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Abstract We propose a general model for pendular
systems with an arbitrary number of links arranged
sequentially. The form of this model is easily adapt-
able to different settings and operating conditions. The
main subject of analysis is a system obtained as a spe-
cific case taken from the general analysis, a three-links
pendulum with damping subject to periodic perturba-
tion. We performed a theoretical analysis of the fre-
quency response and compared it with results from
temporal integration. Moreover, a law was obtained
explaining the behavior of the shift of the resonant fre-
quencies due to a change in a parameter.

Keywords Triple pendulum · Resonance frequency ·
Frequency shift · Friction

1 Introduction

In general and whenever possible, at the starting point
of any analysis of a system, a linear mathematical
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model is used. If the model is represented through dif-
ferential equations, a further step is taken to propose
a more detailed model, increasing the complexity of
its equations and solution by using non-linear differen-
tial equations. Due to non-linearities in a system, some
conditions might generate solutions with co-existing
attractors or even chaotic behavior [1].

The interest in the study of pendular systems is con-
tinually increasing, based on the very rich dynamic be-
havior they display and the corresponding mathemat-
ical models that can be used to analyze very complex
systems. Even a simple pendulum can be used as a
standard benchmark to test another systems. Despite
general models for an arbitrary number of links being
used to control issues of the inverted pendulum [2],
the lack of general models ready to apply to an n-links
regular pendulum is well known. In [3] a model is pro-
posed that uses equations of motion with a n-links pen-
dulum fixed at its upper extremity using frictionless
elements. Caertmell [4] developed a complete model
of a plane pendulum for two links taking into account
friction and compliance as well as links with variable
lengths and masses.

Instead of using previously derived equations for
a fixed number of links [5–8], we propose a general
matrix representation for the n-links pendulum with
damping. With this model, it is straightforward to de-
compose and separate the first derivatives of the dy-
namic variables as well as to solve the system equa-
tions using simulation language or a software pack-
age. Another kind of analysis tool is by means of a
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symbolic system with a mathematical software pack-
age [9]. In [10], a scalable model of a mechanical sys-
tem is used and the comparison between the dynamic
simulation procedures is made per the proposal of this
work. An interesting analysis is done in [11], where
the authors found the chaotic dynamics of a triple pen-
dulum controlled by a permanent rotating magneto
and used Poincaré sections and graphs in phase space
to analyze periodic and chaotic behaviors. Also, a non-
linear model has been studied to compare the experi-
mental results and calculations of a newly proposed
non-linear model in the regime of transient chaos [12].
A study of a forced pendulum with non-linear torsion
through bifurcation diagrams behaving as period dou-
bling bifurcations to chaos is shown in [13]. Also in
[14] experimental observations of chaos in a perturbed
pendulum with damping with torque showing alternat-
ing behavior.

It is well known that behaviors in real systems are
accompanied by both impact forces and friction [15].
Here, the authors model a physical plane triple pendu-
lum with barriers causing impacts and sliding. More-
over, they investigate the stability of an orbit in per-
turbed dynamic systems and apply the results to a
piston-connecting rod-crank in the one-cylinder of a
combustion engine, in order to analyze the noise gen-
erated by the impacts between piston and cylinder.
Several practical applications of multiple link pendu-
lums have been done, such as the study of a triple pen-
dulum used in the analysis of the swing of a golf club
[16]. Here, the movement of a robot simulated for hu-
man tasks focused in the parameterization of optimal
trajectories along time is analyzed. In addition, the de-
composition of trajectories to characterize the way pa-
rameters influence behavior is shown.

Pendular systems have previously found applica-
tion in the seismic isolation of vibration [17] where,
as in this work, the modal frequency or response of
the transference function is studied. Similarly, [18]
presents analytical and experimental studies of a triple
pendulum used as insulator of linear seismic move-
ments with a non-linear viscosity and mechanisms
for the dissipation of energy in bilinear hysteresis.
Another application is a suspension system studied
through different numerical models of a triple pendu-
lum with the aim of filtering high frequencies of seis-
mic noise [19]. In the same manner, in [20] a triple
pendulum is used to suspend the optical system de-
signed to diminish the effects of both seismic and

thermal noise from the suspended masses of a laser
interferometer geographic observatory (LIGO). And
finally, an interesting optimization procedure can be
found in [5], where the response of a triple pendulum
from grouping parameters is tested to select the best
approximation for a real system.

