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Abstract In this work, the effect of magnetic field, ro-
tation and initial stress on peristaltic motion of microp-
olar fluid in a circular cylindrical flexible tube with
viscoelastic or elastic wall properties has been consid-
ered. Runge–Kutta technique are used. Runge–Kutta
method is developed to solve the governing equations
of motion resulting from a perturbation technique for
small values of amplitude ratio. The time mean ax-
ial velocity profiles are presented for the case of free
pumping and analyzed to observe the influence of wall
properties, magnetic field, rotation and initial stress for
various values of micropolar fluid parameters. In the
case of viscoelastic wall, the effect of viscous damp-
ing on mean flow reversal at the boundary is seen. The
numerical results of the time mean velocity profile are
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discussed in detail for homogeneous fluid under the ef-
fect of wall properties, magnetic field, initial stress and
rotation for different cases by figures. The results indi-
cate that the effect of wall properties, rotation, initial
stress and magnetic field are very pronounced. Numer-
ical results are given and illustrated graphically.
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1 Introduction

Several solutions with degrees of approximation are
available for the peristaltic flow with various consid-
eration of the nature of the fluid, the geometry of
the tube, and the propagation waves. Peristalsis is
an important mechanism generated by the propaga-
tion of waves along the walls of a channel or tube.
It occurs in the gastrointestinal, urinary, reproductive
tracts and many other glandular ducts in a living body.
Gupta [1] discussed the Rayleigh–Taylor instability
of a viscous electrically conducting fluid in the pres-
ence of a horizontal magnetic field. Afifi and Gad [2]
have presented interaction of peristaltic flow with pul-
satile magneto-fluid through a porous medium. Erin-
gen [3]. Mahmoud [4] discussed effect of rotation
and magnetic field through porous medium on Peri-
staltic transport of a Jeffrey fluid in tube. Abd-Alla et
al. [5] discussed effect of the rotation on waves in a
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cylindrical borehole filled with micropolar fluid. Mah-
moud et al. [6, 7] presented effect of the rotation on
wave motion through cylindrical bore in a micropolar
porous cubic crystal, and effect of the rotation on plane
vibrations in a transversely isotropic infinite hollow
cylinder. Renardy [8] studied current issues in non-
Newtonian flow. Srinivasacharya et al. [9] investigated
the peristaltic pumping of a micropolar fluid in a tube
Selverov and Stone [10] investigated the peristalti-
cally driven channel flows with applications toward
micromixing. Mekheimer [11] investigated the peri-
staltic transport of a couple stress fluid in a uniform
and non-uniform channels. Xiao and Damodaran [12]
have presented a numerical of peristaltic waves in cir-
cular tubes. Influence of a magnetic field on heat and
mass transfer by natural convection from vertical sur-
faces in porous media considering Soret and Dufour
effects is studied by Postelnicu [13]. Afifi et al. [14]
have discussed effect of magnetic field and wall prop-
erties on peristaltic motion of micropolar fluid in cir-
cular cylindrical tubes. Mahmoud et al. [15] have stud-
ied effect of porous media and magnetic field on peri-
staltic transport of a Jeffrey fluid in an asymmetric
channel. Ali et al. [16] described the peristaltic flow of
a couple stress fluid in an asymmetric channel. Muthu
et al. [17] have analyzed the peristaltic motion of mi-
cropolar fluid in circular cylindrical tubes with elastic
wall properties then extended their analysis to axisym-
metric tube for small values of amplitude ratio using a
regular perturbation method. Vajravelu et al. [18] dis-
cussed the peristaltic flow and heat transfer in a ver-
tical porous annulus, with long wave approximation.
Abd Elnaby and Haroun [19] studied a new model for
study the effect of wall properties on peristaltic trans-
port of a viscous fluid. Haroun [20] investigated the ef-
fect of Deborah number and phase difference on peri-
staltic transport of a third-order fluid in an asymmetric
channel. A study on the development of a continuous
peristaltic micropump using magnetic fluids has been
discussed by Kim and Choi [21]. Chen [22] studied
by the non-linear stability characterization of the thin
micropolar liquid film flowing down the inner surface
of a rotating vertical cylinder. Eldabe et al. [23] inves-
tigated the mixed convective heat and mass transfer
in a non-Newtonian fluid at a peristaltic surface with
temperature dependent viscosity. The aim of this pa-
per, is to study the effect of magnetic field, rotation
and initial stress on peristaltic motion of micropolar
fluid in a flexible tube. Here the governing equations

are nonlinear in nature, we used a regular perturbation
method to obtain linearized system of coupled differ-
ential equations which are then solved numerically us-
ing Runge–Kutta method. Results have been discussed
for time mean velocity profile to observe the magnetic
field, rotation and initial stress in the presence of mi-
cropolarity effects. The numerical results displayed by
figures.

