.

(55)

This result agrees with a well-known result reported
earlier by Qin and Kaloni [11] for the drag force ex-
perienced by a porous sphere in an unbounded clear
fluid.

6.5 Solid sphere in an unbounded clear fluid

If σ1 → ∞, i.e., k1 → 0, σ2 → 0, i.e., k2 → ∞ and
ε = 0, then the porous oblate spheroid embedded in
another porous medium reduces to a solid sphere in an
unbounded clear fluid. In this case, the value of drag
force F experienced by the solid sphere of radius a,
for the case λ = 1 comes out as

F = 6πμ1Ua. (56)

This result agrees with a well-known result for the
drag reported earlier by Stokes [29] for flow past a
solid sphere in unbounded fluid medium.
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7 Conclusion

There are many physical situations in which the flow
of a viscous fluid in porous medium occurs in which
the porous spheroidal particles are embedded. Hence
the results of this paper are applicable to study the flow
of porous fluids past porous rocks of spheroidal shape,
aloxite materials, earthen soil, etc. Bear [31]. Here, au-
thors would like to study the case in which porosity
of the material inside the spheroid is less than that of
the outside one. Such situations occur when the water

or other fluid flows past a porous spheroidal object or
porous rocks of spheroidal shape embedded in sand or
earthen soil of more porosity. Expressions for stream
functions and a new result for the drag on a porous
spheroid embedded in another porous medium have
been registered. It is seen that effect of permeability
is to reduce the drag force.

Appendix A

b∗
2 = −(2(σ 2

1 − λσ 2
2 )(a2(b1(6 − 6λ + σ 2

1 )σ2 + 3b2(6 − 6λ + σ 2
1 − λσ 2

2 )) + a1σ1(2(−1 + λ)b1σ2

+ b2(−6 + 6λ + λσ 2
2 ))))/(σ2(a2(3λb2σ2(−18 + 18λ − σ 2

2 + λσ 2
2 ) − b1(6 − 6λ + σ 2

1 )(2σ 2
1 − λσ 2

2 ))

+ a1σ1(−2(−1 + λ)b1(2σ 2
1 + λσ 2

2 ) − λb2σ2(2(−9 + 9λ + σ 2
1 ) + λσ 2

2 ))))

c∗
2 = (6(2(−1 + λ)a1σ1 + a2(6 − 6λ + σ 2

1 ))(σ 2
1 − λσ 2

2 ))/(σ2(a2(3λb2σ2(−18 + 18λ − σ 2
1 + λσ 2

2 )

− b1(6 − 6λ + σ 2
1 )(2σ 2

1 + λσ 2
2 )) + a1σ1(−2(−1 + λ)b1(2σ 2

1 + λσ 2
2 )

− λb2σ2(2(−9 + 9λ + σ 2
1 + σ 2

1 ) + λσ 2
2 ))))

B∗
2 = −(12ε(−σ 2

1 + λσ 2
2 )(2a1a2σ1(−10(−1 + λ)λb2

1(−6 + 6λ − σ 2
1 )σ 2

2 + λb1b2σ2(−288(−1 + λ)2

+ 6 − 1 + λ)σ 2
1 + 4σ 4

1 + λ(12 − 12λ + σ 2
1 )σ 2

2 ) + b2
2(4(−1 + λ)(−81(−1 + λ)λ + 2σ 2

1 (6 + σ 2
1 ))

+ λ(24(2 + λ − 3λ2) + (8 − 5λ)σ 2
1 )σ 2

2 − 3λ3σ 4
2 )) + a2

1σ 2
1 (20(−1 + λ)2λb2

1σ
2
2

+ 4(−1 + λ)λb1b2σ2(4(−6 + 6λ + σ 2
1 ) + λσ 2

2 ) + b2
2(108(−1 + λ)2λ

+ 8(−1 + λ)(−2 + 3λ)σ 2
1 + 4λσ 4

1 + 8(−1 + λ)λ(2 + 3λ)σ 2
2 + λ3σ 4

2 )) + a2
2(5λb2

1(6 − 6λ + σ 2
1 )2σ 2

2

+ 6λb1b2(−6 + 6λ − σ 2
1 )σ2(−24 + 24λ − σ 2

1 + λσ 2
2 ) + b2

2(972(−1 + λ)2λ

− (σ 2
1 − λσ 2

2 )(72(−1 + λ)(2 + 3λ) + (−48 + 39λ)σ 2
1 + 4(−1 + λ)σ 4

1 + 9λ2σ 2
2 )))))

/(5(a2(3λb2σ2(18 − 18λ + σ 2
1 − λσ 2

2 ) + b1(6 − 6λ + σ 2
1 )(2σ 2

1 + λσ 2
2 ))