In this work the dynamic behavior of a plane triple
pendulum is analyzed. A mathematical model with
weightless-links from a Lagrange equations scheme is
proposed. The model is written in matrix form, which
is readily scalable to any number of links. Harmonic
perturbation is applied to the upper link, leaving the re-
maining links free to oscillate. Every link is subjected
to friction. Once the equations for an arbitrary number
of links are obtained, the specific case for three links
is analyzed and numerically solved. The frequency re-
sponse regarding the friction parameter is obtained by
finding a shift in the resonance peaks for every link.
To verify the non-linear model, a simplified version
for small oscillations is obtained and compared with
other results [12–14] using reduced linear models for
the triple pendulum. The structure of this work is as
follows. In Sect. 2, the development of a nonlinear
model in matrix from of a pendulum with three links
with damping which is our main system is shown. This
model was extracted from a general model of n-links
developed in the Appendix. In Sect. 3, it is shown the
dynamics of our system in a qualitative way. In Sect. 4,
results of the frequency response are shown and com-
pared with analytical calculations using an integral
transform and the transference function. In Sect. 5 the
main results of the work are shown, specifically, the
shift of the frequency resonances and its relation to the
friction parameter. Finally conclusions are presented
in Sect. 6.

2 Mathematical model

In most published works on the triple pendulum, the
specific model to be used is usually established in
advance in terms of the equations of motion for the
model in question. Here, we try to establish a general
model for n-links and then deduce the specific case
at hand. In the Appendix a general non-linear model
for a plane pendulum with n-links and damping is de-
veloped. From there, the example of the triple pen-
dulum system being analyzed is shown. The general
non-linear model also provides the well-known small
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oscillation model. In our system, each link is of neg-
ligible mass, but with a mass concentrated at the end
of the link hanging from it, and its center of gravity
coinciding with the axis of rotation from the adjoining
link below. It is assumed that each joint is subject to
friction opposing movement. A periodic disturbance1

is applied to the top of the first link.
The schematic representation of this system is

shown in Fig. 1. The masses and links length are la-
beled as mi , and Li , and the angles θi respectively
(i = 1,2,3). The main dynamic variables are the an-
gles θi measured from the vertical line to each link.
The whole system is subjected to harmonic distur-
bance η = η0 cos(ωt) applied to the upper link.

The general model developed in the Appendix
progresses toward writing the case for the triple
pendulum. From Fig. 1, the dynamic variables are:
x1 = L1 sin θ1, y1 = −L1 cos θ1, x2 = x1 + L2 sin θ2,
y2 = y1 − L2 cos θ2, x3 = x2 + L3 sin θ3, and
y3 = y2 − L3 cos θ3. Written equations (A.2) for three
links, where the mathematical model depicted in ma-
trix format is

M(θ)θ̈ + N(θ)θ̇2 + Rθ̇ + P(θ) + f (θ, t) = 0 (1)

where

M(θ) =

⎡
⎢⎢⎣

M1 M12 cos(θ1 − θ2) M13 cos(θ1 − θ3)

M12 cos(θ1 − θ2) M2 M23 cos(θ2 − θ3)

M13 cos(θ1 − θ3) M23 cos(θ2 − θ3) M3

⎤
⎥⎥⎦ ,

N(θ) =

⎡
⎢⎢⎣

0 M12 sin(θ1 − θ2) M13 sin(θ1 − θ3)

−M12 sin(θ1 − θ2) 0 M23 sin(θ2 − θ3)

−M13 sin(θ1 − θ3) −M23 sin(θ2 − θ3) 0

⎤
⎥⎥⎦ ,

R =

⎡
⎢⎢⎣

R1 + R2 −R2 0

−R2 R2 + R3 −R3

0 −R3 R3

⎤
⎥⎥⎦ , P (θ) =

⎡
⎢⎣

A1g sin θ1

A2g sin θ2

A3g sin θ3

⎤
⎥⎦ , f (θ, t) =

⎡
⎢⎣

A1g cos θ1

A2g cos θ2

A3g cos θ3

⎤
⎥⎦ η̈,

the elements of the matrices are

M1 = (m1 + m2 + m3)L
2
1, M2 = (m2 + m3)L

2
2,

M3 = m3L
2
3, M12 = (m2 + m3)L1L2,

M13 = m3L1L3, M23 = m3L2L3,

A1 = (m1 + m2 + m3)L1, A2 = (m2 + m3)L2,

and M3 = m3L3.