2 Formulation of the problem

We consider the axisymmetric flow of unsteady in-
compressible micropolar fluid in an infinite rotating
tube of uniform radius d under effect of magnetic
field H0, with sinusoidal waves travelling along the
boundary of tube with speed c, small amplitude a, the
constant angular velocity � and wavelength λ (Fig. 1).
The wall is assumed to be a flexible membrane.

The governing equations for the peristaltic motion
of an incompressible micro polar fluid in the circular
cylindrical coordinates (R,�,Z) are [19].

(i) The equation of continuity

∂U

∂R
+ ∂W

∂Z
+ U

R
= 0, (1)

(ii) The equations of motion for micro-polar fluid
medium

ρ

(
∂U

∂τ
+ U

∂U

∂R
+ W

∂U
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+ �2U

)

= −∂P
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+
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ρJ

(
∂G

∂τ
+ U

∂G

∂R
+ W

∂G

∂Z

)

= −2kG + γ

(
∂2G

∂R2
+ ∂2G

∂Z2
+ 1

R

∂G

∂R
− G

R2

)

+ k

(
∂U

∂Z
− ∂W

∂R

)
, (4)

where U,W , are velocity components in the R and Z

directions respectively, G is the component of micro-
rotation in the � direction, P is the pressure, P ∗ is the
initial stress, τ is time, ρ denotes the density, μ is dy-
namic viscosity coefficient. fR is defined as Lorentz’s
force, which may be written as

fR = μ∗H 2
0

∂

∂R

(
∂U

∂R
+ U

R

)
+ μ∗H 2

0
∂2U

∂Z2
,

μ∗ is the magnetic permeability, H0 is the intensity
of the uniform magnetic field, parallel to R-axes, J is
micro-inertia constant, k and γ are the viscosity coef-
ficients of micropolar fluid. At the boundary, the fluid
is subjected to the motion of the wall which is of the
form:

ξ(Z, τ) = acos[(2π/λ)(Z − cτ)], (5)

where ξ is the radial displacement from mean position
(d) of the wall, as in Fig. 1. It will be assumed that
the wall is inextensible and the particles on the wall
have no longitudinal displacement and only their lat-
eral motions normal to the undeformed positions oc-
cur. Further, it is assumed that the micro-rotation at
the wall is zero [19]. Thus we have no slip and no spin

conditions on the wall as:

W = 0 and G = 0 at R = d + ξ(Z, τ). (6)

Using the theory of stretched membrane with vis-
cous damping force, suggested the dynamic bound-
ary condition at the axisymmetric motion of the flex-
ible wall [20]. This dynamic boundary condition at
R = d + ξ(Z, τ) gives ∂P

∂Z
= ∂L(ζ )

∂Z
. Using (3), we get

∂L(ζ )

∂Z
= −ρ

(
∂W
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+ U

∂W

∂R
+ W

∂W

∂Z
+ ∂2W

)

+
(

2μ + K + P ∗

2

)(
∂2W

∂R2
+ ∂2W

∂Z2

+ 1

R

∂W

∂R

)
+ P ∗

R

∂

∂R
(R�θ)

+ k

(
∂G

∂R
+ G

R

)

at R = d + ξ(Z, τ), (7)

where L = −T ∂2

∂Z2 + m ∂2

∂τ 2 + C ∂
∂τ

, T is the tension
in the membrane, m is the mass per unit area and C

is the coefficient of viscous damping force. Further, it
is assumed that the velocity and the microrotation be
finite at R = 0.

Introducing stream function ψ as U = 1
R

∂ψ
∂Z

,

W = − 1
R

∂ψ
∂R

and eliminating the pressure from (2)
and (3) the resulting equations of motion, after ig-
noring the microinertia effects, can be written in non-

Fig. 1 Geometry of cylindrical tube with peristaltic wave motion of wall
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dimensional form as

∂

∂t
∇2� + cd�2∇2� − μ∗H 2

0

ρdc2
∇2�zz
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(
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)
∇2�

+ 1

r
�z

(
∇2�r − 2

r
∇2� + 1

r2
�r

)

− 1

r
�r(∇2�z)

= B(∇2∇2�) −
(

μ1

Re

)
r

(
∇2g + 2

r

∂g

∂r
− g

r2

)
,

(8)
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(
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r
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− g

r2

)
= 0, (9)

where ∇2 = ∂

∂r2 + ∂

∂z2 + 1
r

∂
∂r

and the following non-
dimensional quantities are defined using d as charac-
teristic length and c as characteristic velocity

r = R

d
, z = Z

d
, t = cτ

d
, u = U

c
,

w = W

c
, � = ψ

cd2
, P = P ∗

ρc2
, η = ξ

d
,

g = Gd

c
, �1 = �d

α2c
and H0 =

√
μ∗
μ

H ∗
0 .

