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Abstract In the present work, the effect of MHD
flow and heat transfer within a boundary layer flow
on an upper-convected Maxwell (UCM) fluid over a
stretching sheet is examined. The governing bound-
ary layer equations of motion and heat transfer are
non-dimensionalized using suitable similarity vari-
ables and the resulting transformed, ordinary differen-
tial equations are then solved numerically by shooting
technique with fourth order Runge–Kutta method. For
a UCM fluid, a thinning of the boundary layer and a
drop in wall skin friction coefficient is predicted to oc-
cur for higher the elastic number. The objective of the
present work is to investigate the effect of Maxwell pa-
rameter β, magnetic parameter Mn and Prandtl num-
ber Pr on the temperature field above the sheet.
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x horizontal coordinate [m]
y vertical coordinate [m]
u horizontal velocity component [m s−1]
v vertical velocity component [m s−1]
T temperature [K]
t time [s]
Cp specific heat [J kg−1 K−1]
f dimensionless stream function
Pr Prandtl number, μCp

k

M2 Magnetic parameter,
σB2

0
ρb

q heat flux, −k ∂T
∂y

[J s−1 m−2]
Nux local Nusselt number

Greek symbols
β Maxwell parameter
η similarity variable, (4)
θ dimensionless temperature
k thermal diffusivity [m2 s−1]
μ dynamic viscosity [kg m−1 s−1]
υ kinematic viscosity [m2 s−1]
ρ density [kg m−3]
τ shear stress, μ∂u/∂y [kg m−1 s−2]
ψ stream function [m2 s−1]

Subscripts
x local value

Superscripts
′ first derivative
′′ second derivative
′′′ third derivative
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1 Introduction

The studies of boundary layer flows of Newtonian and
non-Newtonian fluids over a stretching surface have
received much attention because of their extensive ap-
plications in the field of metallurgy and chemical en-
gineering and particularly, in the extrusion of polymer
sheet, from a die or in the drawing of plastic films.
During the manufacture of these sheets, the melt issues
from a slit and is subsequently stretched to achieve
the desired thickness. Such investigations of magne-
tohydrodynamic (MHD) flow are very important in-
dustrially and have applications in different areas of
research such as petroleum production and metallur-
gical processes. The properties of the end product de-
pends greatly on the rate of cooling involved in these
processes, the rate of cooling, and the desired proper-
ties of the end product can be controlled by the use of
electrically conducting fluids and application of mag-
netic field [11]. The magnetic field has been used in
the process of purification of molten metals from non-
metallic inclusions.

The study of flow and heat transfer caused by
a stretching surface is of great importance in many
manufacturing processes such as in extrusion process,
glass blowing, hot rolling, manufacturing of plastic
and rubber sheets, crystal growing, continuous cooling
and fibers spinning. Water is amongst the most widely
used coolant liquid.In all these cases, a study of flow
field and heat transfer can be of significant importance
because the quality of the final product depends to a
large extent on the skin friction coefficient and the sur-
face heat transfer rate.

Sarpakaya [1] was the first researcher to study the
MHD flow a of non-Newtonian fluid. Prandtl’s bound-
ary layer theory proved to be of great use in New-
tonian fluids as Navier-Stokes equations can be con-
verted into much simplified boundary layer equation
which is easier to handle.

Crane [2] was the first among others to consider
the steady two-dimensional flow of a Newtonian fluid
driven by a stretching elastic flat sheet which moves
in its own plane with a velocity varying linearly with
the distance from a fixed point. Subsequently, var-
ious aspects of the flow and/or heat transfer prob-
lems for stretching surfaces moving in the finite fluid
medium have been explored in many investigations,
e.g. Refs. [3–9].

In a typical sheet production process the extrudate
starts to solidify as soon as it exits from the die. The

Fig. 1 Schematic showing flow above a stretching sheet

sheet is then brought into a required shape by a wind-
up roll upon solidification (see Fig. 1). An important
aspect of the flow is the extensibility of the sheet which
can be employed effectively to improve its mechan-
ical properties along the sheet. To further improve
sheet mechanical properties, it is necessary to con-
trol its cooling rate. Physical properties of the cooling
medium, e.g., its thermal conductivity, can play a deci-
sive role in this regard [10]. The success of the whole
operation can be argued to depend also on the rheo-
logical properties of the fluid above the sheet as it is
the fluid viscosity which determines the (drag) force
required to pull the sheet.

