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Abstract This paper concerned with the unsteady ro-
tational flow of fractional Oldroyd-B fluid, between
two infinite coaxial circular cylinders. To solve the
problem we used the finite Hankel and Laplace trans-
forms. The motion is produced by the inner cylinder
that, at time t = 0+, is subject to a time-dependent ro-
tational shear. The solutions that have been obtained,
presented under series form in terms of the general-
ized G functions, satisfy all imposed initial and bound-
ary conditions. The corresponding solutions for or-
dinary Oldroyd-B, fractional and ordinary Maxwell,
fractional and ordinary second grade, and Newtonian
fluids, performing the same motion, are obtained as
limiting cases of general solutions.

The most important things regarding this paper to
mention are that (1) we extracted the expressions for
the velocity field and the shear stress corresponding
to the motion of a fractional second grade fluid as
limiting cases of general solutions corresponding to
the fractional Oldroyd-B fluid, this is not previously
done in the literature to the best of our knowledge, and
(2) the expressions for the velocity field and the shear
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stress are in the most simplified form, and the point
worth mentioning is that these expressions are free
from convolution product and the integral of the prod-
uct of the generalized G functions, in contrast with
(Imran and Zamra in Commun. Nonlinear Sci. Numer.
Simul. 16:226–238, 2011) in which the expression for
the velocity field involving the convolution product as
well as the integral of the product of the generalized G

functions.

Keywords Fractional Oldroyd-B fluid · Velocity
field · Shear stress · Fractional calculus · Integral
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1 Introduction

A wide range of commonly encountered fluids in-
cludes Newtonian fluids. But a large number of fluids
appearing in industry differ greatly from Newtonian
fluids in their rheology. Newtonian fluids are recog-
nized by the linear relationship between stress and the
rate of strain. In many existing fluids with complex
molecular structure, the relation between stress and
strain is found to be non-linear. Therefore, the New-
tonian fluids model can not be used to predict, analyze
and simulate the behavior of many viscoelastic fluids.
Hence, in practical situations and applications in in-
dustry, it is necessary to study the flow behavior of
non-Newtonian fluids.
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Ordinary Navier-Stokes equations are a good tool
to describe the flows of a large class of fluids (Newto-
nian fluids), but for the flow of fluids with complex mi-
crostructure (non-Newtonian fluids) which show non-
linear viscoelastic behavior [2], a single governing
equation is unable to describe the flow behavior and
all its properties [3]. The study of fluid flows has a
variety of applications in medicine, science and tech-
nology. During the past few decades, the flows of non-
Newtonian fluids have been recognized more promis-
ing in industry and technology.

The inadequacy of the ordinary Navier-Stokes the-
ory to describe the behavior of the rheologically com-
plex fluids such as polymer solutions, heavy oils,
blood and many emulsions, has led to the develop-
ment of models of non-Newtonian fluids. In particu-
lar, many pastes, slurries, synovial, polymer solutions
and suspensions exhibit shear thinning behavior. The
study of non-Newtonian fluids [4] has become of in-
creasing interest and importance in recent times. They
are widely used in chemical engineering, food indus-
try, biological analysis, petroleum industry and many
other fields. The academic workers and engineers are
very much interested in the geometry of flows of such
types of fluids. As compared to Newtonian fluids, the
analysis of the behavior of the motion of such fluids
is much more complicated and not easy to handle be-
cause of non-linear relationship between stress and the
rate of strain.

The flow analysis of non-Newtonian fluids is very
important in the fields of fluid mechanics due to their
several technological applications. Due to the complex
stress-strain relationship, not many investigators have
studied the flow behavior of non-Newtonian fluids in
various flow fields. The study of non-Newtonian flu-
ids [5–7] has got much attention because of their prac-
tical applications. A number of industrially important
fluids including polymers, molten plastics, pulps, mi-
crofluids and food stuff display non-Newtonian char-
acteristics. Exact analytic solutions for the flows of
non-Newtonian fluids are important provided they cor-
respond to the physically realistic problems and they
can be used as checks against complicated numerical
codes that have been developed for much more com-
plex flows. In recent years many non-Newtonian mod-
els have been proposed. They include differential type,
rate type and integral type fluids. Among them, the rate
type fluid models have received special attention. The
differential type fluids do not predict stress relaxation

and they are not successful for describing the flows of
some polymers.