The non-dimensional boundary conditions at
r = 1 + η(z, t) are given in the following form:

�r = 0, g = 0, (10)

and

∂L(η)

∂z
= 1

r

(
�tr + 1

r
�z�rr − 1

r2
�r�z

− 1

r
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(
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(
∂g
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r
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, (11)

where:

�θ = 1

2

(
∂U

∂Z
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∂R

)
, B = 2 + μ1

2Re
+ P ∗

2dρc
,

η(z, t) = ε cos(α(z − t)),

and

∂L(η)

∂z
= −K3

Re2

∂3η

∂z3
+ m1

∂2η

∂t∂z
+ K2

Re

∂2η

∂t∂z
,

B∗ = 2 + μ1

2Re
+ P ∗

dρc
.

With non-dimensional parameters defined as:

ε = a

d
, α = 2πd

λ
, Re = ρcd

μ
,

K2 = Cd

μ
, K3 = Tρd

μ2
,

m1 = m

ρd
, μ1 = k

μ
,

N =
(

μ1

2 + μ1

)1/2

, M = 2d

(
μ

γ

)1/2

.

The parameters ε,α and Re are the fundamental quan-
tities called amplitude ratio (ratio of amplitude to
mean radius of the cylindrical wavy wall), wave num-
ber (slope parameter) and Reynolds number respec-
tively, as observed in the classical peristaltic flow
K2,K3 and m1 are the non-dimensional quantities re-
lated to the wall motion through the dynamic bound-
ary condition (11). The parameters K2 and K3 repre-
sent the dissipative and rigidity feature of wall respec-
tively, where as m1 indicates the stiffness property of
wall, K2 = 0 implies that the wall move up and down
with no damping force on it and hence indicates the
case of elastic wall.

The parameters μ1 and M are the non-dimensional
quantities due to micropolar fluid flow. The number μ1

characterizes the coupling of (8) and (9). As k tends to
zero, μ1 becomes zero and (8) and (9) are uncoupled.
Further when k and γ are zero, that is, when μ1 be-
comes zero and M tends to infinity, (8) and (9) reduce
to the classical Navier–Stokes equations.

3 Solution of the problem

It may be noted that the flow is quite complex because
of nonlinearity of the governing equations and the dy-
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namic boundary condition. Thus to solve (8) and (9)
for the velocity field and the microrotation component,
we attempt an approximate solution for � and g as a
power series in terms of ε. Thus, � and g are taken in
the following form:

� = �0 + ε�1 + ε2�2 + ε3�3 + · · · ,

g = g0 + εg1 + ε2g2 + ε3g3 + · · · .
(12)

Substituting (12) in (8) and (9) and comparing
the coefficients of like powers of ε on both sides of
the equations, we obtain sets of the governing equa-
tions and boundary conditions for �0,�1,�2, . . . and
g0, g1, g2, . . . . It may be noted that for ε = 0, the ze-
roth order equations correspond to Hagen–Poiseuille
flow of micropolar fluid in a tube.

The first and second order governing equations and
the corresponding boundary conditions are given by

∂

∂t
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0
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�1r (1) = 0, g1(1) = 0, (15)

�1rt (1) + dc�1
2�1r (1)

− B∗(�1rrr (1) + �1rzz(1) − �1rr (1) + �1r (1))

+ μ1

Re
{g1r (1) + g1(1)}

= 1
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− g2

r2

)
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(17)
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r
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�2r (1) + �1rr (1) cosα(z − t) = 0,

g2(1) + g1r (1) cosα(z − t) = 0,
(19)
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× (eiα(z−t) + e−iα(z−t)). (20)

Further, the governing equations and boundary con-
ditions for the first order flow quantities suggest the
following form for �1 and g1

