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Abstract In this paper we investigate the effects of
temperature-dependent viscosity, thermal conductivity
and internal heat generation/absorption on the MHD
flow and heat transfer of a non-Newtonian UCM fluid
over a stretching sheet. The governing partial differen-
tial equations are first transformed into coupled non-
linear ordinary differential equation using a similarity
transformation. The resulting intricate coupled non-
linear boundary value problem is solved numerically
by a second order finite difference scheme known
as Keller-Box method for various values of the per-
tinent parameters. Numerical computations are per-
formed for two different cases namely, zero and non-
zero values of the fluid viscosity parameter. That is,
1/θr → 0 and 1/θr �= 0 to get the effects of the mag-
netic field and the Maxwell parameter on the veloc-
ity and temperature fields, for several physical situa-
tions. Comparisons with previously published works
are presented as special cases. Numerical results for
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the skin-friction co-efficient and the Nusselt number
with changes in the Maxwell parameter and the fluid
viscosity parameter are tabulated for different values
of the pertinent parameters. The results obtained for
the flow characteristics reveal many interesting behav-
iors that warrant further study on the non-Newtonian
fluid phenomena, especially the UCM fluid phenom-
ena. Maxwell fluid reduces the wall-shear stress.
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Nomenclature
a constant in (3)
b constant in (14) known as stretching rate b > 0
B0 uniform magnetic field
cp specific heat at constant pressure
Cf skin friction coefficient
dij deformation rate tensor
f dimensionless stream function
K thermal conductivity
Lij velocity gradient tensor
K∞ thermal conductivity of the fluid far away

from the sheet
Mn magnetic parameter
Nux local Nusselt number
Pr Prandtl number
Qs temperature dependent volumetric rate of heat

generation/absorption
qw heat transfer from the surface of the sheet
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T fluid temperature
Tr constant in (4)
Tw temperature of the plate
T∞ ambient temperature
Uw(x) velocity of the stretching sheet
u,v velocity components in the x and y directions
x, y Cartesian coordinates

Greek Letters
α∞ thermal diffusivity
α0, β0 unknown initial conditions
β Maxwell parameter
β1 heat source/sink parameter
γ constant defined in (4)
ν kinematic viscosity
ρ density
σ electric conductivity
δ the coefficient of viscosity defined in (10)
λ relaxation time
�T characteristic temperature
�
�t

upper convected time derivative
ε constant in (2) known as variable thermal

conductivity parameter
η similarity variable
θ dimensionless temperature
θr constant in (5) known as fluid viscosity

parameter
μ viscosity
ψ stream function
τij tensor notation
τw skin friction or shear stress

Subscripts
∞ condition at infinity
w condition at the wall
′ derivative with respect to η

1 Introduction

The boundary layer flow and heat transfer of a vis-
cous fluid over a continuous moving surface has ap-
plications in number of technological processes such
as metal and polymer extrusion, continuous casting,
glass-fiber production, manufacturing of plastic and
rubber sheets, paper production, cable coating etc. In
these processes, the quality of the final product de-
pends very much on the rate of heat and mass transfer
of the system. Sakiadis [1, 2] was the first to recognize

this different class of boundary layer flow adjacent to
continuous surface moving with a constant velocity.
The thermal behavior corresponding to this problem
was examined by Erickson et al. [3]. He found out that
for large values of the Prandtl number the local Nusselt
number can be approximated by Nux = 0.53

√
RexPr.

Later, Tsou et al. [4] showed experimentally that such
a flow is physically realizable. Fox et al. [5] extended
this problem to include the effects of suction and in-
jection on heat and mass transfer coefficients of a
moving isothermal surface through a fluid medium at
rest. Soundalgekar and Murthy [6] studied the ther-
mal boundary layer on a continuous plate with uni-
form motion. These studies were limited to a contin-
uous surface moving with a constant velocity, which
is not appropriate for the problem of continuous ex-
trusion of polymer sheets and filaments from a dye.
Since the polymer is a flexible material, the sheet and
the filament surfaces may stretch during the course of
ejection and therefore the surface velocity may be ex-
pected to deviate from being uniform. Crane [7] was
the first among the others to formulate this problem to
study a steady two-dimensional boundary layer flow
caused by stretching of a sheet that moves in its plane
with a velocity which varies linearly with the distance
from a fixed point on the sheet. Thereafter various as-
pects of the above boundary layer problem on con-
tinuous moving surface were considered by many re-
searchers (Grubka and Bobba [8], Chen [9], Gupta and
Gupta [10], Chen and Char [11], Ali [12], and Vajrav-
elu [13]).