The motion of a fluid in a rotating or translating
cylinder is of interest to both theoretical and practical
domains. It is very important to study the mechanism
of viscoelastic fluids flow in many industry fields,
such as oil exploitation, chemical and food industry
and bio-engineering. For Newtonian fluids, the tran-
sient velocity distribution for the flow within a circu-
lar cylinder may be found in [8]. The first exact solu-
tions for flows of non-Newtonian fluids in such a do-
main seem to be those of Ting [9] corresponding to
second grade fluids and Srivastava [10] for Maxwell
fluids. Later, Waters and King [11] studied the start-
up Poiseuille flow of an Oldroyd-B fluid in a straight
circular tube and its decay from the steady state con-
dition when the pressure gradient is removed. During
recent years quite many papers of this type have been
published. The most general solutions corresponding
to the helical flow of a second grade fluid seem to be
those of Fetecau and Corina Fetecau [12], in which the
cylinder is rotating around its axis and sliding along
the same axis with time-dependent velocities. Other
interesting solutions for different flows of the second
grade and Maxwell fluids have been also obtained by
Nadeem et al. [13]. Exact solutions for the helical
flows of Oldroyd-B fluid in cylindrical domains have
been obtained by Wood [14] and Fetecau et al. [15]. In
the meantime a lot of papers regarding such motions
have been published.

Recently, fractional calculus has encountered much
success in the description of viscoelasticity [16–20].
The starting point of the fractional derivative model
of a non-Newtonian fluid is usually a ordinary dif-
ferential equation which is modified by replacing the
time derivative of an integer order by the fractional
calculus operators. This generalization allows one to
define precisely non-integer order integrals or deriva-
tives. Tan et al. [18] and Xu and Tan [21] examined the
velocity field, stress field and vortex sheet of a general-
ized second-order fluid with fractional anomalous dif-
fusion. Song and Jiang [22] achieved satisfactory re-
sult to apply the constitutive equation with fractional
derivative to the experimental data of viscoelasticity.
Tan et al. [23] and Tan and Xu [24] applied fractional
derivative to the constitutive relationship models of
Maxwell viscoelastic fluid and second grade fluid, and
studied some unsteady flows.

The aim of this paper is to establish analytical so-
lutions for the velocity field and the adequate shear
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stress corresponding to the unsteady flow of an in-
compressible fractional Oldroyd-B fluid between two
infinite co-axial circular cylinders induced by a time-
dependent shear. The motion of the fluid is produced
by the inner cylinder, which at time t = 0+, begins to
rotate about its axis with a time-dependent shear stress.
The solutions that have been obtained, presented un-
der series form in terms of the generalized G func-
tions, are established by means of the finite Hankel and
Laplace transforms. The similar solutions for ordinary
Oldroyd-B, fractional Maxwell, ordinary Maxwell flu-
ids as well as those for the fractional and ordinary sec-
ond grade fluids, can be obtained as limiting cases for
γ,β → 1; λr → 0 and β → 1; λr → 0, γ and β → 1;
λ → 0 and γ → 1; λ → 0, γ and β → 1 respectively.
The solutions for a Newtonian fluid performing the
same motion, are obtained as limiting cases of the so-
lutions for fractional Oldroyd-B fluid when λr → 0,
λ → 0 and γ,β → 1.

2 Governing equations

The flows to be considered here have the velocity v
and the extra-stress S of the form [25]

v = v(r, t) = w(r, t)eθ , S = S(r, t), (1)

where eθ is the unit vector in the θ -direction of the
cylindrical coordinates r , θ and z. For such flows, the
constraint of incompressibility is automatically satis-
fied. Furthermore, if initially the fluid is at rest, then

v(r,0) = 0, S(r,0) = 0. (2)

In the absence of body forces and a pressure gra-
dient in the θ -direction, the governing equations cor-
responding to such motions of Oldroyd-B fluids are
given by [25]
(

1 + λ
∂

∂t

)
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∂t

= ν

(
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∂
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)(
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(4)

where τ(r, t) = Srθ (r, t) is the non-trivial shear stress,
ρ is the constant density of the fluid, ν = μ/ρ is the

kinematic viscosity, λ is the relaxation time, and λr is
the retardation time.

The governing equations corresponding to a frac-
tional Oldroyd-B fluid, performing the same motion,
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(6)

are obtained from (3) and (4) by replacing the inner
time derivatives by the Riemann-Liouville fractional
operators D

γ
t and D

β
t as given by [17, 26]

D
β
t f (t) = 1


(1 − β)

d

dt

∫ t

0

f (τ)

(t − τ)β
dτ,

0 ≤ β < 1, (7)

where 
(.) is the Gamma function.
When γ,β → 1, (5) and (6) reduce to (3) and (4)

because D1
t f = df

dt
. Furthermore, the new material

constants λ and λr (although, for the simplicity, we
keep the same notation) go to the initial λ and λr .