�1 = φ1(r)e
iα(z−t) + φ∗

1 (r)e−iα(z−t), (21)

g1 = ξ1(r)e
iα(z−t) + ξ∗

1 (r)e−iα(z−t), (22)

where the asterisk denotes complex conjugate. Substi-
tuting (21) and (22) in the governing equations of �1
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and g1 and separating the harmonics, we have the fol-
lowing governing equations for φ1 and ξ1:

{(
d2

dr2
− 1

r

d

dr
− α2

)(
d2

dr2
− 1

r

d

dr
− β2

)}
φ1

− 2Hr

(
d2

dr2
+ 1

r

d

dr

(
α2 + 1

r2

))
ξ1

= 0, (23)

2(1 − N2)

(
d2

dr2
+ 1

r

d

dr
−

(
α2 + 1

r2

))
ξ1

+ N2M2

r

(
d2

dr2
− 1

r

d

dr
− α2

)
φ1 − 2N2M2ξ1

= 0, (24)

where

β2 = α2 + 1

B(1 − P ∗
2Bdρc

)

(
−iα + dc�2

1

+ μ∗H 2
0 α2

ρdc2
− P ∗α2

Bdρc

)
and

2H = 1

1 − P ∗
2Bdρc

μ1

ReB
.

The boundary conditions reduce to:

φ
(1)
1 (1) = 0, ξ1(1) = 0, (25)

φ
(2)
1 (1) − φ

(3)
1 (1) + 2N2ξ

(1)
1 (1) = δ1

2B
, (26)

where two more conditions will be taken, from the as-
sumption that flow is axisymmetric at r = 0. In these
equations the superscripts, that is, the number within
the parentheses indicates the derivative with respect

to r (for example, f 2 ≡ d2f

dr2 ). The equations govern-
ing φ∗

1 and ξ∗
1 are conjugate to (23) and (26).

Similarly for �2 and g2, we assume the solution of
the form

�2 = φ20(r) + φ22(r)e
2iα(z−t) + φ∗

22(r)e
−2iα(z−t),

(27)

g2 = ξ20(r) + ξ22(r)e
2iα(z−t) + ξ∗

22(r)e
−2iα(z−t).

(28)

Our objective here is to calculate the time mean flow
for the case of pure peristalsis (free pumping). The
time mean flow w(r) is defined as the axial velocity

averaged over the period of oscillation t∗ of the wave
propagation imposed on the flexible wall,

w(r) = 1

t∗

∫ t∗

t=0

(
−1

r

∂�

∂r

)
dt
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r
�
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r
φ
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20 (r) − o(ε2).

As mentioned earlier, for free pumping case and
�0(r) = 0 therefore,

w(r) = −ε2

r
φ20

(1)(r). (29)

In the following, we shall find φ20. Substituting (27)
and (28) in (17)–(20), we have the following equation
for φ20 and ξ20:

(
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d
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r
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1 }(1)
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]
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r

d
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ξ20
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r
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with boundary conditions

φ
(1)
20 (1) + 1

2
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(2)
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φ
(2)
20 (1) − φ

(3)
20 (1) + 2N2ξ

(2)
20 (1)

= 1

4B∗ (δ1 + δ∗
1)

− iα

B∗

[
φ1(1)φ

∗(2)
1 (1) − φ∗

1 (1)φ
(2)
1 (1)

+ 1

2
(φ

∗(2)
1 (1) − φ

(2)
1 (1))

]

+ 1

2
[φ(4)
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− N2(ξ
(2)
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∗(2)
1 (1) + ξ

(1)
1 (1) + ξ

∗(1)
1 (1)).

(34)

To obtain φ20 and ξ20 we shall first solve for φ1 and ξ1.
Since it is not possible to get closed form solution, we
solve (23) and (24) to get φ1 and ξ1 numerically, us-
ing Runge–Kutta method. Solution procedure for get-
ting ξ1(r) and φ1(r). Using (23) and (24), we have the
governing equation for ξ1 as:

d4ξ1

dr4
+ 2

r

d3ξ1

dr3
−

(
3

r2
+ T3 − T4 + α2 + β2

)
d2ξ1

dr2
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r
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3

r2
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)
dξ1

dr
− 3

r4
ξ1

+ 1

r2
(T3 − T4 + α2 + β2)ξ1

+ (T3β
2 − T4α

2 + α2β2)ξ1

= 0. (35)

The boundary conditions are

ξ1(0) = 0, (36)

ξ
(2)
1 (0) = 0, (37)

ξ1(1) = 0, (38)

ξ
(3)
1 (1) + 2ξ

(2)
1 (1) − (1 + α2 + N2M2)ξ

(1)
1 (1)

= T4δ1

4B∗ , (39)

where:

T3 = HN2M2

(1 − N2)
and T4 = T3

H
.