All the above investigators restricted their analyses
to flow and heat transfer in the absence of magnetic
field. But in recent years, we find several applications
in polymer industry (where one deals with stretch-
ing of plastic sheets) and metallurgy where hydro-
magnetic techniques are being used. To be more spe-
cific, it may be pointed out that many metallurgical
processes involve the cooling of continuous strips or
filaments by drawing them through a quiescent fluid
and that in the process of drawing, these strips are
sometimes stretched. Mention may be made of draw-
ing, annealing, and thinning of copper wires. In all
these cases, the properties of final product depend
to a great extent on the rate of cooling: By drawing
such strips in an electrically conducting fluid one may
achieve the desired characteristics of the final prod-
uct. In view of these applications Pavlov [14] inves-
tigated the flow of an electrically conducting fluid
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caused solely by the stretching of an elastic sheet in
the presence of a uniform magnetic field. Chakrabarti
and Gupta [15] considered the flow and heat trans-
fer of an electrically conducting fluid past a porous
stretching sheet and presented analytical solution for
the flow and numerical solution for the heat transfer
problem. In these studies the fluid was assumed to be
Newtonian. However, many industrial fluids are non-
Newtonian or rheological in their flow characteristics
(such as molten plastics, polymers, suspension, foods,
slurries, paints, glues, printing inks, blood). That is,
they might exhibit dynamic deviation from Newto-
nian behavior depending upon the flow configuration
and/or the rate of deformation. These fluids often obey
non-linear constitutive equations and the complexity
in the equations is the main culprit for the lack of ex-
act analytical solutions. For example, visco-elastic and
Walters’ models are simple models (Char [16], Wen-
Dong-Chang [17], Andersson [18], and Vajravelu and
Rollins [19]) which are known to be accurate only for
weakly elastic fluids subject to slowly varying flows.
These two models are known to violate certain rules
of thermodynamics. Therefore the significance of the
results reported in the above works is limited as far
as the polymer industry is concerned. Obviously for
the theoretical results to be of any industrial impor-
tance, more general visco-elastic fluid models such as
upper convected Maxwell model (UCM fluid) or Ol-
droyd B model should be invoked. Indeed these two
fluid models are being used recently to study the visco-
elastic fluid flow above stretching and non-stretching
sheets with or without heat transfer (Bhatnagar et al.
[20], Renardy [21], Sadeghy et al. [22], Hayat et al.
[23], Aliakbar et al. [24], Vajravelu et al. [25], Hayat
and Qasim [26]). Recently, Hayat et al. [25] investi-
gated the mass transfer in the MHD flow of an upper-
convected Maxwell (UCM) fluid over a porous shrink-
ing sheet with chemically reactive species and solved
the nonlinear system of ordinary differential equations
by using homotopy analysis method. We mention also
the papers by Hayat et al. [27], Abbas et al. [28],
Sadeghy et al. [29], Mamaloukas et al. [30], Kumari
and Nath [31] and Hayat et al. [32, 33], on UCM flu-
ids.

Most of the above mentioned papers are based on
the constant thermo-physical properties of the fluid.
However, it is well known that (Herwig and Wickern
[34], Lai and Kulacki [35], Takhar et al. [36], Pop et al.
[37], Hassanien [38], Abel et al. [39], Seedbeck [40],

Ali [41], Andersson and Aarseth [42] Prasad et al.
[43]) the thermo-physical properties rather vary with
temperature, especially the fluid viscosity and the ther-
mal conductivity. For lubricating fluids, heat generated
by internal friction and the corresponding rise in the
temperature affects the physical properties of the fluid,
and the properties of the fluid are no longer assumed
to be constant. The increase in temperature leads to in-
crease in the transport phenomena and thereby chang-
ing the physical properties across the thermal bound-
ary layer; and hence the heat transfer at the wall is af-
fected. Therefore to predict the flow and heat transfer
rates, it is necessary to take into account the variable
fluid properties.

In view of this, the problem studied here extends
the work of Sadeghy et al. [24] by considering the
temperature dependent variable fluid properties. Thus
in the present paper, the authors envisage the effects of
the variable viscosity and the variable thermal conduc-
tivity on the hydro-magnetic flow and heat transfer of
a UCM fluid over a linear stretching sheet in the pres-
ence of internal heat generation/absorption. Highly
non-linear, coupled partial differential equations gov-
erning the momentum and heat transfer equations are
reduced to a system of coupled non-linear ordinary
differential equations by applying a suitable similarity
transformation. These non-linear coupled ordinary dif-
ferential equations are solved numerically by Keller-
Box method for different values of the parameters. The
effects of various parameters on the velocity and tem-
perature fields as well as the skin friction coefficient
and the Nusselt number are presented in graphical and
tabular forms. It is believed that the results obtained
from the present investigation will provide useful in-
formation for application and also serve as a comple-
ment to the previous studies.