3 Rotational flow through an annulus

Let us consider an incompressible fractional Oldroyd-
B fluid at rest in an annular region between two coaxial
circular cylinders of radii R1 and R2(> R1). At time
t = 0+, a time dependent rotational shear stress

τ(R1, t) = f

λ

(
R1

r

)2

Rγ,−1

(
−1

λ
, t

)
; 0 ≤ γ < 1,

(8)

where f is a constant and the generalized functions R

are defined by [27]

Ra,b(d, t) = L−1
{

qb

qa − d

}
=

∞∑
n=0

dnt(n+1)a−b−1


[(n + 1)a − b] ;

Re(a − b) > 0, Re(q) > 0,

∣∣∣∣ d

qa

∣∣∣∣ < 1, (9)

is applied on the boundary of the inner cylinder. Due
to the shear, the fluid is gradually moved and its veloc-
ity being of the form (1)1. The governing equations
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are given by (5) and (6), while appropriate initial and
boundary conditions are

w(r,0) = ∂w(r,0)

∂t
= 0, τ (r,0) = 0; r ∈ [R1,R2],

(10)

and

(
1 + λD

γ
t

)
τ(r, t)|r=R1

= μ
(
1 + λrD

β
t

)( ∂

∂r
− 1

r

)
w(r, t)|r=R1 = f,

w(R2, t) = 0; t ≥ 0. (11)

Of course, τ(R1, t) given by (8) is just the solution of
(11)1, with the initial condition (10)3.

The partial differential equations (5) and (6), also
containing fractional derivatives, can be solved in prin-
ciple by several methods, the integral transforms tech-
nique representing a systematic, efficient and powerful
tool. In the following we shall use the Laplace trans-
form to eliminate the time variable and the finite Han-
kel transform for the removal of spatial variable. How-
ever, in order to avoid the burdensome calculations of
residues and contour integrals, we shall apply the dis-
crete inverse Laplace transform method.

3.1 Calculation of the velocity field

Applying the Laplace transform to (5), and having in
mind the initial and boundary conditions (10) and (11),
we find that

(
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(
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β
)( ∂2

∂r2
+ 1

r
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where the image function w(r, q) = L{w(r, t)} =∫ ∞
0 e−qtw(r, t)dt has to satisfy the conditions

(
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μq(1 + λrqβ)
; w(R2, q) = 0. (13)

We shall denote by [28]

wH (rn, q) =
∫ R2

R1

rw(r, q)B(r, rn)dr, (14)

the finite Hankel transform of w(r, q), where

B(r, rn) = J1(rrn)Y2(R1rn) − J2(R1rn)Y1(rrn), (15)

rn being the positive roots of the transcendental equa-
tion B(R2, r) = 0, while Jp(·) and Yp(·) are the Bessel
functions of the first and the second kind of order p.

The inverse Hankel transform of wH (rn, q) is given
by [28]

w(r, q)

= π2

2

∞∑
n=1

r2
nJ 2

1 (R2rn)B(r, rn)

J 2
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Now multiplying both sides of (12) by rB(r, rn), then
integrating with respect to r from R1 to R2 and taking
into account the conditions (13) and the equality
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we find that
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1
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nλrqβ)
. (18)

Now, for a more suitable presentation of the veloc-
ity field w(r, t), we shall rewrite (18) in the following
equivalent form
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n

1

q
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2
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Applying inverse Hankel transform to (19), and taking
into account the following result
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(
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n
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)2
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we find that
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Introducing the expansion (48) (see Appendix) into
(21), we get
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Applying the inverse Laplace transform to (22) and us-
ing (49) [27], we obtain
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3.2 Calculation of the shear stress

Applying the Laplace transform to (6), we find that

τ(r, q) = μ
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)
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In order to obtain a suitable form for the shear stress
τ(r, t), we rewrite (18) into an equivalent form as
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Applying the inverse Hankel transform to (25), we get
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Introducing (27) into (24), we find that
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where

B̃(r, rn) = J2(rrn)Y2(R1rn) − J2(R1rn)Y2(rrn). (29)
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Introducing (48) into (28), we get
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Applying the discrete inverse Laplace transform to
(30), and using (9) and (49), we find that the shear
stress τ(r, t) has the form

τ(r, t) =
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4 Limiting cases

4.1 Ordinary Oldroyd-B fluid

Making γ → 1 and β → 1 into (23) and (31), we ob-
tain the velocity field
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and the associated tangential stress
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corresponding to ordinary Oldroyd-B fluid performing
the same motion.