+ a1σ1(2(−1 + λ)b1(2σ 2
1 + λσ 2

2 ) + λb2σ2(2(−9 + 9λ + σ 2
1 ) + λσ 2

2 )))2)

C∗
2 = (12ε(−σ 2

1 + λσ 2
2 )(2a2

1σ 2
1 (2(−1 + λ)λb1σ2(−15 + 15λ + 2σ 2

1 + λσ 2
2 ) + b2(54(−1 + λ)2λ

+ 4(−1 + λ)(−2 + 3λ)σ 2
1 + 2λσ 4

1 + λ(4 − 7λ + 3λ2 + λσ 2
1 )σ 2

2 )) + a1a2σ1(2λb1σ2(2(−90 − 1 + λ)2

+ 3(−1 + λ)σ 2
1 + σ 4

1 ) + λ(12 − 12λ + σ 2
1 )σ 2

2 ) + b2(8(−1 + λ)(−81(−1 + λ)λ + 2σ 2
1 (6 + σ 2

1 ))

+ λ(−12(−1 + λ)(−4 + 3λ) + (−8 + 5λ)σ 2
1 )σ 2

2 )) + a2
2(3λb1(−6 + 6λ − σ 2

1 )σ2(−30 + 30λ − σ 2
1

+ 2λσ 2
2 ) + b2(−4(−1 + λ)σ 6

1 + 3σ 2
1 (24(2 + λ − 3λ2) + (8 − 11λ)λσ 2

2 ) + σ 4
1 (48 − 39λ

− 2(−1 + λ)λσ 2
2 ) + 18(−1 + λ)λ(54(−1 + λ) + (−4 + 3λ)σ 2

2 )))))/(5(a2(3λb2σ2(18 − 18λ

+ σ 2
1 − λσ 2

2 ) + b1(6 − 6λ + σ 2
1 )(2σ 2

1 + λσ 2
2 )) + a1σ1(2(−1 + λ)b1(2σ 2

1 + λσ 2
2 )

+ λb2σ2(2(−9 + 9λ + σ 2
1 ) + λσ 2

2 )))2)
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B∗
4 =

(
12ε

(
1

5
c2σ1(2(−1 + λ)λd2σ2(−σ 2

1 + λσ 2
2 )(a2(25b1(6 − 6λ + σ 2

1 )σ2 + b2(54 − 54λ + 3σ 2
1 − 3λσ 2

2 ))

+ a1σ1(50(−1 + λ)b1σ2 + b2(−18 + 18λ + 24σ 2
1 + λσ 2

2 ))) + d1(−16(−1 + λ)b2(−2a1σ1

+ a2(6 + σ 2
1 ))(60 − 60λ + σ 2

1 − 3λσ 2
2 )(σ 2

1 − λσ 2
2 ) + 8λ(30(−1 + λ) + σ 2

1 )(a1b2σ
3
1

+ b1(2(−1 + λ)a1σ1 + a2(6 − 6λ + σ 2
1 ))σ2)(−σ 2

1 + λσ 2
2 ) + λ(30(−1 + λ) + λσ 2

2 )

× (−σ 2
1 + λσ 2

2 )(a2(b1(6 − 6λ + σ 2
1 )σ2 + 3b2(18 − 18λ + σ 2

1 − λσ 2
2 ))

+ a1σ1(2(−1 + λ)b1σ2 + b2(18(−1 + λ) + λσ 2
2 ))))

)

+ c1

(
1

5
λd2σ2(32(−1 + λ)b2σ

2
1 (−2a1σ1 + a2(6 + σ 2

1 )))

)
(σ 2

1 − λσ 2
2 ) + 8(42 − 42λ + σ 2

1 )(a1b2σ
3
1

+ b1(2(−1 + λ)a1σ1 + a2(6 − 6λ + σ 2
1 ))σ2)(−σ 2

1 + λσ 2
2 ) − (14(−1 + λ) − σ 2

1 )(−σ 2
1 + λσ 2

2 )

× (a2(b1(6 − 6λ + σ 2
1 )σ2 + 3b2(18 − 18λ + σ 2

1 − λσ 2
2 ))

+ a1σ1(2(−1 + λ)b1σ2 + b2(18(−1 + λ) + λσ 2
2 ))))

)

+ d1

(
8

5
(−1 + λ)b2(−2a1σ1 + a2(6 + σ 2

1 ))

)
(σ 2

1 − λσ 2
2 )(−σ 4

1 + σ 2
1 (−42 + λσ 2

2 )