Generally it is observed that rheological properties
of a material are specified by their constitutive equa-
tions. The simplest constitute equation for a fluid is a
Newtonian one and the governing equation for such
a fluid is the Navier-Stokes equation. But in many
fields, such as food industry, drilling operations and
bio-engineering, the fluids, rather synthetic or natural
or mixtures of different stuffs such as water, particles,
oils, red cells and other long chain of molecules. This
combination imparts strong non-Newtonian character-
istics to the resulting liquids. In these cases, the fluids
have been treated as non-Newtonian fluids.

Although there is no doubt about the importance
of the theoretical studies cited above, but they are not
above reproach. For example, the viscoelastic fluid
models used in these works are simple models such
as second-order model and/or Watler’s B model which
are known to be good only for weakly elastic fluids
subject to slow and/or slowly-varying flows [12]. To
this should be added the fact that these two fluid mod-
els are known to violate certain rules of thermodynam-
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ics [13]. A non-Newtonian second grade fluid does not
give meaning full results for highly elastic fluids (poly-
mer melts) which occur at high Deborah numbers [14,
15]. Therefore, the significance of the results reported
in the above works are limited, at least as far as poly-
mer industry is concerned. Obviously, for the theoret-
ical results to become of any industrial significance,
more realistic viscoelastic fluid models such as upper-
convected Maxwell model or Oldroyd-B model should
be invoked in the Analysis [24]. Indeed, these two fluid
models have recently been used to study the flow of
viscoelastic fluids above stretching and non-stretching
sheets but with no heat transfer effects involved [16–
18]. Hsiao [25, 26] studied the mixed convection of
MHD viscoelastic fluid past a porous wedge and also
analyzed the electromagnetic effect and non-uniform
heat source effect on viscoelastic boundary layer flow.
Ishak et al. [27] studied the boundary layer flow and
heat transfer over an unsteady stretching vertical sur-
face and Babaelahi et al. [28] investigated the effect of
viscous and ohmic dissipations on viscoelastic MHD
flow boundary layer over a stretching surface. Hayat
et al. [29] studied the MHD stagnation-point flow of
upper convected Maxwell fluid over stretching sheet.

The researcher [21] have done the work related to
UCM fluid by using HAM-method and the researchers
[14, 19, 20] have studied UCM fluid by using numeri-
cal methods with no heat transfer.

It is recognized that there are many other methods
that could be considered in order to describe some rea-
sonable solutions for this particular type of problem.
But to the best of our knowledge, no numerical solu-
tion has previously been investigated for the combined
effect of MHD flow and heat transfer of a UCM fluid
above a stretching sheet. The focal point in the present
work is to investigate same numerically.

2 Mathematical formulation

The equations governing the transfer of heat and mo-
mentum between a stretching sheet and the surround-
ing fluid (see Fig. 1) can be significantly simplified
if it can be assumed that boundary layer approxima-
tions are applicable to both momentum and energy
equations. Although this theory is incomplete for vis-
coelastic fluids, but has been recently discussed by
Renardy [17], it is more plausible for Maxwell flu-
ids as compared to other viscoelastic fluid models. For

MHD flow of an incompressible Maxwell fluids rest-
ing above a stretching sheet.

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
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[
u2 ∂2u

∂x2
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∂y2
+ 2uv

∂2u
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]