All other parameters are defined in the Appendix.
These equations, of course, can be written as a system

1In this study, only periodic disturbance is considered. However,
in future work other types of disturbances such as impulse and
step functions will be used.

of three differential equations, too. But when contem-
plating the computational implementation, the matrix
form is preferred.

3 Numerical solutions

The main model discussed in this work is the non-
linear triple pendulum (i.e. large amplitudes of oscil-
lation). It is widely known that the non-linear pendu-
lum exhibits several regimes, such as periodic, quasi-
periodic and chaotic. These characteristic behaviors
are also obtained from our non-linear model. In Fig. 2,
time series curves for θ3 and the corresponding fre-
quency response are shown. Curves in this figure are
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Fig. 1 Schematic representation of a triple pendulum with a
perturbation in the upper link. The detail shows a joint among
links consisting of a mass, and the damping mechanism

obtained by varying the perturbation frequency and the
damping constant (in N m/s2) to equal 1.0 for Fig. 2a,
0.1 for Fig. 2b, and 0.01 for Fig. 2c. In the same figure
we can see the variation of the frequency components
for each particular regime. Phase diagrams are used to
visualize qualitatively a regime of movement. In Fig. 3
are drawn the corresponding phase diagrams for the
cases of Figs. 2a, 2b, and 2c, they were obtained with
the same parameters and initial conditions.

For small angles, the behavior of the small oscilla-
tions model (A.3), and the non-linear model in equa-
tions (1) tends to be the same as shown in Fig. 4. Both
series will only coincide completely for sin θ ≈ θ , be-
cause it is fundamentally equivalent for considering
the small oscillations model.2 This figure shows a typ-
ical time series for the third angle for both models. One
curve was obtained with the small oscillations model;
the other with the non-linear model. Both curves were
obtained for the same set of parameters and initial con-
ditions. The values for perturbation frequency and am-
plitude perturbation are f = 0.5 Hz and η = 0.03 m,
respectively. Masses and lengths have the same values
mi = 1 kg and li = 1 m (i = 1,2,3) respectively.

2We have discovered a dependence of the system behavior on
the friction parameter, although in this comparison we have not
considered the friction term in obtaining time series. This should
not be considered as validation of the proposed system. It is only
the comparison within the limit of small oscillations.

4 Frequency response analysis

For the small oscillations model, we first calculate
the theoretical solution of the frequency response us-
ing Transfer-Functions and then compare it with the
numerical calculation using the corresponding differ-
ential equations (the solution of small oscillations).
From (A.4) we get MLθ̈ + Rθ̇ + gmlθ = −mlη̈,
and by applying the Laplace transform
MLs2θ(s) + Rsθ(s) + gmlθ(s) = −mls2η(s), and so
(MLs2 + Rs + gml)θ(s) = −mls2η(s), where η(s)

and θ(s) are the input and the output variables re-
spectively. A transfer function is defined as the rate
of output to the input variable as

θ(s)

η(s)
= − mls2

MLs2 + Rs + gml
(2)

where s is a parameter. For this case, it is stated in
(2) and displayed in Fig. 5a. In this figure, each peak
corresponds to a resonance frequency of the system.
Curve was obtained by using s = j2πf , and the same
values used for Fig. 4. Figure 5b shows the frequency
response for the small oscillations model in (A.4). It
can be observed that the values for resonance frequen-
cies are the same obtained through using both meth-
ods.

Figure 5c shows the behavior of frequency re-
sponse using the differential equations of the non-
linear model for the triple pendulum. This diagram
was obtained with the same values for parameters as
Fig. 5a and Fig. 5b. Although the first peak is the
same for three cases, for f > 0.35 Hz resonance peaks
widen. This happens because non-linearity starts to in-
fluence pendulum behavior by degrading the response
to perturbation frequency.