For the solution of φ1, we substitute the solution of
ξ1 in (23) and solve that with the following boundary
conditions:

φ1(0) = 0, (40)

φ
(1)
1 (0) = 0, (41)

φ
(1)
1 (1) = 0, (42)

φ
(3)
1 (1) − φ

(2)
1 (1) = 2N2ξ

(1)

1 (1) − δ1

2B∗ . (43)

Solution procedure for ξ20(r) and φ20(r). From (30)
and (31) we get equation for ξ20 and boundary condi-
tions as:

d4ξ20

dr4
+ 2

r

d3ξ20

dr3
−

(
3

r2
+ T3 − T4

+ 2cd�1
2Re

2 + μ1

)
d2ξ20

dr2
+ 1

r

(
3

r2
+ T3 − T4

− 2cd�1
2Re

2 + μ1

)
dξ20

dr
− 1

r2

(
3

r2
+ T3 − T4

− 2cd�1
2Re

2 + μ1
(1 + T4r

2)

)
ξ20

= −f ∗(r)T 4

2r
, (44)

ξ20(0) = 0, (45)

ξ
(2)
20 (0) = 0, (46)

ξ20(1) = −1

2
(ξ

(1)
1 (1) + ξ

∗(1)
20 (1)), (47)

ξ
(3)
20 (1) + 2ξ

(2)
20 (1) − (1 + T3 − T4)ξ

(1)
20 (1)

= (T4 − 1)D2 − T4

2
(D + D1), (48)

where:

D1 = −1

2
(φ

(2)
1 (1) + φ

∗(2)
1 (1)),

D2 = −1

2
(ξ

(1)
1 (1) + ξ

∗(1)
1 (1)),

D = −Re

4
(δ1 + δ∗

1) + N2(ξ
(2)
1 (1) + ξ

∗(2)
1 (1)

+ ξ
(1)
1 (1) + ξ

∗(1)
1 (1))
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+ 2iαRe

2 + μ1

[
φ1(1)φ

∗(2)
1 (1) − φ∗

1 (1)φ
(2)
1 (1)

+ 1

2
(φ

∗(2)
1 (1) − φ

(2)
1 (1))

]

− 1

2

[
φ

(4)
1 (1) + φ

∗(4)
1 (1) − {φ∗(3)

1 (1) + φ
(3)
1 (1)}

−
(

1

2
+ α2

)
{φ∗(2)

1 (1) + φ
(2)
1 (1)}

]
,

f ∗(r) = 2iαRe

2 + μ1

{
1

r
[φ1φ

∗(2)
1 − φ

(2)
1 φ∗

1

− 1

r
(φ1φ

∗(1)
1 − φ

(1)
1 φ∗

1 )]
}(1)

− 2iαRe

r2(2 + μ1)

[
{φ1φ

∗(1)
1 − φ

(1)
1 φ∗

1 }(1)

− 1

r
(φ1φ

∗(1)
1 − φ

(1)
1 φ∗

1 )

]
.

Now, we solve this system of (30)–(31) using the
known ξ20 with the boundary conditions

φ20(0) = 0, (49)

φ
(1)
20 (0) = 0, (50)

and the other two boundary condition given in (32)
and (34).

4 Numerical results and discussion

In order to observe the quantitative effects of various
parameters involved in the analysis, the time mean ve-
locity at the boundaries of the tube, the time mean
velocity perturbation function is calculated for vari-
ous values of the rotation, magnetic field, initial stress
and wall properties and some important results are
displayed graphically in Figs. 2–9. It may be noted
that in the absence of micro-polar fluid parameters
the present analysis reduces to approximate analyti-
cal solution of peristaltic flow of a Newtonian fluid
in cylindrical tubes with wall properties [3]. There-
fore, the present Rung–Kutta method has been vali-
dated against the analytical results [3] In order to il-
lustrate theoretical results obtained in the preceding
section, we now present some numerical results. The
physical data for which is given as m1 = 0, k2 = 0,

Fig. 2 Variation of the time mean velocity profile w with the
radial r for H0 = 0.1, 0.3, 0.5, 0.7, P ∗ = 0.3, Re = 1.0 and
�1 = 0.5