= υ
∂2u

∂y2
− σB2

0

ρ
u, (2)

where B0, is the strength of the magnetic field, υ is the
kinematic viscosity of the fluid and λ is the relaxation
time Parameter of the fluid. As to the boundary con-
ditions, we are going to assume that the sheet is being
stretched linearly. Therefore the appropriate boundary
conditions on the flow are

u = Bx, v = 0 at y = 0,

u → 0 as y → ∞,
(3)

where B > 0, is the stretching rate. Here x and y are,
respectively, the directions along and perpendicular to
the sheet, u and v are the velocity components along
x and y directions. The flow is caused solely by the
stretching of the sheet, the free stream velocity being
zero. Equations (1) and (2) admit a self-similar solu-
tion of the form

u = Bxf ′(η), v = √
νBf (η),

η =
(

B

ν

) 1
2

y,

(4)

where superscript ′ denotes the differentiation with re-
spect to η. Clearly u and v satisfy (1) identically. Sub-
stituting these new variable in (2), we have

f ′′′ − M2f ′ − (f ′)2 + ff ′′

+ β(2ff ′f ′′ − f 2f ′′′) = 0. (5)

Here M2 = σB2
0

ρB
and β = λB are magnetic and

Maxwell parameters respectively.
The boundary conditions (3) become

f ′(0) = 1, f (0) = 0 at η = 0

f ′(∞) → 0, f ′′(0) → 0 as η → ∞ (6)
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3 Heat transfer analysis

By using usual boundary layer approximations, the
equation of the energy for two-dimensional flow is
given by

u
∂T

∂x
+ v

∂T

∂y
= k

ρCp

∂2T

∂y2
, (7)

where T , ρ, cp and k are, respectively, the tempera-
ture, the density, specific heat at constant pressure and
the thermal conductivity is assumed to vary linearly
with temperature. We define the dimensionless tem-
perature as

θ(η) = T − T∞
Tw − T∞

(PST Case)

g(η) = T − T∞
b(x

l
)2 1

k

√
ν
b

(PHF Case)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (8)

The thermal boundary conditions depend upon the
type of the heating process being considered. Here, we
are considering two general cases of heating namely,
(1) Prescribed surface temperature and (2) prescribed
wall heat flux, varying with the distance.

3.1 Prescribed surface temperature case (PST case)

For this heating process, the prescribed temperature is
assumed to be a quadratic function of x is given by

u = Bx, v = 0,

T = Tw(x) = T∞ + A

(
x

l

)2

at y = 0

u = 0, T → T∞ as y → ∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (9)

where T is temperature of the fluid, Tw is surface tem-
perature, T∞ is the ambient temperature and l is the
characteristic length. A is some constant and B > 0 is
linear stretching constant.

Using (4), (7) and (10), the dimensionless tempera-
ture variable θ given by first equation of (8), satisfies

Pr[2f ′θ − θ ′f ] = θ ′′, (10)

where Pr = μcp

k
is the Prandtl number. The corre-

sponding boundary conditions are

θ(η) = 1 at η = 0

θ(η) = 0 as η → ∞.
(11)

3.2 Prescribed heat flux case (PHF case)

The power law heat flux on the wall surface is consid-
ered to be a quadratic power of x in the form

u = Bx, −k

(
∂T

∂y

)
w

= qw = D

(
x

l

)2

at y = 0

u → 0, T → T∞ as y → ∞.

(12)

Here D is constant. Using (4), (7) and (12), the di-
mensionless temperature variable g given by second
condition of (8), satisfies

Pr′[2f ′g − g′f ] = g′′. (13)

The corresponding boundary conditions are

g′(η) = −1 at η → 0

g(η) = 0 at η → ∞.
(14)

The rate of heat transfer between the surface and the
fluid conventionally expressed in dimensionless form
as a local Nusselt number and is given by

Nux ≡ − x

Tw − T∞

(
∂T

∂y

)
y=0

= −x
√

Re θ ′(0). (15)

Similarly, momentum equation is simplified and
exact analytic solutions can be derived for the skin-
friction coefficient or frictional drag coefficient as

Cf ≡ (μ∂u
dy

)y=0

ρ(Bx)2
= −f ′′(0)

1√
Rex

, (16)

where Rex = ρBx2

μ
is known as local Reynolds num-

ber.

4 Numerical solution

We adopt the most effective shooting method (see
Refs. [22, 23]) with fourth order Runge–Kutta integra-
tion scheme to solve boundary value problems in PST
and PHF cases mentioned in the previous section. The
non-linear equations (5) and (10) in the PST case are
transformed into a system of five first order differential
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equations as follows:

df0

dη
= f1,

df1

dη
= f2,

df2

dη
= (f1)

2 + M2f1 − f0f2 − 2βf0f1f2

1 − βf 2
0

,

dθ0

dη
= θ1,

dθ1

dη
= Pr[2f1θ0 − θ1f0].