With the results represented in Fig. 5, it is possi-
ble to compare the frequency of resonance calculated
with the transfer function G(s), with the frequency re-
sponse for θ3(t) calculated from the differential equa-
tions of the small oscillation model, and with the non-
linear model. We should not make a comparison of
peak heights in this figure, in Fig. 5a they correspond
to a ratio of transfer but in Figs. 5b and 5c, to the an-
gle of oscillation of a particular link from the physical
system.

Figures 5b and 5c correspond to the heights of the
peaks observed in the third link for each frequency
of disturbance. This can be seen as the response to
the frequency being disturbed of the small oscillations
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Fig. 2 Time series curves for and the corresponding frequency spectrum for different regimes typical of the pendulum obtained by
varying the perturbation frequency and damping are shown. For the third angle θ3, we have: (a) Periodic motion with f = 0.3 Hz, and
damping of 1 N m/s2, (b) Quasi-periodic motion with f = 1.5 Hz, damping of 0.1 N m/s2 and (c) Chaotic behavior with f = 0.5 Hz,
damping of 0.01 N m/s2. Graphs of spectral analysis are shown on the right

Fig. 3 Phase diagrams for variable θ3 vs. θ1 calculated with same parameters as for Fig. 2. Every plot (a), (b), and (c) correspond to
plots 2(a), 2(b), and 2(c) respectively



840 Meccanica (2012) 47:835–844

Fig. 4 Comparison between response of the small oscillations and nonlinear models. (a) Time series for the angle of the third link,
with perturbation frequency f = 0.5 Hz. Both curves were obtained with the same parameters and initial conditions. (b) Difference
between the two time series. The maximum value of the difference is function of the disturbance amplitude η which in this case has a
value of 0.03

Fig. 5 Resonance frequencies of the linear triple pendulum model for the angle of the last link (θ3) as a function of the perturbation
frequency. Frequency response diagrams using (a) theoretical Laplace Transform, (b) the small oscillations model solution, and (c) the
non-linear model

model (A.4) and the non-linear model (A.2). It can be
noted that as we move away from the first link the
width of the peak grows. This indicates that the lower
elements of the pendulum respond to an increasingly
wider range of frequencies.

Figure 6 shows how the width of the peaks changes
as a function of the position of each link in Fig. 5c.
As we move from the first to the last link, the width
of the peak grows. Thus, the effect caused by the non-
linearity in the pendulum model is a degradation of its
theoretical resonant frequencies.

5 Shift in resonance frequency

A study of the dynamic properties of the triple pendu-
lum with the damping varying in each joint was per-
formed. First, in analyzing the behavior of the system
around the frequency resonance peaks, a slow expo-
nential decaying in the maximum amplitude of angles
has been found, as the friction coefficient increase.
This is shown in Fig. 7, where vertical axes in a log

Fig. 6 Change of width of the three peaks in Fig. 5c for the third
link of pendulum. The increase of the width can be seen as a
degradation of the resonant frequencies caused by non-linearity

scale correspond to the maximum angle reached for
every link and horizontal axes correspond to the vari-
ation of the friction coefficient, remaining the same
for all links ranging from 0 to 1 N m/s2. It has been
discovered that according to (3) these curves have
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Fig. 7 Maximum values in steady state for each angle using a
frequency equal to the first resonance peak. The vertical axis
scale is logarithmic

an exponential decay with a scaling law of approxi-
mately 0.50:

θmax ∼ e−0.5R (3)

In addition, the main result of this work has
been the finding that resonance frequencies shift with
changes in friction. The behavior of this shift for the
second resonance frequency peak is shown in Fig. 8
for the third angle of the system, where the range of
frequency value was varied from 0.63 to 0.75 Hz and
the friction constant ranged from 0 to 0.5 N m/s2 to
encompass every curve.

Two different behaviors have been found when the
friction varies in the joints. First, where the shift is in-
dependent for small values of the friction parameter,
meaning Rk < 0.1, the friction does not displace the
peaks of resonance with the same behavior that oc-
curs when Rk > 0.3. Second, on the half of the interval
with values for Rk ranging from 0.1 to 0.3, the linear
behavior obtained signifies that the shift in resonance
peaks grows linearly as friction with a slope of 0.25
i.e. �fr = 0.25R.