4.2 Fractional Maxwell fluid

Making λr → 0 into (32) and (33), we obtain the ve-
locity field
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and the shear stress
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corresponding to the fractional Maxwell fluid per-
forming the same motion.
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4.3 Ordinary Maxwell fluid

Making λr → 0 and γ → 1 into (23) and (31), we ob-
tain the velocity field
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and its associated tangential stress
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corresponding to ordinary Maxwell fluid performing
the same motion.

4.4 Fractional second grade fluid

Making λ → 0 and γ → 1 into (23) and (31) and using
(50), (51) and (52), we obtain the velocity field
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rn[J 2
2 (R1rn) − J 2

1 (R2rn)]

×
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k=0

(−νr2
n

)k[
G1−β,−βk−β,k+1

(−νλrr
2
n, t

)

+ νλrr
2
nG1−β,−βk−1,k+1

(−νλrr
2
n, t

)]
, (38)

and the associated tangential stress

τFSG(r, t)

=
(

R1

r

)2

f + πf

∞∑
n=1

J 2
1 (R2rn)B̃(r, rn)

J 2
2 (R1rn) − J 2

1 (R2rn)

×
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k=0

(−νr2
n

)k
G1−β,−βk−β,k+1

(−νλrr
2
n, t

)
,

(39)

corresponding to fractional second grade fluid per-
forming the same motion.

By taking νλr = α and α1 = αρ (the material con-
stants for second grade fluid) into (38) and (39), we
shall get the similar solutions for fractional second
grade fluid as we get directly from the governing equa-
tions of fractional second garde fluid as under

wFSG(r, t)

= 1

2μ

(
R1

R2

)2(
r − R2

2

r

)
f

− πf

μ
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n=1

J 2
1 (R2rn)B(r, rn)

rn[J 2
2 (R1rn) − J 2

1 (R2rn)]

×
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k=0

(−νr2
n

)k[
G1−β,−βk−β,k+1

(−αr2
n, t

)

+ αr2
nG1−β,−βk−1,k+1

(−αr2
n, t

)]
, (40)

and

τFSG(r, t)

=
(

R1

r

)2

f + πf
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n=1

J 2
1 (R2rn)B̃(r, rn)

J 2
2 (R1rn) − J 2

1 (R2rn)

×
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k=0

(−νr2
n

)k
G1−β,−βk−β,k+1

(−αr2
n, t

)
. (41)

4.5 Ordinary second grade fluid

Making β → 1 into (40) and (41) and using (53), the
expressions for velocity field

wSG(r, t) = 1

2μ

(
R1

R2

)2(
r − R2

2

r

)
f

− πf

μ

∞∑
n=1

J 2
1 (R2rn)B(r, rn)

rn[J 2
2 (R1rn) − J 2

1 (R2rn)]

× exp

(
− νr2

nt

1 + αr2
n

)
, (42)
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and the associated tangential stress

τSG(r, t) =
(

R1

r

)2

f

+ πf

∞∑
n=1

J 2
1 (R2rn)B̃(r, rn)

J 2
2 (R1rn) − J 2

1 (R2rn)

1

1 + αr2
n

× exp

(
− νr2

nt

1 + αr2
n

)
, (43)

corresponding to an ordinary second grade fluid per-
forming the same motion are recovered. The velocity
field (42) is identical to (5.17) from [29], obtained by
a different technique.

4.6 Newtonian fluid

Making λ → 0 into (36) and (37) and using (52), we
obtain the corresponding solutions for the Newtonian
fluid, as follows

wN(r, t) = 1

2μ

(
R1

R2

)2(
r − R2

2

r

)
f

− πf

μ
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J 2
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×
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(−νr2
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)k tk

k! , (44)

and

τN(r, t) =
(

R1

r

)2

f + πf
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n=1

J 2
1 (R2rn)B̃(r, rn)

J 2
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×
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)k tk

k! . (45)

These solutions can also be written in a more simpler
form as

wN(r, t) = 1

2μ

(
R1

R2

)2(
r − R2

2

r

)
f

− πf

μ
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n=1

J 2
1 (R2rn)B(r, rn)

rn[J 2
2 (R1rn) − J 2

1 (R2rn)]
× exp

(−νr2
nt

)
, (46)

τN(r, t) =
(

R1

r

)2

f + πf
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n=1

J 2
1 (R2rn)B̃(r, rn)

J 2
2 (R1rn) − J 2

1 (R2rn)

× exp
(−νr2

nt
)
. (47)

5 Conclusions and numerical results

The purpose of this paper is to establish exact solutions
for the velocity field and the adequate shear stress cor-
responding to the unsteady flow of an incompressible
fractional Oldroyd-B fluid between two infinite co-
axial circular cylinders induced by a time-dependent
shear. The motion of the fluid is produced by the inner
cylinder, which at time t = 0+, begins to rotate about
its axis with a time-dependent shear stress. The solu-
tions that have been obtained by means of the finite
Hankel and Laplace transforms, are presented under
series form in terms of the generalized G functions.
The similar solutions for ordinary Oldroyd-B, frac-
tional Maxwell, ordinary Maxwell, fractional second
grade and ordinary second grade fluids as well as those
for the Newtonian fluid, performing the same motion,
are obtained as limiting cases of the solutions for frac-
tional Oldroyd-B fluid.