2 Mathematical formulation

Consider a steady, two-dimensional incompressible
and electrically conducting UCM fluid flow over a
stretching sheet of stretching velocity Uw(x) = bx,
where b > 0 is the stretching velocity rate (see Fig. 1).
The thermo-physical fluid properties are assumed to
be isotropic and constant, except for the fluid viscosity
and the fluid thermal conductivity which are assumed
to vary as a function of temperature in the following
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Fig. 1 Physical model and coordinate system

forms:

1

μ
= 1

μ∞
[1 + γ (T − T∞)], (1)

K (T ) = K∞
(

1 + ε
T − T∞

�T

)
, (2)

where μ∞ and K∞ are the ambient fluid dynamic vis-
cosity and thermal conductivity respectively. ε is a
small parameter known as variable thermal conductiv-
ity parameter, T is the temperature of the fluid and
�T = (Tw − T∞). Equation (1) can be written as,

1

μ
= a(T − Tr), (3)

where

a = γ

μ∞
and Tr = T∞ − 1

γ
. (4)

Both a and Tr are constants and their values depend
on the reference state and the thermal property of the
fluid, i.e. γ (a constant). In general, a > 0 for liquids
and a < 0 for gases, respectively. Also, let θr be the
constant which is defined by

θr = Tr − T∞
�T

= − 1

γ�T
. (5)

It is worth mentioning here that for γ → 0 i.e. μ = μ∞
(constant), θr → ∞. It is also important to note that θr

is negative for liquids and positive for gases. This is
due to the fact that viscosity of a liquid usually de-
creases with increasing temperature while it increases
for gases. The reference temperatures selected here
for the correlations are very useful for most applica-
tions [44]. The flow region is exposed under uniform

transverse magnetic field B = (0,B0,0) and the im-
position of such magnetic filed stabilize the boundary
layer flow (Hayat et al. [32, 33]). It is assumed that
the flow is generated by stretching of an elastic sheet
from a slit by imposing two equal and opposite forces
in such a way that velocity of the boundary sheet is
of linear order of the flow. It is also assumed that the
magnetic Reynolds number is very small and the elec-
tric field due to polarization of charges is negligible.
It is assumed that the boundary layer approximation
is applicable (Gupta and Wineman [45]). Therefore,
the first step would be to derive the boundary layer
equations for our fluid of interest, and this can be done
starting from Cauchy equations of motion in which
a source term due to the magnetic field should also
be included (Bird et al. [46]). For a two-dimensional
flow, the equation of continuity, the equations of mo-
tion (with no pressure gradient) and the equation of
energy can be written as,

∂u

∂x
+ ∂v

∂y
= 0, (6)

ρ∞
(

u
∂u

∂x
+ v

∂u

∂y

)

= ∂τxx

∂x
+ ∂τxy

∂y
− σB2

0

(
u + λv

∂u

∂y

)
, (7)

ρ∞
(

u
∂v

∂x
+ v

∂v

∂y

)
= ∂τxx

∂x
+ ∂τyy

∂y
, (8)

u
∂T

∂x
+ v

∂T

∂y

= 1

ρ∞cp

∂

∂y

(
K(T )

∂T

∂y

)
+ Qs

ρ∞cp

(T − T∞), (9)

where u and v are the velocities components along the
x and y axes respectively, ρ∞ is the fluid density, σ is
the electrical conductivity, B0 is the uniform magnetic
field, cp is the specific heat at constant pressure, K(T )

is the thermal conductibility of the fluid and Qs is the
temperature dependent volumetric rate of heat source
when Qs > 0 and heat sink when Qs < 0. These heat
sources and sinks deal with the situations of exother-
mic and endothermic chemical reactions respectively.
As mentioned above, the fluid of interest in the present
work obeys upper convected Maxwell model. For a
Maxwell fluid the extra tensor τij can be related to the
deformation rate tensor dij by an equation of the form:

τij + λ
�

�t
τij = 2δdij , (10)
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where δ is the coefficient of viscosity and λ is the re-
laxation time of the period. The time derivative �

�t

appearing in the above equation is the so called up-
per convected time derivative devised to satisfy the re-
quirements of the continuum (i.e., material objectivity
and frame difference). This time derivative when ap-
plied to stress tensor reads as follows (Bird et al. [46]),

�

�t
τij = D

Dt
τij − Ljkτik − Likτkj , (11)

where Lij is the velocity gradient tensor. For an in-
compressible fluid obeying Upper convected Maxwell
model, the x-momentum equation and the energy
equation can be simplified using the usual boundary
layer theory approximations as (see Sadeghy et al.
[24]),

u
∂u

∂x
+ v

∂u

∂y
+ λ

(
u2 ∂2u

∂x2
+ v2 ∂2u

∂y2
+ 2uv

∂2u

∂x∂y

)

= 1

ρ∞
∂

∂y

(
μ

∂u

∂y

)
− σB2

0

ρ∞

(
u + λv

∂u

∂y

)
, (12)

u
∂T

∂x
+ v

∂T

∂y

= 1

ρ∞cp

∂

∂y

(
K(T )

∂T

∂y

)
+ Qs

ρ∞cp

(T − T∞). (13)

It may be pointed out here that there is an additional

term
σB2

0
ρ∞ λv ∂u

∂y
in the momentum equation (12) as in

Refs. [32, 33]. It is assumed that the normal stress is of
the same order of magnitude as that of the shear stress
in addition to the usual boundary layer approxima-
tion for deriving the x-component of the momentum
boundary layer equation (12). The appropriate bound-
ary condition on velocity and temperature are appro-
priate

u = Uw(x) = bx, v = 0, T = Tw at y = 0,

u → 0, T → T∞ as y → ∞.

(14)

3 Similarity equations

From the numerical solutions of the forced convection
flow and heat transfer, it is observed that the thermal
and momentum boundary layers exist along a horizon-
tal impermeable surface whenever the wall tempera-

ture differs from that of the surrounding fluid tempera-
ture. Using the boundary layer approximations and the
above mentioned variable fluid properties the govern-
ing equations (12) and (13) in terms of stream function
ψ can be written as,

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
+ λ

[(
∂ψ

∂y

)2
∂3ψ

∂x2∂y

+
(

∂ψ

∂x

)2
∂3ψ

∂y3
− 2

∂ψ

∂y

∂ψ

∂x

∂3ψ

∂x∂y2

]

= ν∞
[

1

1 + γ (T − T∞)

∂3ψ

∂y3

+ ∂ψ

∂y

∂

∂y

(
1

1 + γ (T − T∞)

)]

− σB2
0

ρ∞

(
∂ψ

∂y
− λ

∂ψ

∂x

∂2ψ

∂y2

)
, (15)

∂ψ

∂y

∂T

∂x
−

[
∂ψ

∂x
+ α∞

∂

∂y

(
1 + ε

T − T∞
�T

)]
∂T

∂y

= α∞
(

1 + ε
T − T∞

�T

)
∂2T

∂y2
+ Qs

ρ∞cp

(T − T∞).

(16)

The stream function ψ automatically satisfies the con-
tinuity equation (6) and is given by
(u, v) = (∂ψ/∂y,−∂ψ/∂x). With a properly chosen
similarity variables, the above equation can be trans-
formed into ordinary differential equations: The suit-
able similarity transformations for the problem are,

η = (b/ν∞)1/2y, ψ = x (ν∞b)1/2 f (η) ,

θ (η) = T − T∞/�T .
(17)

In terms of the new variables, the velocity components
can be written as,

u = bxf ′ (η) , v = −(bν∞)1/2f (η) . (18)

The governing equations (15) and (16) in terms of the
new variables f and θ are,

[
f ′′

(
1 − θ

θr

)−1
]′

+ ff ′′ − f ′2 − Mn(f ′ − βff ′′)

+ β(2ff ′f ′′ − f 2f ′′′) = 0, (19)

[(1 + εθ)θ ′]′ + Prf θ ′ − β1Prθ = 0. (20)
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Here primes denote differentiation with respect to η,
Mn = σB2

0/(ρ∞b) is the magnetic parameter, β = λb

is the Maxwell parameter, Pr = ν∞/α∞ is the Prandtl
number and β1 = Qs/(ρ∞cpb) is the heat source/sink
parameter. In view of the above transformations, the
boundary conditions (14) can be written as

f (0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(η) → 0, θ(η) → 0 as η → ∞.
(21)