6 Conclusions

For a non-linear model based on the Lagrangian for-
mulation obtained for a pendulum with n-links, it has
been proven that its applicability and simplicity of use
is based on the representation stated in this work. From

Fig. 8 Shift of the second resonance frequency peak. Two dif-
ferent behaviors can be seen: one where friction does not influ-
ence the peak in frequency and another where the shift grows
linearly with the damping parameter

the representation with second order differential equa-
tions, the matrix representation has been proposed in
terms of first derivatives of the dynamic variables,
however separate from them. Such representation has
a direct implementation in a computational language
or software package, so a program model for a pendu-
lum with an arbitrary number of links can be written
directly. The main system analyzed was obtained as
a specific case of the general multi-link version. This
case for three links is in full agreement with the corre-
sponding models published elsewhere.

Our non-linear model was proved against a small
oscillations version by calculating frequency response,
time series, and spectral analysis and obtaining simi-
lar dynamic behavior in the limit case. In the analysis
made for the frequency response, three different strate-
gies were used to compare peaks of resonance: one by
means of the small oscillations model, another by us-
ing transfer functions based on the Laplace transform,
and the third by our non-linear model. The compari-
son of the position of the peaks of resonance in each
case was almost exact. But one of the main results ob-
tained was in the analysis of the shift of frequency res-
onances. Two distinct behaviors have been observed:
one where friction in the joints does not affect frequen-
cies; the other resulting in the scaling law determining
the behavior of the resonance shifts.

Having laws governing the behavior of a system is
critical in the design of a structure or mechanism. The
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results from this work provide a method for analyz-
ing how the resonance frequency peaks behave when
there are changing parameters for the system. The fact
that the lowest elements of the pendulum respond to
a broader spectrum of frequencies must be taken into
account when designing compensation mechanisms of
movement caused by earthquakes in large buildings.
This is due to the counterweights used to follow the
dynamics of multi-link pendulums. One way to con-
trol unwanted oscillations in this system is achieved
by using a brake mechanism at each joint. This is ca-
pable of altering the natural frequency as demonstrated
in this research.

Appendix

Obtaining small oscillations model from the non-
linear model. In order to establish the system dis-
cussed herein, we start from a general mathematical

approach to an n-links pendulum. Then we deduce the
main model used here.

The mathematical model for a multi-link pendu-
lum can be built based on the Euler-Lagrange formu-
lation [21],

d

dt

∂L

∂θ̇k

− ∂L

∂θk

+ ∂Q

∂θ̇k

= 0 (A.1)

where L=T −u is the Lagrangian, T = 1
2Σmk|rkθ̇k|2,

u = gΣmkhk , Q = 1
2ΣRk(θ̇k − θ̇k−1)

2 are the friction
losses, and θk represents the generalized coordinates.
After replacing these terms in (A.1), we can establish
a non-linear differential equations system, written in a
matrix form for a pendulum with an arbitrary number
of links as:

MN(θ)θ̈N + NN(θ)θ̇2
N + RNθ̇N + PN(θ)

+ fN(θ, t) = 0 (A.2)

where MN , NN , RN and fN are matrices given by:

MN(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 M12 cos(θ1 − θ2) M13 cos(θ1 − θ3) · · · M1n cos(θ1 − θn)

M12 cos(θ1 − θ2) M2 M23 cos(θ2 − θ3) · · · M2n cos(θ2 − θn)

M13 cos(θ1 − θ3) M23 cos(θ2 − θ3) M3 · · · M3n cos(θ3 − θn)

...
...

...
. . .

...

M1n cos(θ1 − θn) M2n cos(θ2 − θn) M3n cos(θ3 − θn) · · · Mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

NN(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 M12 sin(θ1 − θ2) M13 sin(θ1 − θ3) · · · M1n sin(θ1 − θn)

−M12 sin(θ1 − θ2) 0 M23 sin(θ2 − θ3) · · · M2n sin(θ2 − θn)

−M13 sin(θ1 − θ3) −M23 sin(θ2 − θ3) 0 · · · M3n sin(θ3 − θn)

...
...

...
. . .

...

−M1n sin(θ1 − θn) −M2n sin(θ2 − θn) −M3n sin(θ3 − θn) · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

RN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1 + R2 −R2 0 · · · 0

−R2 R2 + R3 −R3 · · · 0

0 −R3 R3 + R4 · · · 0
...