In order to reveal some relevant physical aspects
of the obtained results, the diagrams of the veloc-
ity w(r, t) and the shear stress τ(r, t) given by (23)
and (31), have been drawn against r for different val-
ues of the time t and of the material parameters. Fig-
ures 1a and 1b show the influence of time on the fluid
motion. From these figures it is clearly seen that the
velocity as well as the shear stress (in absolute value)
is an increasing function of t . In Figs. 2a and 2b, it
is shown the influence of the kinematic viscosity ν

on the fluid motion. It is clearly seen from these fig-
ures that the velocity is an increasing function of ν,
while the shear stress (in absolute value) is a decreas-
ing function of ν. The influence of the relaxation and
the retardation times on the fluid motion is shown in
Figs. 3 and 4. The two parameters, as it was to be ex-
pected, have opposite effects on the fluid motion. Both
the velocity and the shear stress (in absolute value) are
decreasing functions with respect to λ and increasing
ones with regard to λr . Figures 5a and 5b show the
influence of the fractional parameter γ on the fluid
motion. It is clearly seen from these figures that both
the velocity and the shear stress (in absolute value)
are increasing functions of γ . In Figs. 6a and 6b, it is
shown the influence of the fractional parameter β on
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Fig. 1 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (23) and (31) for R1 = 0.3, R2 = 0.5, f = −2, ν = 0.035,
μ = 30, λ = 12, λr = 2.2, γ = 0.9, β = 0.6 and different values of t

Fig. 2 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (23) and (31) for R1 = 0.3, R2 = 0.5, f = −2, t = 6 s, μ = 40,
λ = 9, λr = 3, γ = 0.3, β = 0.3 and different values of ν

Fig. 3 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (23) and (31) for R1 = 0.3, R2 = 0.5, f = −2, t = 5 s, ν = 0.04,
μ = 40, λr = 7, γ = 0.3, β = 0.3 and different values of λ

the fluid motion. It is clearly seen from these figures
that the velocity is increasing function of β , while the
shear stress (in absolute value) is a decreasing function
of β .

Finally, for comparison, the diagrams of w(r, t) and
τ(r, t) corresponding to the seven models (fractional
Oldroyd-B, ordinary Oldroyd-B, fractional Maxwell,
ordinary Maxwell, fractional second grade, ordinary
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Fig. 4 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (23) and (31) for R1 = 0.3, R2 = 0.5, f = −2, t = 5 s, ν = 0.04,
μ = 50, λ = 8, γ = 0.3, β = 0.9 and different values of λr

Fig. 5 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (23) and (31) for R1 = 0.3, R2 = 0.5, f = −2, t = 6 s,
ν = 0.045, μ = 30, λ = 25, λr = 8, β = 1, and different values of γ

Fig. 6 Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (23) and (31) for R1 = 0.3, R2 = 0.5, f = −2, t = 6 s, ν = 0.04,
μ = 30, λ = 8, λr = 5.5, γ = 1, and different values of β

second grade and Newtonian) are together depicted
in Fig. 7 for the same values of the common mate-
rial constants and time t . In all cases the velocity of
the fluid is a decreasing function with respect to r

and the Newtonian fluid is the swiftest while the frac-
tional Oldroyd-B fluid has the smallest velocity on the
whole flow domain. One thing is of worth mentioning
that units of the material constants are SI units in all
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Fig. 7 Profiles of the velocity w(r, t) and shear stress τ(r, t)

corresponding to the Newtonian, fractional second grade, sec-
ond grade, Maxwell, fractional Maxwell, Oldroyd-B, and frac-
tional Oldroyd-B fluids, for R1 = 0.4, R2 = 0.6, f = −4,
t = 5 s, ν = 0.035, μ = 2.96, λ = 5, λr = 1, γ = 0.5 and
β = 0.5

figures, and the roots rn have been approximated by
(2n − 1)π/[2(R2 − R1)].
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Appendix

1

(q + λqγ+1 + νr2
n + νλrr2

nqβ)

= 1
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