We noticed that in the absence of fluid viscosity pa-
rameter and the variable thermal conductivity parame-
ter the equations reduce to those of Sadeghy et al. [29],
while in the absence of Maxwell parameter the equa-
tions reduce to those of Chen and Char [11], Grubka
and Bobba [8] and Crane [7] under different physical
situations. Further with constant physical properties
i.e. θr → ∞, β = 0, ε = 0 and β1 = 0 the equations
reduce to those of Andersson et al. [47] for a special
case of n = 1 (Newtonian fluid). From the engineer-
ing point of view, the important flow and heat transfer
characteristics are the skin friction coefficient Cf and
the local Nusselt number Nux , which are defined as

Cf = τw

ρ∞U2
w/2

, Nux = xqw

K∞�T
, (22)

where the skin friction τw and the heat transfer from
the surface qw are given by

τw = μ∞
(

∂u

∂y

)
y=0

, qw = −K∞
(

∂T

∂y

)
y=0

. (23)

Using (17), (22) and (23), we get

Re1/2
x Cf = 2f ′′(0), Re−1/2

x Nux = −θ ′(0), (24)

where Rex = Uw(x)x/ν∞ is the local Reynolds num-
ber.

4 Numerical procedure

Equations (19) and (20) are highly non-linear, cou-
pled ordinary differential equations of third-order and
second-order, respectively. Exact analytical solutions
are not possible for the complete set of equations
and therefore we use the efficient numerical method
with second order finite difference scheme known
as Keller-Box method. The coupled boundary value
problem (19,20) of third order in f (η) and second or-
der in θ(η), respectively, has been reduced to a system

of five simultaneous ordinary differential equations of
first order for five unknowns following the method of
superposition (Na [48]) by assuming f = f1, f ′ = f2,
f ′′ = f3, θ = θ1, θ ′ = θ2. To solve this system of
equations we require five initial conditions whilst we
have only two initial conditions f (0), f ′(0) on f (η)

and one initial condition θ(0) on θ(η). There are two
initial condition f ′′(0) and θ ′(0) which are not pre-
scribed, however the values of f ′(η) and θ(η) are
known at η → ∞. Now, we employ numerical Keller-
Box scheme where these two boundary conditions are
utilized to produce two unknown initial conditions at
η = 0. To select η∞, we begin with some initial guess
values and solve the boundary value problem with
some particular set of parameters to obtain f ′′(0) and
θ ′(0). Thus we start with the initial approximation as
f3(0) = α0 and θ2(0) = β0. Let α∗ and β∗ be the cor-
rect values of f3(0) and θ2(0). We integrate the result-
ing system of five ordinary differential equations us-
ing fourth order Runge-Kutta method and denote the
values of f3(0) and θ2(0). The solution process is re-
peated with another larger value of η∞ until two suc-
cessive values of f ′′(0) and θ ′(0) differ only after de-
sired digit signifying the limit of the boundary along η.
The last value of η∞ is chosen as appropriate value for
that particular set of parameters. Finally the problem
has been solved numerically using a second order fi-
nite difference scheme known as Keller-Box method
[49, 50]. The numerical solutions are obtained in four
steps as follows:

• reduce (19) and (20) to a system of first-order equa-
tions;

• write the difference equations using central differ-
ences;

• linearize the algebraic equations by Newton’s
method, and write them in matrix-vector form; and

• solve the linear system by the block tri-diagonal
elimination technique.

For numerical calculations, a uniform step size of
�η = 0.01 is found to be satisfactory and the solu-
tions are obtained with an error tolerance of 10−6 in
all the cases. To assess the accuracy of the present
method, comparison of the skin friction f ′′(0) and the
wall temperature gradient θ ′(0) between the present
results and previously published results are made, for
several special cases in which the Maxwell parameter
and thermo physical fluid properties are neglected (see
Tables 1 and 2).
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Fig. 2a Velocity profiles for different values of β-with
β1 = 0.1, ε = 0.1, Pr = 1.0, 1/θr = 0.0

5 Results and discussion

The influence of the temperature- dependent fluid
properties on MHD boundary layer flow and heat
transfer of a UCM fluid over a stretching sheet is inves-
tigated numerically. Analytical solutions are obtained
for the special case when θr → ∞, β = 0 and ε = 0.
Numerical solution is warranted for the general case
which is achieved by using a second order finite differ-
ence scheme known as the Keller-Box method (Prasad
et al. [43]). In order to have an understanding of the
mathematical model, we present the numerical results,
graphically for the horizontal velocity and the temper-
ature fields, respectively in Figs. 2a, 2b and 3 and in
Figs. 4a, 4b to 8; the skin friction f ′′(0) and the wall
temperature gradient θ ′(0) are presented in Table 3.