Fig. 3 Variation of the time mean velocity profile w(r) with
the �1 for H0 = 0.1, 0.3, 0.5, 0.7, Re = 1.0 and P ∗ = 0.3

k3 = 1.0, ε = 0.01, M = 1.0, μ1 = 4.0. Figure 2 rep-
resents the variation of w(r) with r for various values
of the magnetic field at �1 = 0.5 and P ∗ = 0.3. The
numerical results indicate that, w(r) decreases with in-
creasing r and increases with increasing of magnetic
field H0. It is noted that damping may cause the time
mean velocity reversal at the walls, which is not possi-
ble in the elastic case. Figure 3 shows the variation the
time mean velocity profile w(r) across the rotation �1

for different values of H0 at P ∗ = 0.3. The results re-
veal that, w(r) increases with increasing rotation and
magnetic field H0. Figure 4 shows the variations of
the time mean velocity profile w(r) across the initial
stress P ∗ for different values of H0 at �1 = 0.5. It is
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Fig. 4 Variation of the time mean velocity profile w(r) with
the initial stress P ∗ for H0 = 0.1, 0.3, 0.5, 0.7, Re = 1.0 and
�1 = 0.5

Fig. 5 Variation of the time mean velocity profile w(r) with the
wave number α for H0 = 0.1, 0.3, 0.5, 0.7, P ∗ = 0.3, Re = 1.0
and �1 = 0.5

seen that w(r) increases with decreasing initial stress
P ∗ and magnetic field H0. Figure 5 shows the varia-
tion the time mean velocity profile w across the wave
number α in the circular cylindrical tubes for different
values of H0 at �1 = 0.5 and P ∗ = 0.3. It is observed
that w(r) increases with increasing α and H0. Figure 6
shows the variation of the time mean velocity profile
w(r) across the intensity of the uniform magnetic field
H0 for different values of �1 at P ∗ = 0.3. It is ob-
served that w(r) increases with increasing magnetic
field H0 and rotation �1. Figure 7 shows the variation
of the time mean velocity profile w(r) with r and dif-

Fig. 6 Variation of the time mean velocity profile w(r) with H0
for �1 = 0.5, 1.0, 1.5, 2.0, Re = 1.0 and P ∗ = 0.3

Fig. 7 Variation of the time mean velocity profile w(r) with r

and different values of μ1 for H0 = 0.3, P ∗ = 0.3, �1 = 0.5,
Re = 1.0

ferent values of μ1 for H0 = 0.3, P ∗ = 0.3, �1 = 0.5,
M = 1.0, Re = 1.0. It is seen that, increase in the mi-
cropolar viscosity coefficient (k) reduces the mean ve-
locity, w(r) is almost constant. Figure 8 shows varia-
tion of the time mean velocity profile w(r) with r and
different values of Reynolds number Re for H0 = 0.3,
P ∗ = 0.3, �1 = 0.5, M = 1.0, μ1 = 4.0. It is observed
that the time mean velocity decreases with increasing
Re. Figure 9 shows variation of the time mean veloc-
ity profile w(r) with r and different values of M for
H0 = 0.3, P ∗ = 0.3, �1 = 0.5, Re = 1.0, μ1 = 4.0. It
is observed that the time mean velocity increases with
increasing parameter M . The results indicate that the
effect of rotation, magnetic field, initial stress, viscos-
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Fig. 8 Variation of the time mean velocity profile w(r) with r

and different values of Re for H0 = 0.3, P ∗ = 0.3, �1 = 0.5,
μ1 = 4.0

Fig. 9 Variation of the time mean velocity profile w(r) with r

and different values of M for H0 = 0.3, P ∗ = 0.3, �1 = 0.5,
Re = 1.0, μ1 = 4.0

ity and Reynolds number are very pronounced. The
results are compared with approximate analytical so-
lution given in [3]. The comparison plots are presented
in Figs. 2–9. It may be noted that the maximum error
between analytical and numerical solution is less than
0.357 × 10−3.

5 Conclusions

In the present study an analysis of peristaltic motion
of micro-polar fluid in a circular tubes with dynamic
boundary condition has been presented for the case

of free pumping. The axisymmetric study agrees with
peristaltic motion in a two-dimensional channel [3].
It is observed that w(r) increases when the rotation
and magnetic field increase and it is decrease with in-
creasing initial stress. Also, the Reynolds number in-
creases with increasing magnetic field, rotation and
wave number. The effect of the rotation, initial stress
and magnetic field on the w(r) are studied. It is ob-
served that w(r) decreases when μ1 increases. For
non-zero viscous damping, flow reversal is found at
the wall of flexible tube. Finally, the results are dis-
cussed and illustrated graphically.
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