(17)

Subsequently the boundary conditions in (6) and (11)
take the form,

f0(0) = 0, f1(0) = 1, f1(∞) = 0,

θ0(0) = 0, θ0(∞) = 0.
(18)

Here f0 = f (η) and θ0 = θ(η). Aforementioned
boundary value problem is first converted into an ini-
tial value problem by appropriately guessing the miss-
ing slopes f2(0) and θ1(0). The resulting IVP is solved
by shooting method for a set of parameters appear-
ing in the governing equations with a known value
of f2(0) and θ1(0). The convergence criterion largely
depends on fairly good guesses of the initial condi-
tions in the shooting technique. The iterative process
is terminated until the relative difference between the
current iterative values of f2(0) matches with the pre-
vious iterative value of f2(0) up to a tolerance of 10−6.
Once the convergence is achieved we integrate the re-
sultant ordinary differential equations using standard
fourth order Runge–Kutta method with the given set
of parameters to obtain the required solution.

5 Results and discussion

The exact solution do not seem feasible for a com-
plete set of equations (5) and (10) because of the non
linear form of the momentum and thermal boundary
layer equations. This fact forces one to obtain the so-
lution of the problem numerically. Appropriate simi-
larity transformation is adopted to transform the gov-
erning partial differential equations of flow and heat
transfer into a system of non-linear ordinary differen-
tial equations. The resultant boundary value problem

Table 1 Values of f ′′(0) for various parametric values of
Maxwell parameter β

β f ′′(0)

Sadeghy et al. [19] Present results Present results

M = 0.0 M = 0.2

0.0 −1.0000 −0.999962 −1.095445

0.2 −1.0549 −1.051948 −1.188270

0.4 −1.10084 −1.101850 −1.275878

0.6 −1.0015016 −1.150163 −1.358733

0.8 −1.19872 −1.196692 −1.437369

1.2 – −1.285257 −1.512280

1.6 – −1.368641 −1.095445

2.0 – −1.447617 −1.188270

Fig. 2 The effect of MHD parameter M on u-velocity compo-
nent f ′ at β = 0

is solved by the efficient shooting method. Present re-
sults are compared with some of the earlier published
results in some limiting cases are shown in Table 1.
The effect of several parameters controlling the veloc-
ity and temperature profiles are shown graphically and
discussed briefly.

Figures 2 and 3 show the effect of magnetic pa-
rameter, M , in the absence of Maxwell parameter (at
β = 0) on the velocity profile above the sheet. An in-
crease in the magnetic parameter leads in decrease of
both u and v velocity components at any given point
above the sheet. This is due to the fact that applied
transverse magnetic field produces a drag in the form
of Lorentz force thereby decreasing the magnitude of
velocity. The drop in horizontal velocity as a conse-
quence of increase in the strength of magnetic field is
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Fig. 3 The effect of MHD parameter M on v-velocity compo-
nent f ′ at β = 0

Fig. 4 The effect of MHD parameter M on u-velocity compo-
nent f ′ at β = 1

observed. Figures 4 and 5 show the same effect as said
above, but, in the presence of Maxwell parameter (at
β = 1). That is, an increase in the magnetic parameter
leads in decrease of fluid velocity at any given point
above the sheet.

Figures 6 and 7 show the effect of Maxwell param-
eter β , in the absence of magnetic number (at M = 0)
on the velocity profile above the sheet. An increase in
the Maxwell parameter is noticed to decrease both u-
and v-velocity components at any given point above
the sheet.

Figures 8 and 9 show the effect of Maxwell parame-
ter on the temperature profiles above the sheet for both
PST and PHF cases. An increase in the Maxwell pa-

Fig. 5 The effect of MHD parameter M on v-velocity compo-
nent f ′ at β = 1

Fig. 6 The effect of elastic parameter β on u-velocity compo-
nent f ′ at M = 0

rameter is seen to decrease the fluid temperature θ(η)

and g(η) above the sheet. That is, the thermal bound-
ary layer becomes thicker for larger the magnetic pa-
rameter.