Figures 2a and 2b present, respectively, the effects
of constant fluid viscosity (θr → ∞) and non-zero
fluid viscosity parameter (θr = −1.0) on the horizon-
tal velocity profile f ′(η) for different values of the
Maxwell parameter β and the magnetic parameter Mn.
It is noticed that the velocity f ′(η) is unity at the
wall and tends asymptotically to zero as the distance
increases from the boundary. The effect of increas-
ing values of the Maxwell parameter β is to reduce

Fig. 2b Velocity profiles for different values of β-with
β1 = 0.0, ε = 0.0, θr = −1.0, Pr = 1.0

the velocity f ′(η) and thereby reduce the boundary
layer thickness, and hence an increase in the absolute
value of the surface velocity gradient. This is true for
zero/non-zero values of the magnetic parameter and
the variable viscosity parameter [see Fig. 2b]. From
Fig. 2a, it is also noticed that the velocity f ′(η) de-
creases with an increase in the magnetic parameter Mn
due to the fact that the transverse magnetic field nor-
mal to the flow direction has a tendency to produce
a drag force known as the Lorentz force which tends
to resist the flow. The effects of fluid viscosity param-
eter θr on the velocity f ′(η) for the cases Mn = 0.0
(without magnetic field) and Mn = 0.5 (with magnetic
field) are depicted respectively in Figs. 3a and 3b. It
is observed that the velocity f ′(η) decreases with in-
creasing values of the variable viscosity parameter θr :
This is due to the fact that for a given fluid, when δ

is fixed, smaller θr implies higher temperature differ-
ence between the wall and the ambient fluid. The re-
sults presented in this paper demonstrate clearly that
θr the indicator of the variable viscosity with tempera-
ture has a substantial effect on the velocity component
f ′(η) and hence on the skin friction. This is true for
non-zero values of the magnetic parameter Mn. The
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Table 1 Comparison of skin friction f ′′(0) for different values of the magnetic parameter when
θr → ∞, ε = 0.0, β = 0, and β1 = 0.0

Mn = 0.0 Mn = 0.5 Mn = 1.0 Mn = 1.5 Mn = 2.0

Exact solution −1.000 −1.2247 −1.414235 −1.5811388 −1.732050

Andersson et al.
[47] for n = 1

−1.00000 1.2249 −1.4140 1.58100 1.73200

Present results −1.000174 −1.224753 −1.4144499 −1.581139 −1.732203

Fig. 3 Velocity profiles for different values of θr when (a) Mn = 0.0 and (b) Mn = 0.5 with β1 = 0.0, ε = 0.0, Pr = 1.0

results for non-zero values of the magnetic parameter
are qualitatively similar to those of Mn = 0.0 case, but
quantitatively reduced (see Fig. 3b).

Temperature profiles θ(η) are shown graphically in
Figs. 4a, 4b, to 8 for different values of the pertinent
parameters. The general trend is that the temperature
distribution is unity at the wall and with the changes in
the physical parameters tends asymptotically to zero
in the free stream region. Figure 4a shows the effect
of the Maxwell parameter β and the magnetic param-
eter Mn on the temperature θ(η) for the case θr → ∞.
The effect of increasing values of the Maxwell param-
eter β is to increase the temperature distribution in the
flow region. This is in conformity with the fact that an

increase in the Maxwell parameter β leads to an in-
crease in the thermal boundary layer thickness. This
is true even for non-zero values of the magnetic pa-
rameter Mn. Also, as explained above, the introduction
of transverse magnetic filed to an electrically conduct-
ing fluid gives rise to a resistive force known as the
Lorentz force. This force makes the fluid experience a
resistance by increasing the friction between its layers
and thereby increases the temperature. This behavior
is true even for non-zero values of the fluid viscosity
parameter θr , shown in Fig. 4b. Figure 5a depicts the
effect of fluid viscosity parameter θr on the tempera-
ture θ(η) for zero and non-zero values of Maxwell pa-
rameter β From the graphical representation, we see
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Table 2 Comparison of wall temperature gradient θ ′(0) for different values of Prandtl number and magnetic parameter when θr →
∞, ε = 0.0, β = 0, and β1 = 0.0

Pr Mn = 0.0 Mn = 1.0

Present
results

Grubka
&
Bobba
[8]

Chen
[9]