...
...

. . .
...

0 0 0 · · · Rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, PN(θ)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1g sin θ1

A2g sin θ2

A3g sin θ3

...

Ang sin θn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fN(θ, t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1g cos θ1

A2g cos θ2

A3g cos θ3

...

Ang cos θn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

η̈,
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and

θ̈N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̈1

θ̈2

θ̈3

...

θ̈n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ̇N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2

θ̇3

...

θ̇n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1

θ2

θ3

...

θn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From this model, it is straightforward to obtain the
case of small oscillations (i.e when sin θ ≈ θ ). Thus
resulting in n-links pendular systems with small oscil-
lations. For the small oscillations model of a pendulum
we have:

MNLNθ̈N + RNθ̇N + gmnlNθN + mNlNηNa = 0

(A.3)

where:

MN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1L1 m2L1 m3L1 · · · mnL1

0 m2L2 m3L2 · · · mnL2

0 0 m3L3 · · · mnL3

...
...

...
. . .

...

0 0 0 · · · mnLn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

LN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 0 0 · · · 0

L1 L2 0 · · · 0

L1 L2 L3 · · · 0
...

...
...

. . .
...

L1 L2 L3 · · · Ln

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

RN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1 + R2 −R2 0 · · · 0

−R2 R2 + R3 −R3 · · · 0

0 −R3 R3 + R4 · · · 0
...

...
...

. . .
...

0 0 0 · · · Rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

lN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 0 0 · · · 0

0 L2 0 · · · 0

0 0 L3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ln

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

mN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 + m2 + m3 + · · · + mn 0 0 · · · 0

0 m2 + m3 + · · · + mn 0 · · · 0

0 0 m3 + · · · + mn · · · 0
...

...
...

. . .
...

0 0 0 · · · mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ηNa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

η̈

η̈

η̈

...

η̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A specific case concerns the 3-links pendulum subject
to small-oscillations. From (A.3), we deduce:

MLθ̈ + Rθ̇ + gmlθ + mlηa = 0 (A.4)

with

M =
⎡
⎢⎣

m1L1 m2L1 m3L1

0 m2L2 m3L2

0 0 m3L3

⎤
⎥⎦ ,

L =
⎡
⎢⎣

L1 0 0

L1 L2 0

L1 L2 L3

⎤
⎥⎦ ,

R =
⎡
⎢⎣

R1 + R2 −R2 0

−R2 R2 + R3 −R3

0 −R3 R3

⎤
⎥⎦ ,
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lN =
⎡
⎢⎣

L1 0 0

0 L2 0

0 0 L3

⎤
⎥⎦ ,

m =
⎡
⎢⎣

m1 + m2 + m3 0 0

0 m2 + m3+ 0

0 0 m3

⎤
⎥⎦ ,

θ̈ =
⎡
⎢⎣

θ̈1

θ̈2

θ̈3

⎤
⎥⎦ , θ̇ =

⎡
⎢⎣

θ̇1

θ̇2

θ̇3

⎤
⎥⎦ , θ =

⎡
⎢⎣

θ1

θ2

θ3

⎤
⎥⎦ ,

ηa =
⎡
⎢⎣

η̈

η̈

η̈

⎤
⎥⎦ .

This is in complete agreement with the well-known
small oscillations model appearing elsewhere [21].

Computational implementation. Given the second-
order differential equations that describe the pendulum
model of n-links, for the purpose of computational im-
plementation, the model is transformed into a system
of equations of the first order with the first derivatives
already separated as described by:

dθ = Ma(θ)−1[−Na(θ)va − Pa(θ) − fa(θ, t)]
(A.5)

where dθ = [u̇ v̇ ẇ θ̇1 θ̇2 θ̇3]T ,
va = [u2 v2 w2 −u −v −w]T , and the 6×6 partitioned
matrix defined as

Ma(θ) =
[

M(θ) R

0 I

]
, Na(θ) =

[
N(θ) 0

0 I

]
,

Pa(θ) =
[

P(θ)

0

]
, fa(θ, t) =

[
f (θ, t)

0

]
, and

I =
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ .

Matrices M(θ), N(θ), P(θ), and f (θ, t) was de-
fined in (1).
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