+ 42(20(−1 + λ) + λσ 2
2 )) − 7λ(σ 2

1 + λσ 2
2 )(48(−1 + λ)(a1b2σ

3
1 + b1(2(−1 + λ)a1σ1

+ a2(6 − 6λ + σ 2
1 ))σ2) − 1

5
(30 − 30λ + σ 2

1 − λσ 2
2 )(a2(b1(6 − 6λ + σ 2

1 )σ2 + 3b2(18 − 18λ + σ 2
1 − λσ 2

2 ))

+ a1σ1(2(−1 + λ)b1σ2 + b2(18(−1 + λ) + λσ 2
2 ))))))))/((a2(3λb2σ2(18 − 18λ + σ 2

1 − λσ 2
2 )

+ b1(6 − 6λ + σ 2
1 )(2σ 2

1 + λσ 2
2 )) + a1σ1(2(−1 + λ)b1(2σ 2

1 + λσ 2
2 ) + λb2σ2(2(−9 + 9λ + σ 2

1 )

+ λσ 2
2 )))(c1(−21λd1σ2(−70 + 70λ − σ 2

1 + λσ 2
2 ) + d2(4σ 4

1 − 42(−1 + λ)(80 − 80λ + σ 2
2 )

+ 3σ 2
1 (56 − 56λ + σ 2

2 ))) + c2σ1(2(−1 + λ)d2(4σ 2
1 + 3(80 − 80λ + λσ 2

2 ))

+ λd1σ2(4σ 2
1 + 3(−70 + 70λ + λσ 2

2 )))))

C∗
4 =

(
12ε

(
−2

5
(21φc1(40(−1 + λ) + λσ 2

2 ) − φc2σ1(4σ 2
1 + 3(−40λ + λσ 2

2 )))

× (c1((−1 + λ)b2(14 + σ 2
1 )(−2a1σ1 + a2(6 + σ 2

1 ))(σ 2
1 − λσ 2

2 ) − 7λ(a1b2σ
3
1 + b1(2(−1 + λ)a1σ1

+ a2(6 − 6λ + σ 2
1 ))σ2(−σ 2

1 + λσ 2
2 )) − c2σ1(2(−1 + λ)b2(−2a1σ1 + a2(6 + σ 2

1 ))(σ 2
1 − λσ 2

2 )

− λ(a1b2σ
3
1 + b1(2(−1 + λ)a1σ1 + a2(6 − 6λ + σ 2

1 ))σ2)(−σ 2
1 + λσ 2

2 ))) − (−30(−1 + λ)φc2σ1

+ 7φc1(30(−1 + λ) − σ 2
1 ))

(
c1 − 8

5
(−1 + λ)b2(42 + σ 2

1 )(−2a1σ1 + a2(6 + σ 2
1 ))(σ 2

1 − λσ 2
2 )

− 7

5
λ(−σ 2

1 + λσ 2
2 )(a2(b1(6 − 6λ + σ 2

1 )σ2 + 3b2(18 − 18λ + σ 2
1 − λσ 2

2 ))

+ a1σ1(2(−1 + λ)b1σ2 + b2(18(−1 + λ) + λσ 2
2 )))

)

− c2σ1

(
48

5
(−1 + λ)b2(−2a1σ1 + a2(6 + σ 2

1 ))(σ 2
1 − λσ 2

2 ) − 1

5
λ(−σ 2

1 + σ 2
2 )(a2(b1(6 − 6λ + σ 2

1 )
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× σ2 + 3b2(18 − 18λ + σ 2
1 + σ 2

2 )) + a1σ1(2(−1 + λ)b1σ2 + b2(18(−1 + λ) + λσ 2
2 )))

)))

/(φ(7c1 − c2σ1)(a2(3λb2σ2(18 − 18λ + σ 2
1 − λσ 2

2 ) + b1(6 − 6λ + σ 2
1 )(2σ 2

1 + λσ 2
2 ))

+ a1σ1(2(−1 + λ)b1(2σ 2
1 + λσ 2

2 ) + λb2σ2(2(−9 + 9λ + σ 2
1 ) + λσ 2

2 )))(c1(−21λd1σ2(−70 + 70λ

− σ 2
1 + λσ 2

2 ) + d2(4σ 4
1 − 42(−1 + λ)(80 − 80λ + λσ 2

2 ) + 3σ 2
1 (56 − 56λ + σ 2

2 )))

+ c2σ1(2(−1 + λ)d2(4σ 2
1 + 3(80 − 80λ + λσ 2

2 )) + λd1σ2(4σ 2
1 + 3(−70 + 70λ + λσ 2

2 ))))))

Where, a1 = I1/2(σ1), a2 = I3/2(σ1), b1 = K1/2(σ2), b2 = K3/2(σ2), c1 = I7/2(σ1), c2 = I5/2(σ1), d1 = K7/2(σ2),
d2 = K5/2(σ2).
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