Ali [12] Prasad et
al. [43]
for linear
stretching

Present
results

Prasad et
al. [43]
for linear
stretching

0.01 −0.01017936 −0.0099 0.0091 – – −0.1052331 –

0.72 −0.4631462 −0.4631 −0.46315 −0.4617 −0.45828 −0.3896524 −0.39397

1.0 −0.5826707 −0.5820 −0.58199 −0.5801 −0.58267 −0.5054647 −0.50546

3.0 −1.16517091 −1.1652 −1.16523 −1.1599 −1.16517 −1.075216 −1.07522

5.0 −1.56800866 – – – −1.56801 −1.477388 −1.47739

10.0 −2.308029 −2.3080 −2.30796 −2.2960 – −2.217622 –

100.0 −7.769667 −7.7657 – – – −7.680498 –

Fig. 4a Temperature profiles for different values of β with
β1 = 0.1, ε = 0.1, Pr = 1.0, 1/θr = 0.0

that the combined effect of increasing value of the
variable viscosity parameter θr and the Maxwell pa-
rameter β is to enhance the temperature. This is be-
cause of the fact that an increase in the fluid viscos-
ity parameter θr results in an increase in the thermal
boundary layer thickness. This is even true for non-
zero values of magnetic parameter (see Fig. 5b). The
variations in temperature for different values of the

Fig. 4b Temperature profiles for different values of β with
β1 = 0.0, ε = 0.0, θr = −1.0, Pr = 1.0

Prandtl number Pr and the Maxwell parameter β are
displayed respectively in Figs. 6a and 6b for θr → ∞,
and θr = −5.0. Both figures demonstrate that an in-
crease in the Prandtl number Pr (means decrease in the
thermal conductivity K∞) leads to a decrease in the
temperature. Hence the thermal boundary layer thick-
ness decreases as the Prandtl number increases.
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Table 3 Values of f ′′(0) and θ ′(0) for different values of pertinent parameters

θr Pr ε β1 β Mn = 0.0 Mn = 1.0

f ′′(0) θ ′(0) f ′′(0) θ ′(0)

∞ 1.0 0.1 0.1 0.0 −1.000291 −0.542296 −1.414238 −0.481929

0.2 −1.052039 −0.527399 −1.474558 −0.468506

0.4 −1.102408 −0.520742 −1.533535 −0.456324

0.6 −1.150449 −0.509253 −1.591087 −0.445286

0.8 −1.196909 −0.498635 −1.647197 −0.435275

−1.0 1.0 0.1 0.1 0.0 −1.465709 −0.489829 −2.050357 −0.418924

0.2 −1.536012 −0.475591 −2.133184 −0.406299

0.4 −1.604135 −0.462688 −2.214340 −0.395124

0.6 −1.670122 −0.451006 −2.293710 −0.385210

0.8 −1.734068 −0.440418 −2.371258 −0.376382

θr Mn Pr ε β1 β = 0.0 β = 0.4

∞ 1.0 1.0 0.0 −0.2 −1.414238 −0.219651 −1.533535 −0.167366

0.0 −0.481929 −0.456324

0.2 −0.652335 −0.635508

0.0 0.0 −1.414238 −0.616051 −1.533535 −0.594535

0.2 −0.537926 −0.518712

0.4 −0.480413 −0.462997

1.0 0.0 0.0 −1.414238 −0.573746 −1.533535 −0.553460

2.0 −0.882361 −0.854879

3.0 −1.130848 −1.101564

−5.0 0.5 1.0 0.0 −0.2 −1.352050 −0.242464 −1.470860 −0.189086

0.0 −1.359114 −0.494166 −1.478754 −0.468018

0.2 −1.363457 −0.660584 −1.483399 −0.643456

0.0 0.0 −1.362552 −0.626565 −1.482357 −0.604679

0.1 −1.360532 −0.547218 −1.480368 −0.527573

0.2 −1.358899 −0.488775 −1.478779 −0.470878

1.0 0.0 0.0 −1.361485 −0.583602 −1.481303 −0.562915

2.0 −1.370717 −0.895512 −1.490331 −0.868587

3.0 −1.377325 −1.144603 −1.497024 −1.116424

β1 ε Pr Mn θr β = 0.0 β = 0.2

0.0 0.0 1.0 0.0 −10.0 −1.058398 −0.576132 −1.112027 −0.558714

−5.0 −1.112509 −0.567261 −1.168573 −0.550985

−1.0 −1.466360 −0.517813 −1.536747 −0.500152

−0.5 −1.797367 −0.472791 −1.882908 −0.454258

0.5 −10.0 −1.294208 −0.529638 −1.352579 −0.513027

−5.0 −1.359571 −0.520764 −1.420165 −0.504014

−1.0 −1.784996 −0.464407 −1.861230 −0.447182

−0.5 −2.186147 −0.417102 −2.279919 −0.404856
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Fig. 5 Temperature profiles for different values of θr when (a) Mn = 0.0 and (b) Mn = 0.5 with β1 = 0.0, ε = 0.0, Pr = 1.0