Figures 10 and 11 show the effect of magnetic pa-
rameter on the temperature profiles above the sheet
for both PST and PHF cases. An increase in the mag-
netic parameter is seen to increase the fluid tempera-
ture θ(η) above the sheet. That is, the thermal bound-
ary layer becomes thicker for larger the magnetic pa-
rameter.

Figures 12 and 13 show the effect of Prandtl num-
ber on the temperature profiles above the sheet for
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Fig. 7 The effect of elastic parameter β on v-velocity compo-
nent f ′ at M = 0

Fig. 8 The effect of elastic parameter β on u-velocity compo-
nent f ′ at M = 1

both PST and PHF cases. An increase in the Prandtl
number is seen to decrease the fluid temperature θ(η)

above the sheet. That is not surprising realizing the fact
that the thermal boundary becomes thinner for, larger
the Prandtl number. Therefore, with an increase in the
Prandtl number the rate of thermal diffusion drops.
This scenario is valid for both PST and PHF cases.
For the PST case the dimensionless wall temperature
is unity for all parameter values. However, it may be
other than unity for the PHF case because of its differ-
ing thermal boundary conditions.

A drop in skin friction as investigated in this paper
has an important implication that in free coating op-
erations, elastic properties of the coating formulations
may be beneficial for the whole process. Which means

Fig. 9 The effect of elastic parameter β on v-velocity compo-
nent f ′ at M = 1

Fig. 10 The effect of MHD parameter M on temperature pro-
files θ(η)

that less force may be needed to pull a moving sheet
at a given withdrawal velocity or equivalently higher
withdrawal speeds can be achieved for a given driving
force resulting in, increase in the rate of production
[24].

The accuracy of the results have been validated by
comparing the results of skin friction with the reported
results of Sadeghy et al. [19], these results agree very
well as seen in Table 1 and results of heat transfer rate
is also tabulated in Table 2, we can see that, as increase
in parametric values of Pr wall temperature gradient
is decreasing but as increase in parametric values of
Maxwell parameter the wall temperature is increasing.
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Fig. 11 The effect of MHD parameter M on temperature pro-
files θ(η)

Fig. 12 The effect of Prandtl number Pr on temperature pro-
files θ(η)

6 Conclusions

The present work analyses, the MHD flow and heat
transfer within a boundary layer of UCM fluid above
a stretching sheet. Numerical results are presented to
illustrate the details of the flow and heat transfer char-
acteristics and their dependence on the various param-
eters.

We observe that, when the magnetic parameter in-
creases the velocity decreases, also, for increase in
Maxwell parameter, there is decreases in velocity. The
effect of magnetic field and Maxwell parameter on the
UCM fluid above the stretching sheet is to suppress the

Fig. 13 The effect of Prandtl number Pr on temperature pro-
files θ(η)

Table 2 Wall temperature gradient θ ′(0) values for different
physical parameters

Pr β −θ ′(0) (PST case)

1.0 1.000174

2.0 1.523090

3.0 0.0 1.923609

4.0 2.260770

5.0 2.557560

1.0 0.9800923

2.0 1.504233

3.0 0.2 1.905729

4.0 2.243542

5.0 2.540800

1.0 0.0 1.000174

0.2 0.980092

0.4 0.960788

0.6 0.942318

0.8 0.924698

velocity field, which in turn causes the enhancement of
the temperature field.

Also it is observed that, an increase of Prandtl num-
ber results in decreasing thermal boundary layer thick-
ness and more uniform temperature distribution across
the boundary layer in both the PST and PHF cases. The
reason is that smaller values of Pr are equivalent to in-
creasing the thermal conductivities, and therefore heat
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Fig. 14 Dimensionless heat flux −θ ′(0) at the sheet vs Prandtl
number

is able to diffuse away from the heated surface more
rapidly than for higher values of Pr.

The dimensionless wall temperature gradient
−θ ′(0) takes a higher value at large Prandtl number
Pr (see Fig. 14).
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