Fig. 6 Temperature profiles for different values of Pr when (a) 1/θr = 0.0 and (b) θr = −5.0 with β1 = 0.0, ε = 0.1, Mn = 1.0
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Fig. 7 Temperature profiles for different values of ε when (a) 1/θr = 0.0 and (b) θr = −5.0 with β1 = 0.0, Mn = 1.0, Pr = 1.0

Fig. 8 Temperature profiles for different values of β1, when (a) 1/θr = 0.0 and (b) θr = −5.0 with ε = 0.1, Mn = 1.0, Pr = 1.0
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The effect of variable thermal conductivity param-
eter ε on the temperature profile θ(η) for increasing
values of the Maxwell parameter β is shown graphi-
cally in Figs. 7a and 7b for both the cases of θr → ∞
and θr = −5.0. It is observed that the temperature dis-
tribution increases with an increase in the value of
the variable thermal conductivity parameter ε. This is
due to the fact that the temperature dependent thermal
conductivity induces a reduction in the magnitude of
the transverse velocity by a quantity ∂K(T )/∂y which
can be seen from (18). Figures 8a and 8b exhibit the
changes in the temperature distribution θ(η) for dif-
ferent values of the heat source/sink parameter β1 for
θr → ∞ and θr = −5.0, respectively. From these fig-
ures we observe that the temperature distribution is be-
ing reduced throughout the boundary layer for nega-
tive values of β1 compared to the positive values of
β1. Physically, β1 > 0 implies Tw > T∞ (that is, the
case of supply of heat to the flow region form the wall).
Similarly β1 < 0 implies Tw < T∞ (the transfer of heat
is from flow to the wall). The effect of increasing val-
ues of heat source/sink parameter β1 is to increase the
temperature profile when θr → ∞ and θr = −5.0.

The impact of all the physical parameters on the
skin friction and the wall-temperature gradient may be
analyzed from Table 2. Analysis of the tabular data
shows that the Maxwell parameter, the magnetic pa-
rameter and the variable viscosity parameter decrease
the skin friction: But quite the opposite is true with the
rate of heat transfer. This observation is even true in
the presence of the variable thermal conductivity pa-
rameter. However the effect of heat source/sink param-
eter or the variable thermal conductivity parameter is
to enhance the rate of heat transfer. But the effect of
the Prandtl number is to decrease the wall-temperature
gradient for zero and non-zero values of the Maxwell
parameter.

6 Conclusions

In this paper we have theoretically studied the effects
of the temperature-dependent thermo-physical proper-
ties on the MHD boundary layer flow and heat trans-
fer of a UCM fluid over a stretching sheet in the pres-
ence of internal heat generation/absorption. Here, the
flow is generated, due to the stretching of an elas-
tic sheet caused by the simultaneous application of
two equal and opposite forces along the x-axis, keep-
ing the origin fixed: The sheet is then stretched with

a speed varying linearly with distance from the slit.
The governing partial differential equations are trans-
formed into ordinary differential equations by using an
appropriate similarity transformation and then the re-
sulting boundary value problem is solved numerically
by a second order finite difference scheme. A system-
atic study to assess the effects of variable viscosity and
other physical parameters controlling the flow and heat
transfer characteristics is carried out. The following
conclusions are drawn from the computed numerical
values:

• In the presence of temperature dependent thermo-
physical properties, the effect of increasing Maxwell
parameter and the magnetic parameter is to decrease
the velocity throughout the boundary layer. How-
ever, quite the opposite is true with the thermal
boundary layer.

• The effect of Prandtl number is to decrease the ther-
mal boundary layer thickness and the wall tempera-
ture gradient.

• The effects of variable thermal conductivity param-
eter and the heat source/sink parameter are to en-
hance the temperature in the flow region.

• Of all the parameters, the variable thermo-physical
property parameters have the strong effects on the
drag, heat transfer characteristics, the horizontal ve-
locity and the temperature fields in the MHD flow
of UCM fluid over a stretching sheet.
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